Photothermal-Assisted Photocatalytic Degradation of Antibiotic by Black g-C3N4 Materials Derived from C/N Precursors and Tetrachlorofluorescein
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials
3.2. Synthesis of BCN Samples
3.3. Photocatalytic Activity Experiments
3.4. Characterizations
3.5. Photoelectrochemical Properties Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Zhang, H.; Chen, Y.; Shi, H. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-scheme Heterojunction Catalyst. Acta Phys. Chim. Sin. 2022, 38, 2201008. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, D.; Wang, Z.; Yi, L.; Sun, J.; Liu, D.; Yu, X.; Chen, Y. Bandgap engineering of carbon nitride by formic acid assisted thermal treatment for photocatalytic degradation of tetracycline hydrochloride. Chem. Eng. J. 2024, 485, 149830. [Google Scholar] [CrossRef]
- Wang, X.; Lin, Y.; Zheng, Y.; Meng, F. Antibiotics in mariculture systems: A review of occurrence, environmental behavior, and ecological effects. Environ. Pollut. 2022, 293, 118541. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, J.; Qiao, X.; Wang, Y.; Cai, X.; Zhou, C.; Zhang, Y.; Ding, G. DOM from mariculture ponds exhibits higher reactivity on photodegradation of sulfonamide antibiotics than from offshore seawaters. Water Res. 2018, 144, 365–372. [Google Scholar] [CrossRef]
- Fanourakis, S.K.; Barroga, S.Q.; Mathew, R.A.; Peña-Bahamonde, J.; Louie, S.M.; Perez, J.V.D.; Rodrigues, D.F. Use of polyaniline coating on magnetic MoO3 and its effects on material stability and visible-light photocatalysis of tetracycline. J. Environ. Chem. Eng. 2022, 10, 107635. [Google Scholar] [CrossRef]
- Xia, Q.; Wang, C.; Xu, N.; Yang, J.; Gao, G.; Ding, J. A Floating Integrated Solar Micro-Evaporator for Self-Cleaning Desalination and Organic Degradation. Adv. Funct. Mater. 2023, 33, 2214769. [Google Scholar] [CrossRef]
- Ko, J.W.; Choi, W.S.; Kim, J.; Kuk, S.K.; Lee, S.H.; Park, C.B. Self-Assembled Peptide-Carbon Nitride Hydrogel as a Light-Responsive Scaffold Material. Biomacromolecules 2017, 18, 3551–3556. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Geng, L.; Tan, X.; Hu, Y.; Mu, P.; Li, J. Reduced graphene oxide/carbon nitride composite sponge for interfacial solar water evaporation and wastewater treatment. Chemosphere 2023, 311, 137163. [Google Scholar] [CrossRef]
- Shan, P.; Hao, P.; Geng, K.; Xue, W.; Xiong, B.; Hou, J.; Guo, F.; Sun, Y.; Shi, W. Hierarchical confinement effect of Co-Co Prussian blue analogues for photothermal-assisted photocatalytic H2 production. Chem. Eng. J. 2025, 509, 161502–161512. [Google Scholar] [CrossRef]
- Shan, P.; Geng, K.; Guo, L.; Kuang, L.; Shen, Y.; Xiong, B.; Hou, J.; Guo, F.; Wang, G.; Shi, W. Synergistic effects of photothermal response and Schottky junction for enhanced photothermal-assisted photocatalytic hydrogen production. Chem. Eng. J. 2025, 513, 162801–162811. [Google Scholar] [CrossRef]
- Fang, K.; Du, C.; Zhang, J.; Zhou, C.; Yang, S. Molecular engineering of a synergistic photocatalytic and photothermal membrane for highly efficient and durable solar water purification. J. Membr. Sci. 2022, 663, 121037. [Google Scholar] [CrossRef]
- Zhou, A.; Yang, K.; Wu, X.; Liu, G.; Zhang, T.C.; Wang, Q.; Luo, F. Functionally-Designed Chitosan-based hydrogel beads for adsorption of sulfamethoxazole with light regeneration. Sep. Purif. Technol. 2022, 293, 120973. [Google Scholar] [CrossRef]
- Tessema, A.A.; Wu, C.-M.; Motora, K.G.; Naseem, S. Highly-efficient and salt-resistant CsxWO3@g-C3N4/PVDF fiber membranes for interfacial water evaporation, desalination, and sewage treatment. Compos. Sci. Technol. 2021, 211, 108865. [Google Scholar] [CrossRef]
- Su, H.; Zhou, J.; Miao, L.; Shi, J.; Gu, Y.; Wang, P.; Tian, Y.; Mu, X.; Wei, A.; Huang, L.; et al. A hybrid hydrogel with protonated g-C3N4 and graphene oxide as an efficient absorber for solar steam evaporation. Sustain. Mater. Technol. 2019, 20, e00095. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, W.; Du, Y.; Shi, H.; Zeng, G.; Yan, X.; Li, X. The g-C3N4 decorated carbon aerogel with integrated solar steam generation and photocatalysis for effective desalination and water purification. Desalination 2023, 564, 116821. [Google Scholar] [CrossRef]
- Ginting, R.T.; Abdullah, H.; Fauzia, V. Facile preparation of MXene and protonated-g-C3N4 on natural latex foam for highly efficient solar steam generation. Mater. Lett. 2022, 313, 131779. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Kunnel, E.S.; Sasidharan, R.; Chinthala, M.; Kumar, A. 3D black g-C3N4 isotype heterojunction hydrogels as a sustainable photocatalyst for tetracycline degradation and H2O2 production. Chem. Eng. J. 2023, 475, 146163. [Google Scholar] [CrossRef]
- Gan, Q.; Xiao, Y.; Li, C.; Peng, H.; Zhang, T.; Ye, M. g-C3N4/MoS2 based floating solar still for clean water production by thermal/light activation of persulfate. Chemosphere 2021, 280, 130618. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, R.; Shan, P.; Zhang, S.; Sun, L.; Xie, H.; Guo, F.; Li, C.; Shi, W. Abundant Edge Active Sites-Modified High-Crystalline g-C3N5 for Hydrogen Peroxide Production from Pure-Water via a Quasi-Homogeneous Photocatalytic Process. Small 2024, 20, e2401566. [Google Scholar] [CrossRef]
- Sun, X.; Shi, Y.; Lu, J.; Shi, W.; Guo, F. Template-free self-assembly of three-dimensional porous graphitic carbon nitride nanovesicles with size-dependent photocatalytic activity for hydrogen evolution. Appl. Surf. Sci. 2022, 606, 154841. [Google Scholar] [CrossRef]
- Shi, W.; Cao, L.; Shi, Y.; Chen, Z.; Cai, Y.; Guo, F.; Du, X. Environmentally friendly supermolecule self-assembly preparation of S-doped hollow porous tubular g-C3N4 for boosted photocatalytic H2 production. Ceram. Int. 2023, 49, 11989–11998. [Google Scholar] [CrossRef]
- Ying, P.; Li, M.; Yu, F.; Geng, Y.; Zhang, L.; He, J.; Zheng, Y.; Chen, R. Band Gap Engineering in an Efficient Solar-Driven Interfacial Evaporation System. ACS Appl. Mater. Interfaces 2020, 12, 32880–32887. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zeng, Z.; Zhang, C.; Huang, D.; Zeng, G.; Xiao, R.; Lai, C.; Zhou, C.; Guo, H.; Xue, W.; et al. Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: Transformation pathways and mechanism insight. Chem. Eng. J. 2018, 349, 808–821. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Shan, P.; Shi, W.; Guo, F. Photothermal-Assisted Photocatalytic Degradation of Antibiotic by Black g-C3N4 Materials Derived from C/N Precursors and Tetrachlorofluorescein. Catalysts 2025, 15, 504. https://doi.org/10.3390/catal15050504
Gao X, Shan P, Shi W, Guo F. Photothermal-Assisted Photocatalytic Degradation of Antibiotic by Black g-C3N4 Materials Derived from C/N Precursors and Tetrachlorofluorescein. Catalysts. 2025; 15(5):504. https://doi.org/10.3390/catal15050504
Chicago/Turabian StyleGao, Xiyuan, Pengnian Shan, Weilong Shi, and Feng Guo. 2025. "Photothermal-Assisted Photocatalytic Degradation of Antibiotic by Black g-C3N4 Materials Derived from C/N Precursors and Tetrachlorofluorescein" Catalysts 15, no. 5: 504. https://doi.org/10.3390/catal15050504
APA StyleGao, X., Shan, P., Shi, W., & Guo, F. (2025). Photothermal-Assisted Photocatalytic Degradation of Antibiotic by Black g-C3N4 Materials Derived from C/N Precursors and Tetrachlorofluorescein. Catalysts, 15(5), 504. https://doi.org/10.3390/catal15050504