Preparation of PdCu Catalyst and the Catalytic Degradation of Methylene Blue and Rhodamine B with PMS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of the Ratio of Na2PdCl4 to Cu2O
2.2. Characterizations of Catalyst
2.3. Degradation of Methylene Blue by Activated PMS
2.3.1. Catalytic Performance of Different Systems
2.3.2. Factors Influencing the Degradation of Methylene Blue
2.3.3. Stability Analysis of Catalysts
2.4. Degradation of Rhodamine B by Activated PMS
2.4.1. Catalytic Performance of Different Systems
2.4.2. Factors Influencing the Degradation of Rhodamine B
2.4.3. Stability Analysis of Catalysts
2.5. Degradation Mechanism Studies
2.5.1. Quenching Experiments
2.5.2. Electron Spin Resonance Resonance (EPR) Experiments
2.5.3. Degradation Mechanism
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Nanocatalysts
3.2.1. Synthesis of Cu2O Spherical Particles
3.2.2. Preparation of PdCu Nanocatalysts
3.3. Characterization of Nanocatalysts
3.4. Catalytic Performance of Nanocatalysts
3.4.1. Catalytic Degradation Experiments
3.4.2. Reuse Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Shi, J.; Luo, X. Enhanced adsorption of rhodamine B from water by Fe-N co-modified biochar: Preparation, performance, mechanism and reusability. Bioresour. Technol. 2022, 343, 126103. [Google Scholar] [CrossRef]
- Li, Y.; Cao, P.; Wang, S.; Xu, X. Research on the treatment mechanism of anthraquinone dye wastewater by algal-bacterial symbiotic system. Bioresour. Technol. 2022, 347, 126691. [Google Scholar] [CrossRef]
- Ewuzie, U.; Saliu, O.D.; Dulta, K.; Ogunniyi, S.; Bajeh, A.O.; Iwuozor, K.O.; Ighalo, J.O. A review on treatment technologies for printing and dyeing wastewater (PDW). J. Water. Process. Eng. 2022, 50, 103233. [Google Scholar] [CrossRef]
- Ali, J.; Bakhsh, E.M.; Hussain, N.; Bilal, M.; Akhtar, K.; Fagieh, T.M.; Danish, E.Y.; Asiri, A.M.; Su, X.; Khan, S.B. A new biosource for synthesis of activated carbon and its potential use for removal of methylene blue and eriochrome black T from aqueous solutions. Ind. Crop. Prod. 2022, 179, 114676. [Google Scholar] [CrossRef]
- Kant, R. Textile dyeing industry an environmental hazard. Nat. Sci. 2012, 04, 22–26. [Google Scholar] [CrossRef]
- Quan, X.; Zhang, X.; Xu, H. In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation. Water Res. 2015, 78, 74–83. [Google Scholar] [CrossRef]
- Mei, R.; Wei, Q.; Zhu, C.; Ye, W.; Zhou, B.; Ma, L.; Yu, Z.; Zhou, K. 3D macroporous boron-doped diamond electrode with interconnected liquid flow channels: A high-efficiency electrochemical degradation of RB-19 dye wastewater under low current. Appl. Catal. B Environ. 2019, 245, 420–427. [Google Scholar] [CrossRef]
- Brillas, E.; Martínez-Huitle, C.A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B Environ. 2015, 166, 603–643. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Wang, X.; Xiao, Y.; Zhou, Y.; Su, X.; Cai, J.; Sun, F. Resuscitation, isolation and immobilization of bacterial species for efficient textile wastewater treatment: A critical review and update. Sci. Total. Environ. 2020, 730, 139034. [Google Scholar] [CrossRef]
- Mu, Y.; Du, H.; He, W.; Ma, H. Functionalized mesoporous magnetic biochar for methylene blue removal: Performance assessment and mechanism exploration. Diam. Relat. Mater. 2022, 121, 108795. [Google Scholar] [CrossRef]
- Ye, H.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Azine-linked covalent organic framework-modified GO membrane for high-efficiency separation of aqueous dyes and salts in wastewater. J. Membr. Sci. 2022, 655, 120546. [Google Scholar] [CrossRef]
- Xiao, F.; Cao, M.; Chu, R.; Hu, X.; Shi, W.; Chen, Y. Novel Perylene-3, 4, 9, 10-tetracarboxylic dianhydride modified Zr-MOFs/Graphene oxide mem-brane for dye wastewater treatment. J. Colloid Interface Sci. 2022, 610, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Gunawan, P.; Xu, R. Self-assembled Fe3O4-layered double hydroxide colloidal nanohybrids with excellent performance for treatment of organic dyes in water. J. Mater. Chem. 2010, 21, 1218–1225. [Google Scholar] [CrossRef]
- Iwuozor, K.O. Prospects and Challenges of Using Coagulation-Flocculation method in the treatment of Effluents. Adv. J. Chem. A 2019, 2, 105–127. [Google Scholar] [CrossRef]
- Tu, Y.; Shao, G.; Zhang, W.; Chen, J.; Qu, Y.; Zhang, F.; Tian, S.; Zhou, Z.; Ren, Z. The degradation of printing and dyeing wastewater by manganese-based catalysts. Sci. Total. Environ. 2022, 828, 154390. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, Z.; Du, W.; Liu, P.; Zhang, L.; Shi, F. Treatment of wastewater containing methyl orange dye by fluidized three dimensional electrochemical oxidation process integrated with chemical oxidation and adsorption. J. Environ. Manag. 2022, 311, 114775. [Google Scholar] [CrossRef]
- Lin, W.; Chen, C.; Tang, H.; Hsiao, Y.; Pan, J.; Hu, C.; Huang, C. Electrochemical photocatalytic degradation of dye solution with a TiO2-coated stainless steel electrode prepared by electrophoretic deposition. Appl. Catal. B Environ. 2013, 140, 32–41. [Google Scholar] [CrossRef]
- Mittal, Y.; Dash, S.; Srivastava, P.; Mishra, P.M.; Aminabhavi, T.M.; Yadav, A.K. Azo dye containing wastewater treatment in earthen membrane based unplanted two chambered constructed wetlands-microbial fuel cells: A new design for enhanced performance. Chem. Eng. J. 2022, 427, 131856. [Google Scholar] [CrossRef]
- Lu, X.; Wang, H.; Chen, J.; Yang, L.; Hu, T.; Wu, F.; Fu, J.; Chen, Z. Negatively charged hollow crosslinked aromatic polymer fiber membrane for high-efficiency removal of cationic dyes in wastewater. Chem. Eng. J. 2022, 433, 133650. [Google Scholar] [CrossRef]
- Fang, J.; Li, J.; Gao, L.; Jiang, X.; Zhang, J.; Xu, A.; Li, X. Synthesis of OMS-2/graphite nanocomposites with enhanced activity for pollutants degra-dation in the presence of peroxymonosulfate. J. Colloid Interface Sci. 2017, 494, 185–193. [Google Scholar] [CrossRef]
- Steter, J.R.; Barros, W.R.; Lanza, M.R.; Motheo, A.J. Electrochemical and sonoelectrochemical processes applied to amaranth dye degradation. Chemosphere 2014, 117, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Huitle, C.A.; Brillas, E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Appl. Catal. B Environ. 2009, 87, 105–145. [Google Scholar] [CrossRef]
- Yu, J.; Gong, Z.; Wang, S.; Zhong, H.; Tao, Y.; Hou, Y.; Fu, Q.; Yang, H.; Li, J.; Wang, J.; et al. Two major deactivation mechanisms in carbon-based advanced oxidation processes (AOPs) dominated by electron-transfer pathway (ETP). Appl. Catal. B Environ. 2024, 364, 124850. [Google Scholar] [CrossRef]
- Yang, L.; He, L.; Xue, J.; Ma, Y.; Xie, Z.; Wu, L.; Huang, M.; Zhang, Z. Persulfate-based degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in aqueous solution: Review on influences, mechanisms and prospective. J. Hazard. Mater. 2020, 393, 122405. [Google Scholar] [CrossRef]
- Li, H.; Liu, C.; Mou, Z.; Yu, P.; Wu, S.; Wang, W.; Wang, Z.; Yuan, R. Enhancement of peroxymonosulfate activation with nickel foam-supported CuCo2O4 for tetracycline degradation: Performance and mechanism insights. J. Colloid Interface Sci. 2024, 678, 227–241. [Google Scholar] [CrossRef]
- Zhao, X.; Dai, L.; Qin, Q.; Pei, F.; Hu, C.; Zheng, N. Self-Supported 3D PdCu Alloy Nanosheets as a Bifunctional Catalyst for Electrochemical Reforming of Ethanol. Small 2017, 13, 12. [Google Scholar] [CrossRef]
- Xu, L.; Fu, B.; Sun, Y.; Jin, P.; Bai, X.; Jin, X.; Shi, X.; Wang, Y.; Nie, S. Degradation of organic pollutants by Fe/N co-doped biochar via peroxymonosulfate activation: Synthesis, performance, mechanism and its potential for practical application. Chem. Eng. J. 2020, 400, 125870. [Google Scholar] [CrossRef]
- Ji, Y.; Lu, J.; Wang, L.; Jiang, M.; Yang, Y.; Yang, P.; Zhou, L.; Ferronato, C.; Chovelon, J.-M. Non-activated peroxymonosulfate oxidation of sulfonamide antibiotics in water: Kinetics, mechanisms, and implications for water treatment. Water Res. 2018, 147, 82–90. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants. Chem. Eng. J. 2021, 411, 128392. [Google Scholar] [CrossRef]
- Pan, S.; Guo, X.; Li, R.; Hu, H.; Yuan, J.; Liu, B.; Hei, S.; Zhang, Y. Activation of peroxymonosulfate via a novel UV/hydrated Fe(III) oxide coupling strategy for norfloxacin removal: Performance and mechanism. Sep. Purif. Technol. 2022, 300, 121909. [Google Scholar] [CrossRef]
- Yan, J.; Chen, Y.; Qian, L.; Gao, W.; Ouyang, D.; Chen, M. Heterogeneously catalyzed persulfate with a CuMgFe layered double hydroxide for the degradation of ethylbenzene. J. Hazard. Mater. 2017, 338, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Guo, H.; Zhang, Y.; Wu, X.; Liu, Y. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Res. 2017, 113, 80–88. [Google Scholar] [CrossRef]
- Qi, F.; Chu, W.; Xu, B. Modeling the heterogeneous peroxymonosulfate/Co-MCM41 process for the degradation of caffeine and the study of influence of cobalt sources. Chem. Eng. J. 2014, 235, 10–18. [Google Scholar] [CrossRef]
- Lyu, Z.; Xu, M.; Wang, J.; Li, A.; Corvini, P.F.-X. Hierarchical nano-vesicles with bimetal-encapsulated for peroxymonosulfate activation: Singlet oxygen-dominated oxidation process. Chem. Eng. J. 2022, 433, 133581. [Google Scholar] [CrossRef]
- Li, J.; Xu, M.; Yao, G.; Lai, B. Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: Kinetic, degradation intermediates, and toxicity evaluation. Chem. Eng. J. 2018, 348, 1012–1024. [Google Scholar] [CrossRef]
- Li, H.; Huang, J.; Gao, S.; Yu, P.; Wu, S.; Liu, Z.; Xu, X.; Wang, L.; Mou, Z.; Wang, Z.; et al. Highly effective and recyclable ZnCo2O4@NF for peroxymonosulfate activation towards ciprofloxacin degradation: Dual reaction sites and enhanced electron transfer mechanisms. Sep. Purif. Technol. 2023, 325, 124677. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.; Ang, H.M.; Tadé, M.O.; Wang, S. 3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: Structure dependence and mechanism. Appl. Catal. B Environ. 2015, 164, 159–167. [Google Scholar] [CrossRef]
- Chen, C.; Ma, T.; Shang, Y.; Gao, B.; Jin, B.; Dan, H.; Li, Q.; Yue, Q.; Li, Y.; Wang, Y.; et al. In-situ pyrolysis of Enteromorpha as carbocatalyst for catalytic removal of organic contaminants: Considering the intrinsic N/Fe in Enteromorpha and non-radical reaction. Appl. Catal. B Environ. 2019, 250, 382–395. [Google Scholar] [CrossRef]
- Deng, J.; Li, F.; Qi, Z.; Huang, W.; Wan, Z.; Zhang, L.; Zheng, D.; Li, G.; Zhang, F. A novel redox synergistic mechanism of peroxymonosulfate activation using Pd-Fe3O4 for ultra-fast chlorinated hydrocarbon degradation. Appl. Catal. B Environ. 2024, 359, 124499. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Zhang, X.; Li, W.; Liu, L.; Wu, S.; Mou, Z.; Huang, M.; Wang, Z.; Yuan, R. Three-dimensional interface engineering via CoMoO4@Co3O4 immobilized on nickel foam for sulfamethoxazole degradation with enhanced electron transfer and high-efficiency peroxymonosulfate activation. Appl. Catal. B Environ. 2025, 376, 125453. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Liu, J.; Shi, G.; Wu, S.; Zhang, N.; Yuan, R. Preparation of PdCu Catalyst and the Catalytic Degradation of Methylene Blue and Rhodamine B with PMS. Catalysts 2025, 15, 610. https://doi.org/10.3390/catal15070610
Wang W, Liu J, Shi G, Wu S, Zhang N, Yuan R. Preparation of PdCu Catalyst and the Catalytic Degradation of Methylene Blue and Rhodamine B with PMS. Catalysts. 2025; 15(7):610. https://doi.org/10.3390/catal15070610
Chicago/Turabian StyleWang, Wei, Jiaqi Liu, Guang Shi, Shiqi Wu, Nan Zhang, and Ruixia Yuan. 2025. "Preparation of PdCu Catalyst and the Catalytic Degradation of Methylene Blue and Rhodamine B with PMS" Catalysts 15, no. 7: 610. https://doi.org/10.3390/catal15070610
APA StyleWang, W., Liu, J., Shi, G., Wu, S., Zhang, N., & Yuan, R. (2025). Preparation of PdCu Catalyst and the Catalytic Degradation of Methylene Blue and Rhodamine B with PMS. Catalysts, 15(7), 610. https://doi.org/10.3390/catal15070610