The Application of Zeolites in the Selective Synthesis of Methylamine: A Review
Abstract
:1. Introduction
2. Zeolite Catalysts
2.1. Historical Overview
2.2. Catalytic Mechanism
2.2.1. Eley-Rideal Mechanism
- (1)
- Ammonia Occupation: Under reaction conditions, ammonia predominantly occupies Brønsted acid sites, while methanol remains in the gas-phase. The reaction between gas-phase methanol and ammonia leads to methylamine formation (Figure 3a).
- (2)
- NH3-Assisted Desorption: adsorbed methylamines undergo desorption facilitated by ammonia molecules, preventing site blockage and enabling continuous catalysis (Figure 3b).
- (3)
- Sequential Methylation: lower-substituted methylamines, such as MMA and DMA, remain adsorbed and undergo further methylation, leading to the formation of DMA and TMA (Figure 3c).
2.2.2. Langmuir–Hinshelwood Mechanism
2.2.3. By-Product Formation Mechanism
2.3. Large-Pore and Medium-Pore Zeolites
2.3.1. Unmodified Large-Pore and Medium-Pore Zeolites
Sample | Top. a | Si/Al Si/Mg | LR b | N/C c | T/WHSV d °C/h−1 | LMeOH e/% | CSelectivity f/C% | MSelectivity g/% | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MMA | DMA | TMA | MMA | DMA | TMA | ||||||||
MgO-SiO2 | - | 2 | - | 1 | 400/1.25 | 66 | 3.7 | 11.9 | 84.8 | 9.4 | 15.0 | 71.2 | [8] |
Al2O3-SiO2 | - | 2 | - | 1 | 400/1.25 | 90 | 9.8 | 14.6 | 70.7 | 22.8 | 16.9 | 54.6 | [8] |
H-Y | FAU | 2.8 | 12 | 1 | 380/0.156 | >90 | 15.5 | 25.5 | 59.0 | 28.8 | 23.7 | 36.5 | [2] |
H-Mor | MOR | 9.7 | 12 | 1 | 380/0.0445 | >90 | 26.6 | 25.7 | 47.7 | 38.9 | 18.8 | 23.3 | [2] |
H-ZSM-5 | MFI | 12.5 | 10 | 1 | 380/0.03 | >90 | 10.9 | 21.5 | 67.5 | 19.6 | 19.3 | 40.4 | [2] |
H-SiCl4-Mor | MOR | 10.5 | 12 | 1 | 380/0.0388 | >90 | 33.3 | 65.3 | 1.4 | 49.8 | 48.9 | 0.7 | [2] |
TEOS-H-Mor | MOR | 10.0 | 12 | 1 | 360/0.4 | 90 | 19.5 | 75.8 | 4.7 | 32.4 | 63.0 | 2.6 | [31] |
H-Zeolon | MOR | 5.0 | 12 | 1 | 400/1.25 | 86 | 18.7 | 44.9 | 36.4 | 34.6 | 41.8 | 22.6 | [8] |
Na-Zeolon | MOR | 5.0 | 12 | 1 | 400/1.25 | 86 | 10.8 | 36.2 | 53.0 | 23.3 | 38.0 | 37.0 | [8] |
Mg-Zeolon | MOR | 5.0 | 12 | 1 | 400/1.25 | 91 | 21.1 | 54.7 | 24.2 | 37.2 | 48.3 | 14.2 | [8] |
Mg,H-Zeolon | MOR | 5.0 | 12 | 1 | 400/1.25 | 76 | 18.4 | 56.8 | 24.8 | 33.3 | 51.3 | 14.9 | [8] |
La, H-Zeolon | MOR | 5.0 | 12 | 1 | 400/1.25 | 95 | 20.7 | 58.9 | 20.4 | 36.1 | 51.5 | 11.9 | [8] |
Cu-Zeolon | MOR | 5.0 | 12 | 1 | 400/1.25 | 82 | 16.1 | 22.1 | 61.8 | 32.2 | 22.0 | 41.0 | [8] |
H-Mor-unsteamed | MOR | - | 12 | 1.9 | 310/2.18 | 90 | 19.6 | 26.6 | 53.9 | 37.8 | 25.6 | 34.6 | [32] |
H-Mor-steamed | MOR | - | 12 | 1.9 | 310/1.99 | 89 | 26.2 | 52.2 | 21.6 | 43.2 | 43.0 | 11.9 | [32] |
Na,H-Mor SiO2 binder | MOR | 5.5 | 12 | 1.1 | 390/6.64 | 94 | 17.0 | 77.5 | 5.5 | 29.0 | 66.0 | 3.1 | [33] |
Na,H-Mor-Al2O3 binder | MOR | 5.5 | 12 | 1.1 | 390/6.64 | 96 | 13.5 | 46.2 | 32.2 | 27.3 | 46.7 | 21.7 | [33] |
H-Fer | FER | 6.0 | 10 | 1 | 400/0.12 | 94 | 13.0 | 28.0 | 59.0 | 26.6 | 28.7 | 40.2 | [34] |
Ca-Fer | FER | 6.0 | 10 | 0.83 | 400/1.32 | 83 | 22.0 | 48.0 | 30.0 | 39.3 | 42.9 | 17.9 | [35] |
H-T | OFF | - | 12 | 1.7 | 430/3.32 | 85 | 41.4 | 31.4 | 27.2 | 62.6 | 23.7 | 13.7 | [36] |
2.3.2. Modification Strategy for Large-Pore and Medium-Pore Zeolites
2.4. Small-Pore Zeolite
2.4.1. Catalytic Performance
Sample | Top.a | Si/Al | TOS b /h | N/C c | T/WHSV d °C/h−1 | LMeOH e /% | CSelectivity f/C% | MSelectivity g/% | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MMA | DMA | TMA | MMA | DMA | TMA | ||||||||
H-RHO-8.7 | RHO | 9.3 | 10 | 1 | 400/4.3 | 95.9 | - | - | - | 68.2 | 11.1 | [43] | |
H-RHO-7.3 | RHO | 7.5 | 10 | 1 | 400/4.3 | 97.0 | - | - | - | 71.6 | 13.3 | [43] | |
H-KFI-5.4 | KFI | 5.4 | 10 | 2 | 350/0.813 | 95.2 | 13.0 | 59.2 | 27.7 | 24.1 | 54.8 | 17.1 | [45] |
Na(22%)-KFI-5.4 | KFI | 5.4 | 10 | 2 | 350/0.813 | 95.0 | 13.8 | 59.8 | 26.4 | 26.0 | 56.4 | 16.6 | [45] |
H-ECR-18 | PAU | 4.4 | 10 | 1 | 400/1.7 | ~59 | 55.7 | 29.5 | 14.8 | ~34 | ~9 | ~3 | [46] |
D-20 | CHA | -h | 20 | 2 | 320/0.813 | 90.8 | 12.8 | 68.5 | 18.7 | 22.7 | 61.0 | 11.1 | [41] |
H-ZK-5 | KFI | 3.2 | 3 | 2 | 350/0.813 | 63.4 | 21.9 | 68.2 | 9.9 | 33.7 | 52.5 | 5.1 | [44] |
H-RHO | RHO | 4.1 | 10 | 1 | 400/4.3 | ~50 | - | - | - | ~90 | ~10 | [28] | |
H-PST-29 | PWN | 5.0 | 10 | 1 | 400/4.3 | ~48 | - | - | - | ~83 | ~17 | [28] | |
DNL-6 | RHO | -i | 2.4 | 2 | 260/0.813 | 49.7 | 32.8 | 56.4 | 10.8 | 42.1 | 36.2 | 4.6 | [42] |
DNL-6 | RHO | -i | 2.4 | 2 | 300/0.813 | 88.3 | 16.8 | 59.1 | 24.1 | 26.1 | 45.9 | 12.5 | [42] |
SAPO-34 | CHA | -j | 2.8 | 2 | 380/0.813 | 82.0 | 14.9 | 60.9 | 24.2 | 26.8 | 54.7 | 14.5 | [40] |
H-SSZ-16 | AFX | 6.1 | 3 | 1 | 400/4.3 | 88.9 | 26.6 | 62.6 | 10.8 | 40.9 | 48.2 | 5.5 | [39] |
H-SSZ-13 | CHA | 5.1 | 3 | 1 | 400/1.7 | 92.8 | 38.7 | 48.8 | 12.5 | 56.4 | 35.5 | 6.1 | [39] |
H-levyne | LEV | 7.9 | 3 | 1 | 400/0.34 | 38.9 | 63.3 | 22.2 | 14.5 | 62.3 | 10.9 | 4.8 | [39] |
H-rho | RHO | 3.9 | 3 | 1 | 400/4.3 | 78.6 | 31.3 | 61.0 | 7.7 | 44.6 | 43.4 | 3.7 | [39] |
H-Cha | CHA | - | - | 1 | 400/0.93 | 98 | 16.0 | 51.0 | 33.0 | 29.0 | 46.1 | 19.9 | [34] |
H-ZK-5,SDB | KFI | - | 10 | 1 | 350/0.4 | 95 | 13.9 | 77.8 | 8.3 | 20.2 | 56.5 | 4.0 | [47] |
2.4.2. Factors Affecting Product Selectivity in Small-Pore Zeolites
3. Future Development Directions
3.1. Process Optimization
3.2. Small-Pore Zeolite Catalyst Development
3.2.1. Optimization of Synthesis Methods
3.2.2. Enhanced Catalyst Lifespan
3.2.3. Increasing Single-Pass Selectivity of the Desired Product
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Corbin, D.R.; Schwarz, S.; Sonnichsen, G.C. Methylamines synthesis: A review. Catal. Today 1997, 37, 71–102. [Google Scholar] [CrossRef]
- Segawa, K.; Tachibana, H. Highly Selective Methylamine Synthesis over Modified Mordenite Catalysts. J. Catal. 1991, 131, 482–490. [Google Scholar] [CrossRef]
- Parker, D.G. Working with Zeolites: A Reflection on Catalyst Development in Industry. Top. Catal. 2021, 64, 889–895. [Google Scholar] [CrossRef]
- Turner, W.D.; Howald, A.M. Methyl amines from methyl alcohol and ammonium chloride. J. Am. Chem. Soc. 1920, 42, 2663–2665. [Google Scholar] [CrossRef]
- Brown, A.B.; Reid, E.E. The Catalytic Alkylation of Ammonia. J. Phys. Chem. 1924, 28, 1067–1076. [Google Scholar] [CrossRef]
- Davis, T.L.; Elderfield, R.C. The catalytic preparation of methylamine from methyl alcohol and ammonia1. J. Am. Chem. Soc. 1928, 50, 1786–1789. [Google Scholar] [CrossRef]
- Briner, E.; Gandillon, J. Recherches sur l’obtention des méthylamines par déshydratation catalytique du système ammoniac-alcool méthylique. Helv. Chim. Acta 1931, 14, 1283–1307. [Google Scholar] [CrossRef]
- Mochida, I.; Yasutake, A.; Fujitsu, H.; Takeshita, K. Selective synthesis of dimethylamine (DMA) from methanol and ammonia over zeolites. J. Catal. 1983, 82, 313–321. [Google Scholar] [CrossRef]
- Fetting, F.; Dingerdissen, U. Production of methylamines over ZK-5 zeolite treated with tetramethoxysilane. Chem. Eng. Techno. 1992, 15, 202–212. [Google Scholar] [CrossRef]
- Chen, D.T.; Zhang, L.; Kobe, J.M.; Yi, C.; Dumesic, J.A. Methylamine synthesis over solid acid catalysts: Reaction kinetic measurements. J. Mol. Catal. 1994, 93, 337–355. [Google Scholar] [CrossRef]
- Hayes, K.S. Industrial processes for manufacturing amines. Appl. Catal. A 2001, 221, 187–195. [Google Scholar] [CrossRef]
- Baerlocher, C.; McCusker, L.B.; Olson, D.H. Atlas of Zeolite Framework Types; Elsevier: Amsterdam, The Netherlands, 2007; pp. 140–141. [Google Scholar] [CrossRef]
- Argauer, R.J.; Landolt, G.R. Crystalline Zeolite zsm-5 and Method of Preparing the Same. U.S. Patent 3702886, 14 November 1972. Available online: https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/3702886 (accessed on 16 March 2025).
- Meisel, S.L. Gasoline from methanol in one step. Chem. Technol. Chemtech 1976, 6, 86–89. [Google Scholar]
- Chang, C.D.; Silvestri, A.J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J. Catal. 1977, 47, 249–259. [Google Scholar] [CrossRef]
- Frilette, V.J.; Weisz, P.B.; Golden, R.L. Catalysis by crystalline aluminosilicates I. Cracking of hydrocarbon types over sodium and calcium “X” zeolites. J. Catal. 1962, 1, 301–306. [Google Scholar] [CrossRef]
- Weisz, P.B.; Frilette, V.J.; Maatman, R.W.; Mower, E.B. Catalysis by crystalline aluminosilicates II. Molecular-shape selective reactions. J. Catal. 1962, 1, 307–312. [Google Scholar] [CrossRef]
- Weigert, F.J. Selective synthesis and equilibration of methylamines on sodium mordenite. J. Catal. 1987, 103, 20–29. [Google Scholar] [CrossRef]
- Xu, R.; Pang, W.; Yu, J.; Huo, Q.; Chen, J. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure; John Wiley & Sons (Asia) Pte Ltd.: Singapore, 2007; Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470822371 (accessed on 16 March 2025).
- Yan, W.; Yu, J. Our journey in zeolite science. Microporous Mesoporous Mater. 2023, 358, 112368. [Google Scholar] [CrossRef]
- Segawa, K.; Tachibana, H.; Holderich, W.; Prins, R.; Howe, R.F.; Haaq, W.V. Shape-Selective Reactions for Methylamine Synthesis from Methanol and Ammonia. Stud. Surf. Sci. Catal. 1993, 75, 1273–1283. [Google Scholar] [CrossRef]
- Segawa, K.; Ilao, M.C. Methanol amination over small-pore zeolite catalysts. Stud. Surf. Sci. Catal. 1997, 105, 1219–1226. [Google Scholar] [CrossRef]
- Chu, K.; Wang, Y.; Liu, W.; Bu, L.; Huang, Y.; Guo, N.; Qu, L.; Sang, J.; Li, Y.; Su, X.; et al. Organic-free, Ultrafast Synthesis of K-CHA Nano-aggregates with Various Morphologies and Their Adsorption Performances. Chem. Res. Chin. Univ. 2024, 40, 1151–1159. [Google Scholar] [CrossRef]
- Gründling, C.; Eder-Mirth, G.; Lercher, J.A. Surface species in the direct amination of methanol over Brønsted acidic mordenite catalysts. Res. Chem. Intermed. 1997, 23, 25–40. [Google Scholar] [CrossRef]
- Ilao, M.C.; Yamamoto, H.; Segawa, K. Shape-Selective Methylamine Synthesis over Small-Pore Zeolite Catalysts. J. Catal. 1996, 161, 20–30. [Google Scholar] [CrossRef]
- Arvidsson, A.A.; Plessow, P.N.; Studt, F.; Hellman, A. Influence of Acidity on the Methanol-to-DME Reaction in Zeotypes: A First Principles-Based Microkinetic Study. J. Phys. Chem. C 2020, 124, 14658–14663. [Google Scholar] [CrossRef]
- Kogelbauer, A.; Lercher, J.A. Surface chemistry of methanol and ammonia on HNaK erionites. J. Chem. Soc. Faraday Trans. 1992, 88, 2283–2289. [Google Scholar] [CrossRef]
- Lee, H.; Lee, K.; Shin, J.; Hong, S.B. A comparative study of methylamines synthesis over zeolites H-rho and H-PST-29. Microporous Mesoporous Mater. 2020, 300, 110150. [Google Scholar] [CrossRef]
- Mores, D.; Kornatowski, J.; Olsbye, U.; Weckhuysen, B.M. Coke formation during the methanol-to-olefin conversion: In Situ microspectroscopy on individual H-ZSM-5 crystals with different Brønsted acidity. Chem. Eur. J. 2011, 17, 2874–2884. [Google Scholar] [CrossRef]
- Guisnet, M.; Costa, L.; Ribeiro, F.R. Prevention of zeolite deactivation by coking. J. Mol. Catal. A Chem. 2009, 305, 69–83. [Google Scholar] [CrossRef]
- Grundling, C.; EderMirth, G.; Lercher, J.A. Selectivity enhancement in methylamine synthesis via postsynthesis modification of Bronsted acidic mordenite—An infrared spectroscopic and kinetic study on the reaction mechanism. J. Catal. 1996, 160, 299–308. [Google Scholar] [CrossRef]
- Ashina, Y.; Fujita, T.; Fakatsu, M.; Yagi, J. Process for Producing Dimethylamine in Preference to Mono- and Trimethylamines by Gas Phase Catalytic Reaction of Ammonia with Methanol. U.S. Patent 4582936, 15 April 1986. Available online: https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/4582936 (accessed on 16 March 2025).
- Zhang, Y.; Zhou, X.; Ke, Y. Preparation of Moulded Zeolite Catalysts for the Selective Synthesis of Dimethylamine. CN Patent 1095645, 30 November 1994. Available online: https://kns.cnki.net/kcms2/article/abstract?v=Zw74qSZOFghc7uYpZoHdNRAEc-1q1Uo_JD7utOoXxhs52jhWnSgCTNlQms9INFCBcYGsHUYbakJMscXb95p5c5zFcuCPQXwlYRIxtUTB9nPHTroY48vPu3o_byG8r9oXdR91MQJH4lSWMrWPKbEaiXFH8XjEuR2I&uniplatform=NZKPT (accessed on 16 March 2025).
- Abrams, L.; Shannon, R.D.; Sonnichsen, G.C. Selected Chabazite Zeolites as Catalysts for Conversion of Methanol and Ammonia to Diemethylamine. U.S. Patent 4737592, 12 April 1988. Available online: https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/4737592 (accessed on 16 March 2025).
- Weigert, F.J. Preparation of Monomethylamine. U.S. Patent 4254061, 3 March 1981. Available online: https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/4254061 (accessed on 16 March 2025).
- Herrmann, C.; Fetting, F.; Plog, C. Amine production from methanol and ammonia over ZSM-5 and T-zeolite catalysts. Appl. Catal. 1988, 39, 213–226. [Google Scholar] [CrossRef]
- Maeda, N.; Meemken, F.; Hungerbühler, K.; Baiker, A. Selectivity-Controlling Factors in Catalytic Methanol Amination Studied by Isotopically Modulated Excitation IR Spectroscopy. ACS Catal. 2013, 3, 219–223. [Google Scholar] [CrossRef]
- Nunes, M.H.O.; da Silva, V.T.; Schmal, M. The effect of copper loading on the acidity of Cu/HZSM-5 catalysts: IR of ammonia and methanol for methylamines synthesis. Appl. Catal. A 2005, 294, 148–155. [Google Scholar] [CrossRef]
- Jeon, H.-Y.; Shin, C.-H.; Jung, H.J.; Hong, S.B. Catalytic evaluation of small-pore molecular sieves with different framework topologies for the synthesis of methylamines. Appl. Catal. A 2006, 305, 70–78. [Google Scholar] [CrossRef]
- Qiao, Y.; Wu, P.; Xiang, X.; Yang, M.; Wang, Q.; Tian, P.; Liu, Z. SAPO-34 synthesized with n-butylamine as a template and its catalytic application in the methanol amination reaction. Chin. J. Catal. 2017, 38, 574–582. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Q.; Liu, S.; Yang, M.; Fan, D.; Zhu, D.; Tian, P.; Liu, Z. Synthesis of SAPO-34 by utilizing spent industrial MTO catalyst and their catalytic applications. Mater. Today Sustain. 2023, 21, 100302. [Google Scholar] [CrossRef]
- Wu, P.; Yang, M.; Zhang, W.; Zeng, S.; Gao, M.; Xu, S.; Tian, P.; Liu, Z. Silicoaluminophosphate molecular sieve DNL-6: Synthesis with a novel template, N′,N′-dimethylethylenediamine, and its catalytic application. Chin. J. Catal. 2018, 39, 1511–1519. [Google Scholar] [CrossRef]
- Wang, Y.; Han, J.; Jin, K.; Liu, S.; Li, Q.; Hou, P.; Liu, S.; Song, Q.; Wang, Z.; Tian, P.; et al. Fluoride-free synthesis of high-silica RHO zeolite for the highly selective synthesis of methylamine. Inorg. Chem. Front. 2024, 11, 5473–5483. [Google Scholar] [CrossRef]
- Wu, R.; Han, J.; Wang, Y.; Chen, M.; Tian, P.; Zhou, X.; Xu, J.; Zhang, J.; Yan, W. Exclusive SAPO-seeded synthesis of ZK-5 zeolite for selective synthesis of methylamines. Inorg. Chem. Front. 2022, 9, 5766–5773. [Google Scholar] [CrossRef]
- Wu, R.; Han, J.; Li, J.; Li, L.; Liu, S.; Tian, P.; Yan, W. High-silica KFI zeolite: Highly efficient synthesis and catalysis in methanol amination reaction. Chem. Synth. 2024, 4, 25. [Google Scholar] [CrossRef]
- Ahn, S.H.; Shu, D.; Hong, S.B. Synthesis of stable ECR-18 zeolite and its catalytic properties in methanol amination. Microporous Mesoporous Mater. 2024, 364, 112875. [Google Scholar] [CrossRef]
- Shannon, R.D.; Keane, M.; Abrams, L.; Staley, R.H.; Gier, T.E.; Sonnichsen, G.C. Selective synthesis of dimethylamine over small-pore zeolites: III. H-ZK-5. J. Catal. 1989, 115, 79–85. [Google Scholar] [CrossRef]
- Schwarz, S.; Corbin, D.R.; Sonnichsen, G.C. The effect of crystal size on the methylamines synthesis performance of ZK-5 zeolites. Microporous Mesoporous Mater. 1998, 22, 409–418. [Google Scholar] [CrossRef]
- Callanan, L.H.; van Steen, E.; O’Connor, C.T. Improved selectivity to lower substituted methylamines using hydrothermally treated zeolite Rho. Catal. Today 1999, 49, 229–235. [Google Scholar] [CrossRef]
- Grinderslev, J.B.; Skov, L.N.; Andreasen, J.G.; Ghorwal, S.; Skibsted, J.; Jensen, T.R. Methylamine Lithium Borohydride as Electrolyte for All-Solid-State Batteries. Angew. Chem. Int. Ed. 2022, 61, e202203484. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Kong, W.; Liu, Y.; Ren, W.; Wang, H. Redox Mediator as Highly Efficient Charge Storage Electrode Additive for All-Solid-State Lithium Metal Batteries. Adv. Energy Mater. 2024, 15, 2404046. [Google Scholar] [CrossRef]
- Le Bras, J.; Muzart, J. Recent Uses of N,N-Dimethylformamide and N,N-Dimethylacetamide as Reagents. Molecules 2018, 23, 1939. [Google Scholar] [CrossRef] [PubMed]
- Yoshiro, A.; Takeyuki, F.; Michio, F.; Junsuke, Y. Process for Producing Dimethylamine. EP 0125616, 15 November 1988. Available online: https://register.epo.org/application?number=EP84105217&tab=main (accessed on 16 March 2025).
- Dusselier, M.; Davis, M.E. Small-Pore Zeolites: Synthesis and Catalysis. Chem. Rev. 2018, 118, 5265–5329. [Google Scholar] [CrossRef]
- Wang, B.; Yan, Y.; Zhou, X.; Su, H.; Zhang, H.; Zhang, J.-N.; Xu, J.; Pan, Q.; Yan, W. Mild activation of spent fluid catalytic cracking (FCC) catalysts for the pilot synthesis of zeolite a with commercial quality and excellent Co2+ removal. Chem. Eng. J. 2024, 490, 151733. [Google Scholar] [CrossRef]
- Wang, B.Y.; Chen, H.W.; Wang, S.J.; Pan, H.N.; Yang, Z.; Su, H.P.; Zhang, H.Y.; Pan, J.Y.; Zhang, J.N.; Li, L.B.; et al. Synthesis of customized zeolite X with outstanding CO2 selectivity over CH4 and N2 using facile activated spent fluid catalytic cracking catalysts. Sep. Purif. Technol. 2025, 354, 128713. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Lv, J.; Yang, W. Impact of Various Silicon Sources on the Synthesis of Mordenite and Differences in the Carbonylation Reaction of Dimethyl Ether. Chem. Res. Chin. Univ. 2025, 41, 59–65. [Google Scholar] [CrossRef]
- Pan, T.; Wu, Z.J.; Yip, A.C.K. Advances in the Green Synthesis of Microporous and Hierarchical Zeolites: A Short Review. Catalysts 2019, 9, 274. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Ali, S.; Zaman, W. Recent Advancements in Catalysts for Petroleum Refining. Catalysts 2024, 14, 841. [Google Scholar] [CrossRef]
- He, Y.; Tang, S.W.; Yin, S.H.; Li, S.W. Research progress on green synthesis of various high-purity zeolites from natural material-kaolin. J. Clean. Prod. 2021, 306, 127248. [Google Scholar] [CrossRef]
- Liu, P.; Wu, Q.; Chen, Z.; Xiao, F.-S. Recent Advances in the Synthesis of Zeolites from Solid Wastes. Chem. Res. Chin. Univ. 2024, 40, 646–656. [Google Scholar] [CrossRef]
- Li, X.H.; Sun, F.; Qu, Z.B.; Wang, J.J.; Xu, Y.H.; Gao, J.H.; Zhao, G.B. A review of porous catalysts for low-temperature selective catalytic reduction of NOx with NH3: Insights into the role of mass transfer within nanopores. Sep. Purif. Technol. 2025, 359, 130678. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.L.; Li, L.; Yu, J.H. Zeolite-based materials for greenhouse gas capture and conversion. Sci. China Chem. 2024, 67, 14. [Google Scholar] [CrossRef]
- Magaji, S.; Hussain, I.; Malaibari, Z.; Hossain, M.M.; Qureshi, Z.S.; Ahmed, S. Catalytic Cracking of Liquefied Petroleum Gas (LPG) to Light Olefins Using Zeolite-based Materials: Recent Advances, Trends, Challenges and Future Perspectives. Chem. Rec. 2024, 24, e202400110. [Google Scholar] [CrossRef]
- Kang, J.H.; Alshafei, F.H.; Zones, S.I.; Davis, M.E. Cage-Defining Ring: A Molecular Sieve Structural Indicator for Light Olefin Product Distribution from the Methanol-to-Olefins Reaction. ACS Catal. 2019, 9, 6012–6019. [Google Scholar] [CrossRef]
- Soheili, S.; Nakhaei Pour, A. Controlling product selectivity and catalyst lifetime by altering acid strength, cavity size of SAPO, and diffusion rate of methanol in the MTO reaction: DFT and MD calculations. Phys. Chem. Chem. Phys. 2024, 26, 5226–5236. [Google Scholar] [CrossRef]
- Nenasheva, M.V.; Gorbunov, D.N. Recent Progress and Strategies on the Design of Zeolite-Based Catalysts for Hydroformylation of Olefins. Catalysts 2024, 14, 942. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, K.; Yan, Y.; Pan, J.; Liu, J.-Y.; Yan, W. The Application of Zeolites in the Selective Synthesis of Methylamine: A Review. Catalysts 2025, 15, 294. https://doi.org/10.3390/catal15030294
Jin K, Yan Y, Pan J, Liu J-Y, Yan W. The Application of Zeolites in the Selective Synthesis of Methylamine: A Review. Catalysts. 2025; 15(3):294. https://doi.org/10.3390/catal15030294
Chicago/Turabian StyleJin, Keyan, Yuxin Yan, Junyao Pan, Jing-Yao Liu, and Wenfu Yan. 2025. "The Application of Zeolites in the Selective Synthesis of Methylamine: A Review" Catalysts 15, no. 3: 294. https://doi.org/10.3390/catal15030294
APA StyleJin, K., Yan, Y., Pan, J., Liu, J.-Y., & Yan, W. (2025). The Application of Zeolites in the Selective Synthesis of Methylamine: A Review. Catalysts, 15(3), 294. https://doi.org/10.3390/catal15030294