Photocatalytic Activity of Cu2O-Loaded TiO2 Heterojunction Composites for the Simultaneous Removal of Organic Pollutants and Bacteria in Indoor Air
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization Results of Cu2O-NPs/TiO2-NTs
2.2. Photocatalytic Experiments
2.2.1. Effect of the Successive Ionic Layer Adsorption and Reaction Deposition Cycle
2.2.2. Simultaneous Oxidation of Volatile Organic Compounds in a Binary Mixture System
2.2.3. Simultaneous Oxidation of Chloroform and Bacteria (E. coli)
2.3. Cu2O-NPs/TiO2-NTs Catalyst Recyclability
2.4. Suggested Mechanism for Volatile Organic Compound and E. coli Removal
3. Material and Methods
3.1. Preparation of Cu2O-NPs/TiO2-NTs Photocatalysts
3.2. Sample Characterization
3.3. Target Pollutants and Tested Bacteria
3.4. Reactor Design for Volatile Organic Compound Removal and Analytic Tools
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abou Saoud, W.; Assadi, A.A.; Guiza, M.; Bouzaza, A.; Aboussaoud, W.; Ouederni, A.; Soutrel, I.; Wolbert, D.; Rtimi, S. Study of synergetic effect, catalytic poisoning and regeneration using dielectric barrier discharge and photocatalysis in a continuous reactor: Abatement of pollutants in air mixture system. Appl. Catal. B Environ. 2017, 213, 53–61. [Google Scholar]
- Assadi, A.A.; Palau, J.; Bouzaza, A.; Wolbert, D. Modeling of a continuous photocatalytic reactor for isovaleraldehyde oxidation: Effect of different operating parameters and chemical degradation pathway. Chem. Eng. Res. Des. 2013, 91, 1307–1316. [Google Scholar]
- Magureanu, M.; Dobrin, D.; Mandache, N.B.; Cojocaru, B.; Parvulescu, V.I. Toluene oxidation by non-thermal plasma combined with palladium catalysts. Front. Chem. 2013, 1, 7. [Google Scholar] [CrossRef]
- European Commission. Directive (EU) 2016/2284 du Parlement Européen et du Conseil du 14 décembre concernant la réduction des émissions nationales de certains polluants atmosphériques, modifiant la directive 2003/35/CE et abrogeant la directive 2001/81/CE. J. Off. Union Eur. 2016, L344, 1. [Google Scholar]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Tourreilles, C. Qualification Energétique et Sanitaire des Systèmes d’Epuration Intégrés aux Réseaux de Ventilation. Ph.D. Thesis, Université de La Rochelle, La Rochelle, France, 2015. [Google Scholar]
- Gharib-Abou Ghaida, S.; Assadi, A.A.; Costa, G.; Bouzaza, A.; Wolbert, D. Association of surface dielectric barrier discharge and photocatalysis in continuous reactor at pilot scale: Butyraldehyde oxidation, by-products identification and ozone valorization. Chem. Eng. J. 2016, 292, 276–283. [Google Scholar]
- Boubel, R.W.; Vallero, D.; Fox, D.L.; Turner, B.; Stern, A.C. Fundamentals of Air Pollution; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J.N. Crop residue burning in India: Policy challenges and potential solutions. Int. J. Environ. Res. Public Health 2019, 16, 832. [Google Scholar] [CrossRef]
- Chao, C.; Deng, Y.; Dewil, R.; Baeyens, J.; Fan, X. Post-combustion carbon capture. Renew. Sustain. Energy Rev. 2021, 138, 110490. [Google Scholar] [CrossRef]
- Assadi, A.A.; Bouzaza, A.; Soutrel, I.; Petit, P.; Medimagh, K.; Wolbert, D. A study of pollution removal in exhaust gases from animal quartering centers by combining photocatalysis with surface discharge plasma: From pilot to industrial scale. Chem. Eng. Process. Process Intensif. 2017, 111, 1–6. [Google Scholar]
- Assadi, A.A.; Bouzaza, A.; Vallet, C.; Wolbert, D. Use of DBD plasma, photocatalysis, and combined DBD plasma/photocatalysis in a continuous annular reactor for isovaleraldehyde elimination–synergetic effect and byproducts identification. Chem. Eng. J. 2014, 254, 124–132. [Google Scholar]
- Guillerm, M.; Assadi, A.A.; Bouzaza, A.; Wolbert, D. Removal of gas-phase ammonia and hydrogen sulfide using photocatalysis, non-thermal plasma, and combined plasma and photocatalysis at pilot scale. Environ. Sci. Pollut. Res. 2014, 21, 13127–13137. [Google Scholar]
- Duan, Z.; Zhang, W.; Lu, M.; Shao, Z.; Huang, W.; Li, J.; Li, Y.; Mo, J.; Li, Y.; Chen, C. Magnetic Fe3O4/activated carbon for combined adsorption and Fenton oxidation of 4-chlorophenol. Carbon 2020, 167, 351–363. [Google Scholar] [CrossRef]
- Assadi, A.A.; Bouzaza, A.; Wolbert, D.; Petit, P. Isovaleraldehyde elimination by UV/TiO2 photocatalysis: Comparative study of the process at different reactors configurations and scales. Environ. Sci. Pollut. Res. 2016, 21, 11178–11188. [Google Scholar] [CrossRef] [PubMed]
- Abidi, M.; Assadi, A.A.; Bouzaza, A.; Hajjaji, A.; Bessais, B.; Rtimi, S. Photocatalytic indoor/outdoor air treatment and bacterial inactivation on CuxO/TiO2 prepared by HiPIMS on polyester cloth under low intensity visible light. Appl. Catal. B Environ. 2019, 259, 118074. [Google Scholar] [CrossRef]
- Abidi, M.; Hajjaji, A.; Bouzaza, A.; Trablesi, K.; Makhlouf, H.; Rtimi, S.; Assadi, A.A.; Bessais, B. Simultaneous removal of bacteria and volatile organic compounds on Cu2O-NPs decorated TiO2 nanotubes: Competition effect and kinetic studies. J. Photochem. Photobiol. A Chem. 2020, 400, 112722. [Google Scholar] [CrossRef]
- Abidi, M.; Hajjaji, A.; Bouzaza, A.; Lamaa, L.; Peruchon, L.; Brochier, C.; Rtimi, S.; Wolbert, D.; Bessais, B.; Assadi, A.A. Modeling of indoor air treatment using an innovative photocatalytic luminous textile: Reactor compactness and mass transfer enhancement. Chem. Eng. J. 2022, 430, 132636. [Google Scholar] [CrossRef]
- Zadi, T.; Azizi, M.; Nasrallah, N.; Bouzaza, A.; Maachi, R.; Wolbert, D.; Rtimi, S.; Assadi, A.A. Indoor air treatment of refrigerated food chambers with synergetic association between cold plasma and photocatalysis: Process performance and photocatalytic poisoning. Chem. Eng. J. 2020, 382, 122951. [Google Scholar] [CrossRef]
- Malayeri, M.; Lee, C.S.; Niu, J.; Zhu, J.; Haghighat, F. Kinetic and reaction mechanism of generated by-products in a photocatalytic oxidation reactor: Model development and validation. J. Hazard. Mater. 2021, 419, 126411. [Google Scholar] [CrossRef]
- Malayeri, M.; Haghighat, F.; Lee, C.-S. Modeling of volatile organic compounds degradation by photocatalytic oxidation reactor in indoor air: A review. Build. Environ. 2019, 154, 309–323. [Google Scholar] [CrossRef]
- Assadi, A.A.; Bouzaza, A.; Wolbert, D. Photocatalytic oxidation of trimethylamine and isovaleraldehyde in an annular reactor: Influence of the mass transfer and the relative humidity. J. Photochem. Photobiol. A Chem. 2012, 236, 61–69. [Google Scholar]
- Zhang, P.; Zhang, J.; Gong, J. Tantalum-based semiconductors for solar water splitting. Chem. Soc. Rev. 2014, 43, 4395–4422. [Google Scholar] [PubMed]
- Wang, G.; Chen, H.; Li, Y.; Kuang, A.; Yuan, H.; Wu, G. A hybrid density functional study on the visible light photocatalytic activity of (Mo,Cr)-N codoped KNbO3. Phys. Chem. Chem. Phys. 2015, 17, 28743–28753. [Google Scholar] [CrossRef]
- Bartoletti, A.; Gondolini, A.; Sangiorgi, N.; Aramini, M.; Ardit, M.; Rancan, M.; Armelao, L.; Kondrat, S.A.; Sanson, A. Identification of structural changes in CaCu3 Ti4O12 on high energy ball milling and their effect on photocatalytic performance. Catal. Sci. Technol. 2023, 13, 1041–1058. [Google Scholar]
- Szeto, W.; Li, J.; Huang, H.; Leung, D.Y. VUV/TiO2 photocatalytic oxidation process of methyl orange and simultaneous utilization of the lamp-generated ozone. Chem. Eng. Sci. 2018, 177, 380–390. [Google Scholar]
- Xu, Z.; Kan, Y.; Liu, C. Aspect ratio control and photocatalytic properties analysis of anatase TiO2 nanoparticles. Mater. Res. Bull. 2018, 107, 80–86. [Google Scholar]
- Trabelsi, K.; Hajjaji, A.; Gaidi, M.; Bessais, B.; El Khakani, M.A. Enhancing the photoelectrochemical response of TiO2 nanotubes through their nanodecoration by pulsed-laser-deposited Ag nanoparticles. J. Appl. Phys. 2017, 122, 064503. [Google Scholar]
- Kisslinger, R.; Askar, A.M.; Thakur, U.K.; Riddell, S.; Dahunsi, D.; Zhang, Y.; Zeng, S.; Goswami, A.; Shankar, K. Preferentially oriented TiO2 nanotube arrays on non-native substrates and their improved performance as electron transporting layer in halide perovskite solar cells. Nanotechnology 2019, 30, 204003. [Google Scholar]
- Sopha, H.; Baudys, M.; Krbal, M.; Zazpe, R.; Prikryl, J.; Krysac, J.; Macak, J.M. Scaling up anodic TiO2 nanotube layers for gas phase photocatalysis. Electrochem. Commun. 2018, 97, 91–99. [Google Scholar]
- Baaloudj, O.; Nasrallah, N.; Assadi, A.A. Facile synthesis, structural and optical characterizations of Bi12ZnO20 sillenite crystals: Application for Cefuroxime removal from wastewater. Mater. Lett. 2021, 304, 130658. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Technol. 2020, 56, 143–150. [Google Scholar]
- Mazierski, P.; Wilczewska, P.; Lisowski, W.; Klimczuk, T.; Białk-Bielińska, A.; Zaleska-Medyska, A.; Siedlecka, E.M.; Pieczyńska, A. Ti/TiO2 nanotubes sensitized PbS quantum dots as photoelectrodes applied for decomposition of anticancer drugs under simulated solar energy. J. Hazard. Mater. 2022, 421, 126751. [Google Scholar] [CrossRef]
- Liu, J.; Wang, N.; Zheng, F.; Wang, C.; Wang, J.; Hou, B.; Zhao, Q.; Ning, Y.; Hu, Y. CuInS2/TiO2 heterojunction with elevated photo-electrochemcial performance for cathodic protection. J. Mater. Sci. Technol. 2022, 122, 211–218. [Google Scholar]
- Wang, Q.; Sun, C.; Liu, Z.; Tan, X.; Zheng, S.; Zhang, H.; Wang, Y.; Gao, S. Ultrasound-assisted successive ionic layer adsorption and reaction synthesis of Cu2O cubes sensitized TiO2 nanotube arrays for the enhanced photoelectrochemical performance. Mater. Res. Bull. 2019, 111, 277–283. [Google Scholar]
- Xiang, L.; Ya, J.; Hu, F.; Li, L.; Liu, Z. Fabrication of Cu2O/TiO2 nanotube arrays with enhanced visible-light photoelectrocatalytic activity. Appl. Phys. A 2017, 123, 160. [Google Scholar]
- Wang, M.; Sun, L.; Lin, Z.; Cai, J.; Xie, K.; Lin, C. p–n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy Environ. Sci. 2013, 6, 1211–1220. [Google Scholar]
- Janczarek, M.; Kowalska, E. On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidative reaction systems. Catalysts 2017, 7, 317. [Google Scholar] [CrossRef]
- Dubey, P.K.; Kumar, R.; Tiwari, R.S.; Srivastava, O.N.; Pandey, A.C.; Singh, P. Surface modification of aligned TiO2 nanotubes by Cu2O nanoparticles and their enhanced photo electrochemical properties and hydrogen generation application. Int. J. Hydrogen Energy 2018, 43, 6867–6878. [Google Scholar] [CrossRef]
- Stokes, A.; Wilson, A. The diffraction of X rays by distorted crystal aggregates-I. Proc. Phys. Soc. 1944, 56, 174. [Google Scholar] [CrossRef]
- Faraji, M.; Yamini, Y.; Salehi, N. Characterization of magnetic nanomaterials. In Magnetic Nanomaterials in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2021; pp. 39–60. [Google Scholar]
- Robel, I.; Kuno, M.; Kamat, P.V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 4136. [Google Scholar] [CrossRef]
- Xiong, L.; Yang, F.; Yan, L.; Yan, N.; Yang, X.; Qiu, M.; Yu, Y. Bifunctional photocatalysis of TiO2/Cu2O composite under visible light: Ti3+ in organic pollutant degradation and water splitting. J. Phys. Chem. Solids 2011, 72, 1104–1109. [Google Scholar] [CrossRef]
- Elfalleh, W.; Assadi, A.A.; Bouzaza, A.; Wolbert, D.; Kiwi, J.; Rtimi, S. Innovative and stable TiO2 supported catalytic surfaces removing aldehydes under UV-light irradiation. J. Photochem. Photobiol. A Chem. 2017, 343, 96–102. [Google Scholar] [CrossRef]
- Ahmadi, A.; Wu, T. Inactivation of E. coli using a novel TiO2 nanotube electrode. Environ. Sci. Water Res. Technol. 2017, 3, 534–545. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, C.Y.; Liu, H.J.; Zhu, Y.R.; Chen, Z.Y. Preparation and studies of Ag–TiO2 hybrid nanoparticles of core-shell structure. Mater. Sci. Eng. B 1999, 67, 95–98. [Google Scholar] [CrossRef]
- Debono, O.; Hequet, V.; Le Coq, L.; Locoge, N.; Thevenet, F. VOC ternary mixture effect on ppb level photocatalytic oxidation: Removal kinetic, reaction intermediates and mineralization. App. Catal. B Environ. 2017, 218, 359–369. [Google Scholar] [CrossRef]
- Park, E.J.; Seo, H.O.; Kim, Y.D. Influence of humidity on the removal of volatile organic compounds using solid surfaces. Catal. Today 2017, 295, 3–13. [Google Scholar] [CrossRef]
- Chen, J.; Li, G.; He, Z.; An, T. Adsorption and degradation of model volatile organic compounds by a combined titania–montmorillonite–silica photocatalyst. J. Hazard. Mater. 2011, 190, 416–423. [Google Scholar] [CrossRef]
- Moon, K.-S.; Choi, E.-J.; Bae, J.-M.; Park, Y.-B.; Oh, S. Visible light-enhanced antibacterial and osteogenic functionality of Au and Pt nanoparticles deposited on TiO2 nanotubes. Materials 2020, 13, 3721. [Google Scholar] [CrossRef]
- Pigeot-Rémy, S.; Simonet, F.; Errazuriz-Cerda, E.; Lazzaroni, J.C.; Atlan, D.; Guillard, C. Photocatalysis and disinfection of water: Identification of potential bacterial targets. Appl. Catal. B Environ. 2011, 104, 390–398. [Google Scholar] [CrossRef]
- Sunada, K.; Kikuchi, Y.; Hashimoto, K.; Fujishima, A. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ. Sci. Technol. 1998, 32, 726–728. [Google Scholar] [CrossRef]
- Hajjaji, M.A.; Missaoui, K.; Trabelsi, K.; Bouzaza, A.; Hajjaji, A.; Bessais, B.; Assadi, A.A. Platinum nanoparticles decorated TiO2 nanotubes for VOCs and bacteria removal in simulated real condition: Effect of the deposition method on the photocatalytic degradation process efficiency. J. Photochem. Photobiol. A Chem. 2024, 458, 115975. [Google Scholar] [CrossRef]
- Abidi, M.; Abou Saoud, W.; Bouzaza, A.; Hajjaji, A.; Bessais, B.; Wolbert, D.; Assadi, A.A.; Rtimi, S. Dynamics of VOCs degradation and bacterial inactivation at the interface of AgxO/Ag/TiO2 prepared by HiPIMS under indoor light. J. Photochem. Photobiol. A Chem. 2023, 435, 114321. [Google Scholar] [CrossRef]
- Khezami, L.; Lounissi, I.; Hajjaji, A.; Guesmi, A.; Assadi, A.A.; Bessais, B. Synthesis and characterization of TiO2 nanotubes (TiO2-NTs) decorated with platine nanoparticles (Pt-NPs): Photocatalytic performance for simultaneous removal of microorganisms and volatile organic compounds. Materials 2021, 14, 7341. [Google Scholar] [CrossRef]
- Trabelsi, K.; Abidi, M.; Hajjaji, A.; Tefdini, R.; Bessais, B.; Rtimi, S. Photoelectrochemical properties and reactivity of supported titanium NTs for bacterial inactivation and organic pollutant removal. Environ. Sci. Pollut. Res. 2022, 30, 10733–10744. [Google Scholar]
- Janczarek, M.; Endo, M.; Zhang, D.; Wang, K.; Kowalska, E. Enhanced photocatalytic and antimicrobial performance of cuprous oxide/titania: The effect of titania matrix. Materials 2018, 11, 2069. [Google Scholar] [CrossRef]
- Hajjaji, A.; Elabidi, M.; Trabelsi, K.; Assadi, A.A.; Bessais, B.; Rtimi, S. Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity. Colloids Surf. B Biointerfaces 2018, 170, 92–98. [Google Scholar]
- Sunada, K.; Minoshima, M.; Hashimoto, K. Highly efficient antiviral and antibacterial activities of solid-state cuprous compounds. J. Hazard. Mater. 2012, 235, 265–270. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, C.; Li, X.; Yang, J. A Comparative Study on Heavy-Ion Irradiation Impact on p-Channel and n-Channel Power UMOSFETs. IEEE Trans. Nucl. Sci. 2022, 69, 1249–1256. [Google Scholar]
- Abela, S.; Farrugia, C.; Xuereb, R.; Lia, F.; Zammit, E.; Rizzo, A.; Refalo, P.; Grech, M. Photocatalytic activity of titanium dioxide nanotubes following long-term aging. Nanomaterials 2021, 11, 2823. [Google Scholar] [CrossRef]
- Cho, M.; Chung, H.; Choi, W.; Jeyong, Y. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res. 2004, 38, 1069–1077. [Google Scholar]
- Wang, X.; Qiao, P.; Chen, Q.; Dai, M.; Liu, Y.; Wang, Y.; Wang, W.; Liu, Y.; Song, H. Electrochemically Deposited Cu2O-Doped TiO2 Nanotube Photoanodes for Hydrogen Evolution. Catal. Lett. 2023, 153, 1689–1695. [Google Scholar]
- Aguirre, M.E.; Zhou, R.; Eugene, A.J.; Guzman, M.I.; Grela, M.A. Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion. Appl. Catal. B Environ. 2017, 217, 485–493. [Google Scholar] [CrossRef]
- Abu, B.W.; Ali, R.; Othman, M.Y. Photocatalytic degradation and reaction pathway studies of chlorinated hydrocarbons in gaseous phase. Trans. C Chem. Chem. Eng. 2010, 17, 1–14. [Google Scholar]
- Choi, W.; Hoffmann, M.R. Novel photocatalytic mechanisms for CHCl3, CHBr3, and CCl3CO2− degradation and the fate of photogenerated trihalomethyl radicals on TiO2. Environ. Sci. Technol. 1996, 31, 89–95. [Google Scholar]
- Hung, C.H.; MariÑas, B.J. Role of chlorine and oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO2 films. Environ. Sci. Technol. 1997, 31, 562–568. [Google Scholar]
- Cohen, L.R.; Peña, L.A.; Seidl, A.J.; Chau, K.N.; Keck, B.C.; Feng, P.L.; Hoggard, P.E. Photocatalytic degradation of chloroform by bis (bipyridine)dichlororuthenium(III/II). J. Coord. Chem. 2009, 62, 1743–1753. [Google Scholar] [CrossRef]
- Zhang, H.C.; Liu, Y.L.; Wang, L.; Li, Z.Y.; Lu, X.H.; Yang, T.; Ma, J. Enhanced radical generation in an ultraviolet/chlorine system through the addition of TiO2. Environ. Sci. Technol. 2021, 55, 11612–11623. [Google Scholar] [PubMed]
- Lei, Y.; Lei, X.; Westerhoff, P.; Zhang, X.; Yang, X. Reactivity of chlorine radicals (Cl• and Cl2•–) with dissolved organic matter and the formation of chlorinated byproducts. Environ. Sci. Technol. 2020, 55, 689–699. [Google Scholar]
- Abou Saoud, W.; Assadi, A.A.; Kane, A.; Jung, A.-V.; Le Cann, P.; Gerard, A.; Bazantay, F.; Bouzaza, A.; Wolbert, D. Integrated process for the removal of indoor VOCs from food industry manufacturing: Elimination of Butane-2,3-dione and Heptan-2-one by cold plasma-photocatalysis combination. J. Photochem. Photobiol. A Chem. 2020, 386, 112071. [Google Scholar]
Catalyst | kc: Kinetic Constant of L-H (mmol.m−3.s−1.gTiO2−1) | K: Adsorption Constant of L-H (m3.mmol−1) × 10−3 |
---|---|---|
Cu2O- NPs/TiO2-NTs-10C | 1.643 | 5.915 |
Ref. | Catalyst | Deposition Method | VOCs Target | Irradiation Source | Kinetic Constant |
---|---|---|---|---|---|
[53] | Pt/TiO2-NTs | Electrodeposition | Ethyl Acetate | Visible light | 0.245 (mg.m−3.s−1) |
[53] | Pt/TiO2-NTs | Photodeposition | Ethyl Acetate | Visible light | 0.195 (mg.m−3.s−1) |
[17] | Cu2O-NPs/TiO2-NTs | Electrodeposition | Butane-2,3-Dione | UV–Vis light | 0.85 mmol.m−3.s−1 |
[54] | AgxO/Ag/TiO2-PES | HiPIMs | Butane-2,3-Dione | UV–Vis light | 54 × 10−3 mmol.m−3.s−1 |
[55] | Pt-NPs/TiO2-NTs | Electrodeposition | Cyclohexane | Visible light | 64 × 10−3 (mg.m−3.min−1) |
[44] | TiO2/PES | Hydrothermal method | Butyraldehyde Isovaleraldehyde | UV lamp | 0.1513 mmol.m−3.s−1 0.2953 mmol.m−3.s−1 |
[44] | GFT-TiO2 | Provided by Ahlstrom Research/ Services | Butyraldehyde | UV lamp | 0.4134 mmol.m−3.s−1.gTiO2−1 |
Present study | SILAR | Chloroform | UV–Vis lamp | 1.643 mmol.m−3.s−1.gTiO2−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abidi, M.; Assadi, A.A.; Aouida, S.; Tahraoui, H.; Khezami, L.; Zhang, J.; Amrane, A.; Hajjaji, A. Photocatalytic Activity of Cu2O-Loaded TiO2 Heterojunction Composites for the Simultaneous Removal of Organic Pollutants and Bacteria in Indoor Air. Catalysts 2025, 15, 360. https://doi.org/10.3390/catal15040360
Abidi M, Assadi AA, Aouida S, Tahraoui H, Khezami L, Zhang J, Amrane A, Hajjaji A. Photocatalytic Activity of Cu2O-Loaded TiO2 Heterojunction Composites for the Simultaneous Removal of Organic Pollutants and Bacteria in Indoor Air. Catalysts. 2025; 15(4):360. https://doi.org/10.3390/catal15040360
Chicago/Turabian StyleAbidi, Mabrouk, Amine Aymen Assadi, Salma Aouida, Hichem Tahraoui, Lotfi Khezami, Jie Zhang, Abdeltif Amrane, and Anouar Hajjaji. 2025. "Photocatalytic Activity of Cu2O-Loaded TiO2 Heterojunction Composites for the Simultaneous Removal of Organic Pollutants and Bacteria in Indoor Air" Catalysts 15, no. 4: 360. https://doi.org/10.3390/catal15040360
APA StyleAbidi, M., Assadi, A. A., Aouida, S., Tahraoui, H., Khezami, L., Zhang, J., Amrane, A., & Hajjaji, A. (2025). Photocatalytic Activity of Cu2O-Loaded TiO2 Heterojunction Composites for the Simultaneous Removal of Organic Pollutants and Bacteria in Indoor Air. Catalysts, 15(4), 360. https://doi.org/10.3390/catal15040360