Overview of Research Status and Development Trends in Diesel Desulfurization Technology
Abstract
:1. Introduction
2. Hydrodesulfurization
2.1. Introduction to Hydrodesulfurization
2.2. Mechanism of Hydrodesulfurization
2.3. Catalysts for Hydrodesulfurization
2.4. Outlook for Hydrodesulfurization
3. Oxidative Desulfurization
3.1. Introduction of Oxidative Desulfurization
3.2. Oxidative Desulfurization Systems
3.2.1. H2O2/Organic Acid
3.2.2. H2O2/Heteropolyacid
3.2.3. H2O2/MoOx
3.2.4. H2O2/Ti-Zeolite
3.3. Outlook for Oxidative Desulfurization
4. Adsorptive Desulfurization
4.1. Introduction of Adsorptive Desulfurization
4.2. Adsorbents
4.2.1. Zeolite-Based Adsorbents
4.2.2. Metal–Organic Framework-Based Adsorbents
4.2.3. Mesoporous Molecular Sieve Composites
4.2.4. Clay Adsorbents
4.3. Outlook for Adsorptive Desulfurization
5. Electrochemical Desulfurization
5.1. Introduction of Electrochemical Desulfurization
5.2. Reactors
5.2.1. Divided Cells
5.2.2. Undivided Cells
5.3. Electrolytes
5.3.1. Alkaline Electrolytes
5.3.2. Acidic Electrolytes
5.4. Outlook for Electrochemical Desulfurization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Jiang, B.; Sun, Y.; Zhang, L.; Sun, Z.; Wang, J.; TanTai, X. Polymeric cation and isopolyanion ionic self-assembly: Novel thin-layer mesoporous catalyst for oxidative desulfurization. Chem. Eng. J. 2017, 317, 32–41. [Google Scholar] [CrossRef]
- Li, Y.; He, P.; Li, Z.; Xu, H.; Jarvis, J.; Meng, S.; Song, H. Catalytic desulfurization of marine gas oil and marine diesel oil under methane environment. Fuel 2021, 289, 119864. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, J.; Zhang, D.; Sun, Y.; Han, B.; Tang, N.; Zhao, J.; Li, K. Deep Catalytic Oxidative Desulfurization of Model Fuel Based on Modified Iron Porphyrins in Ionic Liquids: Anionic Ligand Effect. ACS Sustain. Chem. Eng. 2017, 5, 2050–2055. [Google Scholar] [CrossRef]
- Tugrul Albayrak, A.; Tavman, A. Sono-oxidative desulfurization of fuels using heterogeneous and homogeneous catalysts: A comprehensive review. Ultrason. Sonochem. 2022, 83, 105845. [Google Scholar] [CrossRef]
- Chen, Y.; Song, H.; Meng, H.; Lu, Y.; Li, C.; Lei, Z.; Chen, B. Polyethylene glycol oligomers as green and efficient extractant for extractive catalytic oxidative desulfurization of diesel. Fuel Process. Technol. 2017, 158, 20–25. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, L.; Chen, Y.; Wang, Z. Removal of sulfide from fuels by ionic liquids: Prospects for the future. Braz. J. Chem. Eng. 2023, 40, 929–963. [Google Scholar] [CrossRef]
- Song, J.; Zhu, L.; Shi, X.; Liu, Y.; Xiao, H.; Chen, X. Reversible SO2 Removal from Simulated Flue Gas by Ion Exchange Membranes Using the Humidity-Swing. Energy Fuels 2019, 33, 10953–10958. [Google Scholar] [CrossRef]
- Song, H.; Gao, J.; Chen, X.; He, J.; Li, C. Catalytic oxidation-extractive desulfurization for model oil using inorganic oxysalts as oxidant and Lewis acid-organic acid mixture as catalyst and extractant. Appl. Catal. A 2013, 456, 67–74. [Google Scholar] [CrossRef]
- Demirbas, A.; Alidrisi, H.; Balubaid, M.A. API Gravity, Sulfur Content, and Desulfurization of Crude Oil. Pet. Sci. Technol. 2015, 33, 93–101. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, J.; Wang, Z.; Liu, J.; Qian, G.; Wang, D.; Gong, X. Review of electrochemical oxidation desulfurization for fuels and minerals. Fuel 2021, 305, 121562. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Lin, G.; Wang, D.; Guo, P.; Li, X.; Chung, K.H. Synthesis of unsupported Co-Mo hydrodesulfurization catalysts with ethanol-water mixed solvent: Effects of the ethanol/water ratio on active phase composition, morphology and activity. Appl. Catal. A 2020, 602, 117663. [Google Scholar] [CrossRef]
- Tanimu, A.; Alhooshani, K. Advanced Hydrodesulfurization Catalysts: A Review of Design and Synthesis. Energy Fuels 2019, 33, 2810–2838. [Google Scholar] [CrossRef]
- Lou, M.; Wang, R.; Song, H. Advances and challenges toward efficient utilization of H2S for H2 production. Renew. Sustain. Energy Rev. 2024, 199, 114529. [Google Scholar] [CrossRef]
- Wang, E.; Yang, F.; Song, M.; Chen, G.; Zhang, Q.; Wang, F.; Bing, L.; Wang, G.; Han, D. Recent advances in the unsupported catalysts for the hydrodesulfurization of fuel. Fuel Process. Technol. 2022, 235, 107386. [Google Scholar] [CrossRef]
- Petrova, D.; Lyubimenko, V.; Ivanov, E.; Gushchin, P.; Kolesnikov, I. Energy Basics of Catalytic Hydrodesulfurization of Diesel Fuels. Catalysts 2022, 12, 1301. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, Q.; Wang, W.; Li, G.; Lin, G.; Li, X.; Chen, S. Effects of temperature and time on the facile low-temperature pre-sulfurization of tube-like unsupported Co-Mo catalysts for hydrodesulfurization. Mol. Catal. 2022, 528, 112470. [Google Scholar] [CrossRef]
- Salnikov, O.G.; Burueva, D.B.; Barskiy, D.A.; Bukhtiyarova, G.A.; Kovtunov, K.V.; Koptyug, I.V. A Mechanistic Study of Thiophene Hydrodesulfurization by the Parahydrogen-Induced Polarization Technique. ChemCatChem 2015, 7, 3508–3512. [Google Scholar] [CrossRef]
- Wang, H.; Iglesia, E. Mechanism and Site Requirements of Thiophene Hydrodesulfurization Catalyzed by Supported Pt Clusters. ChemCatChem 2011, 3, 1166–1175. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, H.; Chen, X.; Zhou, D.; Wang, C.; Du, J.; Zhou, T.; Wang, S. Density Functional Theory Investigation on Thiophene Hydrodesulfurization Mechanism Catalyzed by ReS2 (001) Surface. J. Phys. Chem. C 2016, 120, 12012–12021. [Google Scholar] [CrossRef]
- Zheng, M.; Zhao, L.; Cao, L.; Zhang, C.; Gao, J.; Xu, C. Catalysis performance of nonpromoted and co-promoted MoS2 catalysts on a hydrodesulfurization reaction: A DFT study. Mol. Catal. 2019, 467, 38–51. [Google Scholar] [CrossRef]
- Wang, H.; Prins, R. HDS of benzothiophene and dihydrobenzothiophene over sulfided Mo/γ-Al2O3. Appl. Catal. A 2008, 350, 191–196. [Google Scholar] [CrossRef]
- Duan, A.; Li, T.; Zhao, Z.; Liu, B.; Zhou, X.; Jiang, G.; Liu, J.; Wei, Y.; Pan, H. Synthesis of hierarchically porous L-KIT-6 silica-alumina material and the super catalytic performances for hydrodesulfurization of benzothiophene. Appl. Catal. B 2015, 165, 763–773. [Google Scholar] [CrossRef]
- Escobar, J.; Barrera, M.C.; Gutiérrez, A.W.; Terrazas, J.E. Benzothiophene hydrodesulfurization over NiMo/alumina catalysts modified by citric acid. Effect of addition stage of organic modifier. Fuel Process. Technol. 2017, 156, 33–42. [Google Scholar] [CrossRef]
- Ahmed, K.W.; Ali, S.A.; Ahmed, S.; Al-Saleh, M.A. Simultaneous hydrodesulfurization of benzothiophene and dibenzothiophene over CoMo/Al2O3 catalysts with different [Co/(Co+Mo)] ratios. React. Kinet. Mech. Catal. 2011, 103, 113–123. [Google Scholar] [CrossRef]
- Sharifvaghefi, S.; Zheng, Y. Development of a Magnetically Recyclable Molybdenum Disulfide Catalyst for Direct Hydrodesulfurization. ChemCatChem 2015, 7, 3397–3403. [Google Scholar] [CrossRef]
- Valdes, C.; Gonzalez, D.; Flores, K.; Eubanks, T.M.; Valle, J.; Hernandez, C.; Lopez, J.; Alcoutlabi, M.; Parsons, J.G. Effect of Lanthanum Doping on the reactivity of unsupported CoMoS2 catalysts. Appl. Catal. A 2021, 611, 117891. [Google Scholar] [CrossRef]
- Huirache-Acuña, R.; Zepeda, T.A.; Rivera-Muñoz, E.M.; Nava, R.; Loricera, C.V.; Pawelec, B. Characterization and HDS performance of sulfided CoMoW catalysts supported on mesoporous Al-SBA-16 substrates. Fuel 2015, 149, 149–161. [Google Scholar] [CrossRef]
- Quintana-Melgoza, J.M.; Alonso-Nuñez, G.; Homero-Galván, D.; Ávalos-Borja, M. Comparative Activity of Ni-W and Co-Mo Sulfides Using Transition Metal Oxides as Precursors in HDS Reaction of DBT. Catal. Lett. 2012, 142, 1082–1088. [Google Scholar] [CrossRef]
- Sollner, J.; Gonzalez, D.F.; Leal, J.H.; Eubanks, T.M.; Parsons, J.G. HDS of dibenzothiophene with CoMoS2 synthesized using elemental sulfur. Inorg. Chim. Acta 2017, 466, 212–218. [Google Scholar] [CrossRef]
- Li, G.; Yue, L.; Fan, R.; Liu, D.; Li, X. Synthesis of a Co-Mo sulfide catalyst with a hollow structure for highly efficient hydrodesulfurization of dibenzothiophene. Catal. Sci. Technol. 2017, 7, 5505–5509. [Google Scholar] [CrossRef]
- Chandra Srivastava, V. An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Adv. 2012, 2, 759–783. [Google Scholar] [CrossRef]
- Ziaei-Azad, H.; Semagina, N. Iridium addition enhances hydrodesulfurization selectivity in 4,6-dimethyldibenzothiophene conversion on palladium. Appl. Catal. B 2016, 191, 138–146. [Google Scholar] [CrossRef]
- Morales-Ortuño, J.C.; Ortega-Domínguez, R.A.; Hernández-Hipólito, P.; Bokhimi, X.; Klimova, T.E. HDS performance of NiMo catalysts supported on nanostructured materials containing titania. Catal. Today 2016, 271, 127–139. [Google Scholar] [CrossRef]
- Zhao, J.; Dai, L.; Wang, W.; Liu, T.; Ren, L.; Zhang, L.; Han, W.; Li, D. Unraveling the molecular-level structures and distribution of refractory sulfur compounds during residue hydrotreating process. Fuel Process. Technol. 2021, 224, 107025. [Google Scholar] [CrossRef]
- Zou, Y.; Xiao, C.; Yang, X.; Wang, Y.; Kong, X.; Liu, Z.; Wang, C.; Duan, A.; Xu, C.; Wang, X. Flower-like hierarchical TS-1/Al2O3 composite supported NiMo catalysts for efficient hydrodesulfurization of dibenzothiophenes. J. Catal. 2024, 435, 115576. [Google Scholar] [CrossRef]
- Farag, H. Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over NiMo and CoMo sulfide catalysts: Kinetic modeling approach for estimating selectivity. J. Colloid Interface Sci. 2010, 348, 219–226. [Google Scholar] [CrossRef]
- Yue, L.; Li, G.; Zhang, F.; Chen, L.; Li, X.; Huang, X. Size-dependent activity of unsupported Co-Mo sulfide catalysts for the hydrodesulfurization of dibenzothiophene. Appl. Catal. A 2016, 512, 85–92. [Google Scholar] [CrossRef]
- Zepeda, T.A.; de León, J.N.D.; Alonso, G.; Infantes-Molina, A.; Galindo-Ortega, Y.I.; Huirache-Acuña, R.; Fuentes, S. Hydrodesulfurization activity of Ni-containing unsupported Ga(x)WS2 catalysts. Catal. Commun. 2019, 130, 105760. [Google Scholar] [CrossRef]
- Dorneles de Mello, M.; de Almeida Braggio, F.; da Costa Magalhães, B.; Zotin, J.L.; da Silva, M.A.P. Kinetic modeling of deep hydrodesulfurization of dibenzothiophenes on NiMo/alumina catalysts modified by phosphorus. Fuel Process. Technol. 2018, 177, 66–74. [Google Scholar] [CrossRef]
- Saleh, T.A.; Al-Hammadi, S.A.; Al-Amer, A.M. Effect of boron on the efficiency of MoCo catalysts supported on alumina for the hydrodesulfurization of liquid fuels. Process Saf. Environ. Prot. 2019, 121, 165–174. [Google Scholar] [CrossRef]
- Vosooghi, N.; Askari, S.; Rashidzadeh, M.; Sadighi, S. Promotion of the acidity and textural properties of NiMo/γ-Al2O3 catalyst by applying fluorine, boron and phosphorus in hydrodesulfurization of diesel fuel. J. Mol. Struct. 2022, 1270, 133911. [Google Scholar] [CrossRef]
- Gutiérrez, O.Y.; Klimova, T. Effect of the support on the high activity of the (Ni)Mo/ZrO2-SBA-15 catalyst in the simultaneous hydrodesulfurization of DBT and 4,6-DMDBT. J. Catal. 2011, 281, 50–62. [Google Scholar] [CrossRef]
- Bao, W.; Zhang, C.; Yan, D.; Sun, F.; Yue, C.; Wang, C.; Lu, Y. The organic–inorganic dual anchoring strategy based on organic chelators and lacunary polyoxometalates for the preparation of efficient CoWS hydrodesulfurization catalysts. Fuel 2024, 360, 130599. [Google Scholar] [CrossRef]
- Farag, H.; Sakanishi, K.; Kouzu, M.; Matsumura, A.; Sugimoto, Y.; Saito, I. Dual character of H2S as promoter and inhibitor for hydrodesulfurization of dibenzothiophene. Catal. Commun. 2003, 4, 321–326. [Google Scholar] [CrossRef]
- Farag, H.; Sakanishi, K. Investigation of 4,6-dimethyldibenzothiophene hydrodesulfurization over a highly active bulk MoS2 catalyst. J. Catal. 2004, 225, 531–535. [Google Scholar] [CrossRef]
- Ryu, H.-W.; Kim, N.-G.; Kang, S.-O.; Oh, M.; Lee, C.-H. Hydrodesulfurization via heat exchanger network synthesis for ultra-low-sulfur diesel. Korean J. Chem. Eng. 2019, 36, 1226–1234. [Google Scholar] [CrossRef]
- Sun, K.; Guo, H.; Feng, C.; Tian, F.; Zhao, X.; Wang, C.; Chai, Y.; Liu, B.; Mintova, S.; Liu, C. One–pot solvothermal preparation of the porous NiS2//MoS2 composite catalyst with enhanced low-temperature hydrodesulfurization activity. J. Colloid Interface Sci. 2024, 659, 650–664. [Google Scholar] [CrossRef]
- Saleh, T.A. Carbon nanotube-incorporated alumina as a support for MoNi catalysts for the efficient hydrodesulfurization of thiophenes. Chem. Eng. J. 2021, 404, 126987. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, Z.; Liu, J.; Wang, Y.; Shao, S.; Liu, F.; Cheng, H.; Liu, H.; Li, H.; Zhu, W. Modifying the active phase structure of Ni2P/Al2O3 by Ga introduction for improved hydrodesulfurization of diesel. Chem. Eng. J. 2024, 479, 147776. [Google Scholar] [CrossRef]
- Wang, Y.; Hua, M.; Zhou, S.; Hu, D.; Liu, F.; Cheng, H.; Wu, P.; Wu, H.; Liu, J.; Zhu, W. Regulating the coordination environment of surface alumina on NiMo/Al2O3 to enhance ultra-deep hydrodesulfurization of diesel. Appl. Catal. B Environ. Energy 2024, 357, 124265. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, Y.; Zhu, J.; Liu, F.; Cheng, K.; Cheng, H.; Cheng, Y.; Li, H.; Liu, J.; Zhu, W. Modulating hydrogen spillover effect to boost ultradeep hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pt-Ni2P/Al2O3. Sep. Purif. Technol. 2024, 351, 128095. [Google Scholar] [CrossRef]
- Zou, Y.; Xiao, C.; Li, D.; Wang, A.; Gao, D.; Shang, H.; Wang, C.; Duan, A.; Xu, C.; Wang, X. Dendritic micro-mesoporous composites via nano-assembly strategy towards high-efficiency catalysts for hydrodesulfurization of dibenzothiophenes. J. Catal. 2023, 427, 115092. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Li, S.; Jin, Q.; Zhao, J. Review on oxidative desulfurization of fuel by supported heteropolyacid catalysts. J. Ind. Eng. Chem. 2020, 82, 1–16. [Google Scholar] [CrossRef]
- Ahmadian, M.; Anbia, M. Oxidative Desulfurization of Liquid Fuels Using Polyoxometalate-Based Catalysts: A Review. Energy Fuels 2021, 35, 10347–10373. [Google Scholar] [CrossRef]
- Collins, F.M.; Lucy, A.R.; Sharp, C. Oxidative desulphurisation of oils via hydrogen peroxide and heteropolyanion catalysis. J. Mol. Catal. A Chem. 1997, 117, 397–403. [Google Scholar] [CrossRef]
- Sahraei, S. Assessment of Reaction Parameters in the Oxidative Desulfurization Reaction. Energy Fuels 2023, 37, 15373–15393. [Google Scholar] [CrossRef]
- Hao, L.; Su, T.; Hao, D.; Deng, C.; Ren, W.; Lv, H. Oxidative desulfurization of diesel fuel with caprolactam-based acidic deep eutectic solvents: Tailoring the reactivity of DESs by adjusting the composition. Chin. J. Catal. 2018, 39, 1552–1559. [Google Scholar] [CrossRef]
- Baradaran, S.; Sadeghi, M.T. Desulfurization of non-hydrotreated kerosene using hydrodynamic cavitation assisted oxidative desulfurization (HCAOD) process. J. Environ. Chem. Eng. 2020, 8, 103832. [Google Scholar] [CrossRef]
- Bonde, S.; Chapados, D.; Gore, W.; Dolbear, G.; Skov, E. Desulfurization by selective oxidation and extraction of sulfur-containing in diesel fuel. In Proceedings of the NPRA Annual Meeting AM-00-25, San Antonio, TX, USA, 26–28 March 2000. [Google Scholar]
- Ahmed, B.S.; Hamasalih, L.O.; Hama Aziz, K.H.; Omer, K.M.; Shafiq, I. Oxidative Desulfurization of Real High-Sulfur Diesel Using Dicarboxylic Acid/H2O2 System. Processes 2022, 10, 2327. [Google Scholar] [CrossRef]
- Ahmed, B.S.; Hamasalih, L.O.; Aziz, K.H.; Salih, Y.M.; Mustafa, F.S.; Omer, K.M. Efficient Oxidative Desulfurization of High-Sulfur Diesel via Peroxide Oxidation Using Citric, Pimelic, and α-Ketoglutaric Acids. Separations 2023, 10, 206. [Google Scholar] [CrossRef]
- Te, M.; Fairbridge, C.; Ring, Z. Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems. Appl. Catal. A 2001, 219, 267–280. [Google Scholar] [CrossRef]
- Zhao, X.; Xie, S.; Wang, D.; Niu, H.; Yang, H.; Yang, L.; Bai, L.; Wei, D.; Chen, H. In Situ Generation of H2O2 over MoOx Decorated on Cu2O@CuO Core–Shell Particle Nanoarchitectonics for Boosting Photocatalytic Oxidative Desulfurization. ACS Appl. Mater. Interfaces 2024, 16, 5957–5964. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Wen, J.; Zhao, D.; Zhang, P.; Li, A.; Zhang, L.; Zhang, H.; Wu, M. Macroporous 3D carbon-nitrogen (CN) confined MoOx catalyst for enhanced oxidative desulfurization of dibenzothiophene. Chin. Chem. Lett. 2020, 31, 2819–2824. [Google Scholar] [CrossRef]
- Zuo, P.; Liu, F.; Zhang, W.; Yin, X.; Wang, N.; Mei, Y.; Fang, X.; Qi, P.; Chen, K.; Zhang, Z.; et al. In situ preparing defect-rich molybdenum trioxide anchored on cobalt-embedded porous carbon nanosheets for efficient oxidative desulfurization of model fuel. Sep. Purif. Technol. 2025, 360, 131205. [Google Scholar] [CrossRef]
- Jiao, J.; Zhou, X.; Zhao, S.; Jiao, W.; Wang, R. In situ highly dispersed loading of molybdenum dioxide with oxygen vacancies on N-doped graphene for enhanced oxidative desulfurization of fuel oil. J. Environ. Chem. Eng. 2023, 11, 109402. [Google Scholar] [CrossRef]
- Akbari, A.; Omidkhah, M.; Darian, J.T. Investigation of process variables and intensification effects of ultrasound applied in oxidative desulfurization of model diesel over MoO3/Al2O3 catalyst. Ultrason. Sonochem. 2014, 21, 692–705. [Google Scholar] [CrossRef]
- Chen, L.; Ren, J.; Wang, H.; Sun, M.; Yuan, Z. Engineering a Local Hydrophilic Environment in Fuel Oil for Efficient Oxidative Desulfurization with Minimum H2O2 Oxidant. ACS Catal. 2023, 13, 12125–12133. [Google Scholar] [CrossRef]
- Jin, W.; Tian, Y.; Wang, G.; Zeng, D.; Xu, Q.; Cui, J. Ultra-deep oxidative desulfurization of fuel with H2O2 catalyzed by molybdenum oxide supported on alumina modified by Ca2+. RSC Adv. 2017, 7, 48208–48213. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, K.; Cheng, Y.; Zeng, G.; Zhang, M.; Shao, J.; Lu, L. Catalytic oxidative desulfurization of BT and DBT from n-octane using cyclohexanone peroxide and catalyst of molybdenum supported on 4A molecular sieve. Sep. Purif. Technol. 2016, 163, 153–161. [Google Scholar] [CrossRef]
- Leng, K.; Sun, Y.; Zhang, X.; Yu, M.; Xu, W. Ti-modified hierarchical mordenite as highly active catalyst for oxidative desulfurization of dibenzothiophene. Fuel 2016, 174, 9–16. [Google Scholar] [CrossRef]
- Bai, R.; Song, Y.; Tian, G.; Wang, F.; Corma, A.; Yu, J. Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization. Green Energy Environ. 2023, 8, 163–172. [Google Scholar] [CrossRef]
- Song, Z.; Bi, M.; Li, J.; Guo, Y.; Xu, Q.; He, Y.; Zhao, N.; Chen, L.; Ren, D. Synthesis of TiO2-Modified Y Zeolite and its Adsorption-Catalytic Oxidative Desulfurization Performance. Silicon 2024, 16, 4159–4172. [Google Scholar] [CrossRef]
- Wang, Y.; Du, F.; Wang, C.; Zhao, J.; Sun, H.Z.; Sun, C. The synthesis and oxidation desulfurization performance of Ti-modified hierarchical cheese-like ZSM-5 zeolite. J. Chem. Res. 2022, 46, 17475198211068663. [Google Scholar] [CrossRef]
- Du, S.; Chen, H.; Shen, H.; Chen, J.; Li, C.; Du, M. Hierarchically Nanoporous TS-1 Zeolites for Catalytic Oxidation Desulfurization of Liquid Fuels. ACS Appl. Nano Mater. 2020, 3, 9393–9400. [Google Scholar] [CrossRef]
- Lv, G.; Deng, S.; Yi, Z.; Zhang, X.; Wang, F.; Li, H.; Zhu, Y. One-pot synthesis of framework W-doped TS-1 zeolite with robust Lewis acidity for effective oxidative desulfurization. Chem. Commun. 2019, 55, 4885–4888. [Google Scholar] [CrossRef]
- Bian, H.; Zhang, H.; Li, D.; Duan, Z.; Zhang, H.; Zhang, S.; Xu, B. Insight into the oxidative desulfurization mechanism of aromatic sulfur compounds over Ti-MWW zeolite: A computational study. Microporous Mesoporous Mater. 2020, 294, 109837. [Google Scholar] [CrossRef]
- Kong, L.; Li, G.; Wang, X.; Wu, B. Oxidative Desulfurization of Organic Sulfur in Gasoline over Ag/TS-1. Energy Fuels 2006, 20, 896–902. [Google Scholar] [CrossRef]
- Park, C.-W.; Kim, T.-K.; Ahn, W.-S. Synthesis of Mesoporous TS-1 for Catalytic Oxidative Desulfurization. Bull. Korean Chem. Soc. 2009, 30, 1778–1782. [Google Scholar]
- Xiong, J.; Li, J.; Chen, C.; Jiang, W.; Zhu, W.; Li, H.; Di, J. Universal strategy engineering grain boundaries for catalytic oxidative desulfurization. Appl. Catal. B 2022, 317, 121714. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Yin, J.; Liu, X.; Qiu, W.; He, J.; Jiang, W.; Zhu, L.; Li, H.; Li, H. Mo-MOF-based ionanofluids for highly efficient extraction coupled catalytic oxidative desulfurization. Sep. Purif. Technol. 2025, 353, 128289. [Google Scholar] [CrossRef]
- Kaeed, Z.; Shahhosseini, S.; Rezaei, M. Preparation of the MoO3-Fe3O4 nanocomposites for deep oxidative desulfurization of model fuel: Optimization and experimental design. J. Ind. Eng. Chem. 2024, 139, 267–280. [Google Scholar] [CrossRef]
- An, X.; Gao, X.; Yin, J.; Xu, L.; Zhang, B.; He, J.; Li, H.; Li, H.; Jiang, W. MOF-derived amorphous molybdenum trioxide anchored on nitrogen-doped porous carbon by facile in situ annealing for efficient oxidative desulfurization. Chem. Eng. J. 2024, 480, 147879. [Google Scholar] [CrossRef]
- Sun, M.; Abazari, R.; Chen, J.; Hussain, C.M.; Zhou, Y.; Kirillov, A.M. Encapsulation of H4SiW12O40 into an Amide-Functionalized MOF: A Highly Efficient Nanocomposite Catalyst for Oxidative Desulfurization of Diesel Fuel. ACS Appl. Mater. Interfaces 2023, 15, 52581–52592. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Li, B.; Zhao, D.; Chu, L.; Yang, H.; Huang, Z.; Liu, Z.; Yang, M.; Wang, G. Preparation of porous hollow spherical MoOX/C catalyst for efficient extraction and oxidative desulfurization. Chem. Eng. J. 2023, 474, 145853. [Google Scholar] [CrossRef]
- Hernández-Maldonado, A.J.; Yang, R.T. Desulfurization of Diesel Fuels by Adsorption via π-Complexation with Vapor-Phase Exchanged Cu(I)-Y Zeolites. J. Am. Chem. Soc. 2004, 126, 992–993. [Google Scholar] [CrossRef]
- Habimana, F.; Shi, D.; Ji, S. Synthesis of Cu-BTC/Mt composites porous materials and their performance in adsorptive desulfurization process. Appl. Clay Sci. 2018, 152, 303–310. [Google Scholar] [CrossRef]
- Xiao, Y.; Fu, J.; Zhu, H.; Zhao, Q.; Zhou, L. Facile and controllable preparation of nanocrystalline ZSM-5 and Ag/ZSM-5 zeolite with enhanced performance of adsorptive desulfurization from fuel. Sep. Purif. Technol. 2022, 288, 120698. [Google Scholar] [CrossRef]
- Tian, F.; Yang, X.; Shi, Y.; Jia, C.; Chen, Y. Adsorptive desulfurization over hierarchical beta zeolite by alkaline treatment. J. Nat. Gas Chem. 2012, 21, 647–652. [Google Scholar] [CrossRef]
- Wang, J.; Xu, F.; Xie, W.; Mei, Z.; Zhang, Q.; Cai, J.; Cai, W. The enhanced adsorption of dibenzothiophene onto cerium/nickel-exchanged zeolite Y. J. Hazard. Mater. 2009, 163, 538–543. [Google Scholar] [CrossRef]
- Ganiyu, S.A.; Lateef, S.A. Review of adsorptive desulfurization process: Overview of the non-carbonaceous materials, mechanism and synthesis strategies. Fuel 2021, 294, 120273. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, W.; Tan, P.; Liu, X.; Zhang, D.; Sun, L. What Matters to the Adsorptive Desulfurization Performance of Metal-Organic Frameworks? J. Phys. Chem. C 2015, 119, 21969–21977. [Google Scholar] [CrossRef]
- Qin, J.; Tan, P.; Jiang, Y.; Liu, X.; He, Q.; Sun, L. Functionalization of metal-organic frameworks with cuprous sites using vapor-induced selective reduction: Efficient adsorbents for deep desulfurization. Green Chem. 2016, 18, 3210–3215. [Google Scholar] [CrossRef]
- Khan, N.A.; Jhung, S.H. Adsorptive removal of benzothiophene using porous copper-benzenetricarboxylate loaded with phosphotungstic acid. Fuel Process. Technol. 2012, 100, 49–54. [Google Scholar] [CrossRef]
- Subhan, F.; Liu, B.S.; Zhang, Y.; Li, X.G. High desulfurization characteristic of lanthanum loaded mesoporous MCM-41 sorbents for diesel fuel. Fuel Process. Technol. 2012, 97, 71–78. [Google Scholar] [CrossRef]
- Subhan, F.; Liu, B.S. Acidic sites and deep desulfurization performance of nickel supported mesoporous AlMCM-41 sorbents. Chem. Eng. J. 2011, 178, 69–77. [Google Scholar] [CrossRef]
- Ha, J.W.; Japhe, T.; Demeke, T.; Moreno, B.; Navarro, A.E. On the Removal and Desorption of Sulfur Compounds from Model Fuels with Modified Clays. Clean Technol. 2019, 1, 58–69. [Google Scholar] [CrossRef]
- Baia, L.V.; Souza, W.C.; de Souza, R.J.F.; Veloso, C.O.; Chiaro, S.S.X.; Figueiredo, M.A.G. Removal of Sulfur and Nitrogen Compounds from Diesel Oil by Adsorption Using Clays as Adsorbents. Energy Fuels 2017, 31, 11731–11742. [Google Scholar] [CrossRef]
- Ahmad, W.; Ahmad, I.; Ishaq, M.; Ihsan, K. Adsorptive desulfurization of kerosene and diesel oil by Zn impregnated montmorollonite clay. Arabian J. Chem. 2017, 10, S3263–S3269. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; Wen, Z.; Wei, X.; Liao, J.; Chang, L.; Xie, K. Regulating cerium location in Y zeolite and its influence on adsorptive desulfurization for thiophene in benzene. Sep. Purif. Technol. 2025, 353, 128517. [Google Scholar] [CrossRef]
- Guo, Y.; Xie, W.; Li, H.; Li, J.; Hu, J.; Liu, H. Construction of hydrophobic channels on Cu(I)-MOF surface to improve selective adsorption desulfurization performance in presence of water. Sep. Purif. Technol. 2022, 285, 120287. [Google Scholar] [CrossRef]
- Ali, I.S.; Yasin Thayee Al-Janabi, O.; Al-Tikrity, E.T.B.; Foot, P.J.S. Adsorptive desulfurization of model and real fuel via wire-, rod-, and flower-like Fe3O4@MnO2@activated carbon made from palm kernel shells as newly designed magnetic nanoadsorbents. Fuel 2023, 340, 127523. [Google Scholar] [CrossRef]
- Yaseen, M.; Ullah, S.; Ahmad, W.; Subhan, S.; Subhan, F. Fabrication of Zn and Mn loaded activated carbon derived from corn cobs for the adsorptive desulfurization of model and real fuel oils. Fuel 2021, 284, 119102. [Google Scholar] [CrossRef]
- Wu, P.; Song, X.; Chen, L.; He, L.; Wu, Y.; Tao, D.; He, J.; Deng, C.; Lu, L.; Chao, Y.; et al. Few-layered hexagonal boron nitride nanosheets stabilized Pt NPs for oxidation promoted adsorptive desulfurization of fuel oil. Green Energy Environ. 2024, 9, 495–506. [Google Scholar] [CrossRef]
- Botin, A.A.; Boldushevskii, R.E.; Mozhaev, A.V.; Ghambarian, M.; Balar, M.; Ghashghaee, M.; Nikulshin, P.A. Reactive adsorption desulfurization of model FCC gasoline on Ni-based adsorbents: Effect of active phase dispersion on activity and HDS/HYD selectivity. Appl. Catal. B 2023, 337, 122946. [Google Scholar] [CrossRef]
- Behrouzifar, A.; Rowshanzamir, S.; Alipoor, Z.; Bazmi, M. Application of a square wave potentiometry technique for electroreductive sulfur removal from a thiophenic model fuel. Int. J. Environ. Sci. Technol. 2016, 13, 2883–2892. [Google Scholar] [CrossRef]
- Ornelas Dávila, O.; Lacalle Bergeron, L.; Ruiz Gutiérrez, P.; Dávila Jiménez, M.M.; Sirés, I.; Brillas, E.; Roig Navarro, A.F.; Beltrán Arandes, J.; Sancho Llopis, J.V. Electrochemical oxidation of dibenzothiophene compounds on BDD electrode in acetonitrile–water medium. J. Electroanal. Chem. 2019, 847, 113172. [Google Scholar] [CrossRef]
- Yang, H.; Bai, J.; Zhou, T.; Zhou, C.; Xie, C.; Zhang, Y.; Li, J.; Simchi, A.; Zhou, B. Electrochemical coupling conversion of sulfur-containing gaseous waste to treasure: A key review. Appl. Catal. A 2023, 654, 119085. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Y.; Li, N.; Bai, R.; Liu, Q.; Zhou, X. Experimental Study on Electrochemical Desulfurization of Coal Liquefaction Residue. Molecules 2023, 28, 2749. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, Y.; Zhou, Y.; Gong, X.; Wang, Z.; Zhang, S.; Wang, M. Oxygen Reduction Reaction from Water Electrolysis Intensified by Pressure and O2− Oxidation Desulfurization. J. Electrochem. Soc. 2018, 165, E139. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, T.; Jia, J. Novel Desulfurization Method of Sodium Borohydride Reduction for Coal Water Slurry. Energy Fuels 2011, 25, 2963–2967. [Google Scholar] [CrossRef]
- Vieira, K.L.; Zapien, D.C.; Soriaga, M.P.; Hubbard, A.T.; Low, K.P.; Anderson, S.E. Analysis of products from reactions of chemisorbed monolayers at smooth platinum electrodes: Electrochemical hydrodesulfurization of thiophenol derivatives. Anal. Chem. 1986, 58, 2964–2968. [Google Scholar] [CrossRef]
- Rehman, F.; Ahmad, S.W.; Zafar, M.S.; Ahmad, S.; Zia-Ul-Haq, M. Parametric optimization of coal desulfurization through Alkaline leaching. Pol. J. Chem. Technol. 2018, 20, 103–109. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, Y.; Hu, Y.; Wang, Z.; Liu, J.H.; Qian, G.; Gong, X. Pressure intensified HO· evolution from OER and electrolysis desulfurization. Electrochim. Acta 2019, 318, 202–210. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Liu, H.; Wang, Z. Desulfurization of gasoline by a new method of electrochemical catalytic oxidation. Fuel 2007, 86, 2747–2753. [Google Scholar] [CrossRef]
- Tang, X.; Jiao, S.; Li, J.; Hu, N. Deep desulfurization of kerosene by electrochemical oxidation and extraction in Mn2+/Mn3+ electrolyte. Pet. Sci. Technol. 2018, 36, 500–506. [Google Scholar] [CrossRef]
- Abdullah, G.H.; Xing, Y. Oxidation of Dibenzothiophene in Diesel with In Situ Produced Hydrogen Peroxide. Energy Fuels 2018, 32, 8254–8258. [Google Scholar] [CrossRef]
- Abdullah, G.H.; Xing, Y. Deep diesel desulfurization in multi-cell trickle bed electrochemical reactor with intensified hydrogen peroxide production over MnO2 catalyst. Pet. Sci. Technol. 2023, 41, 2036–2054. [Google Scholar] [CrossRef]
- Hu, Y.; Lv, A.; Wang, M.; Wang, D.; Liu, J.; Wang, Z.; Gong, X. Electrochemical behaviors of anode materials and their performance for bauxite desulfurization. Chin. J. Chem. Eng. 2019, 27, 802–810. [Google Scholar] [CrossRef]
- Shams Harandi, M.; Shams, E.; Sharifi, E.; Momenbeik, F. A new approach in deep desulfurization of model fuel through integration of electrochemical oxidation and liquid-liquid extraction in a biphasic system. Sep. Purif. Technol. 2021, 275, 119087. [Google Scholar] [CrossRef]
- Greaney, M.A.; Wang, K.; Bielenberg, J.R.; Hissong, D.W. Electrodesulfurization of Heavy Oils Using a Divided Electrochemical Cell. U.S. Patent No 7,985,332, 26 July 2011. [Google Scholar]
- Greaney, M.; Wang, K.; Wang, F. Electrochemical Treatment of Heavy Oil Feedstocks Followed by Caustic Extraction or Thermal Treatment. U.S. Patent Application No 12/288,565, 25 June 2009. [Google Scholar]
- Greaney, M.; Wang, K.; Wang, F. Partial Electrochemical Hydrogenation of Sulfurcontaining Feedstreams Followed by Sulfur Removal. WO Patent 82467, 9 July 2009. [Google Scholar]
- Wang, W.; Wang, S.; Wang, Y.; Liu, H.; Wang, Z. A new approach to deep desulfurization of gasoline by electrochemically catalytic oxidation and extraction. Fuel Process. Technol. 2007, 88, 1002–1008. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, T.; Jia, J. A novel desulphurization process of coal water slurry via sodium metaborate electroreduction in the alkaline system. Fuel 2012, 96, 250–256. [Google Scholar] [CrossRef]
- Humadi, J.I.; Aabid, A.A.; Mohammed, A.E.; Ahmed, G.S.; Abdulqader, M.A. New design of eco-friendly Catalytic Electro-Photo Desulfurization process for real diesel fuel. Chem. Eng. Res. Des. 2024, 206, 285–301. [Google Scholar] [CrossRef]
- Tang, X.; Hu, T.; Li, J.; Wang, F.; Qing, D. Deep desulfurization of condensate gasoline by electrochemical oxidation and solvent extraction. RSC Adv. 2015, 5, 53455–53461. [Google Scholar] [CrossRef]
- Alipoor, Z.; Behrouzifar, A.; Rowshanzamir, S.; Bazmi, M. Electrooxidative Desulfurization of a Thiophene-Containing Model Fuel Using a Square Wave Potentiometry Technique. Energy Fuels 2015, 29, 3292–3301. [Google Scholar] [CrossRef]
- Shamsaee, B.H.; Mehri, F.; Rowshanzamir, S.; Ghamati, M.; Behrouzifar, A. Desulfurization of benzothiophene from model diesel fuel using experimental (dynamic electroreduction) and theoretical (DFT) approaches. Sep. Purif. Technol. 2019, 212, 505–514. [Google Scholar] [CrossRef]
- Tang, X.; Hu, T.; Li, J.; Wang, F.; Qing, D. Desulfurization of Kerosene by the Electrochemical Oxidation and Extraction Process. Energy Fuels 2015, 29, 2097–2103. [Google Scholar] [CrossRef]
- Du, X.; Liu, J.; Chen, H.; Zhang, Z. Study on the Electrochemical Oxidation Desulfurization Behavior of Model Diesel on Anodic Alumina Oxide and Ceria Nanotubes. Energy Fuels 2018, 32, 2612–2621. [Google Scholar] [CrossRef]
- Li, J.; Hu, N.; Tang, X.; Zhou, F. Kinetics of desulfurization by electrochemical oxidation in an emulsifying electrolyte. Pet. Sci. Technol. 2017, 35, 1240–1246. [Google Scholar] [CrossRef]
Gaseous | Liquid | Solid |
---|---|---|
N2 CO2 H2 NO/NO2 SO2/SO3 HC(C2–C15) Oxygenates Organic nitrogen and sulfur compounds | H2O H2SO4 HC(C2–C15) Oxygenates Polyaromatics | Soot Metals Inorganic compounds Sulfates Solid hydrocarbons |
HDS Catalyst | Organic Sulfur Compounds | Desulfurization Rate | Ref. |
---|---|---|---|
Ni1Mo1-200 | DBT | 78% | [47] |
AlCNTMoNi | DBT | 99% | [48] |
Ni2P/GaAlOx-0.50 | 4,6-DMDBT | 70.1% | [49] |
NiMo/Al2O3-600 | 4,6-DMDBT | 94.5% | [50] |
Pt-Ni2P/Al2O3 | 4,6-DMDBT | 97.1% | [51] |
Beta-DMSNs | 4,6-DMDBT | 98.3% | [52] |
ODS Oxidant | Organic Sulfur Compounds | Desulfurization Rate | Ref. |
---|---|---|---|
GB-W18O49 | DBT | 97.7% | [80] |
Mo-INFs (H2O2) | DBT | 97.9% | [81] |
MoO3-Fe3O4 (H2O2) | DBT | 98% | [82] |
VO-MoO3@NPC (H2O2) | DBT | 99.1% | [83] |
SiW12@ZSTU-10 | DBT | 99.8% | [84] |
MoOX/C-750-4 (H2O2) | DBT | 100% | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Li, N.; Wang, M.; Qiao, Z.; Gu, D.; Zhu, L.; Yuan, D.; Wang, B. Overview of Research Status and Development Trends in Diesel Desulfurization Technology. Catalysts 2025, 15, 251. https://doi.org/10.3390/catal15030251
Hu Y, Li N, Wang M, Qiao Z, Gu D, Zhu L, Yuan D, Wang B. Overview of Research Status and Development Trends in Diesel Desulfurization Technology. Catalysts. 2025; 15(3):251. https://doi.org/10.3390/catal15030251
Chicago/Turabian StyleHu, Ye, Nana Li, Meng Wang, Zhiqiang Qiao, Di Gu, Lingyue Zhu, Dandan Yuan, and Baohui Wang. 2025. "Overview of Research Status and Development Trends in Diesel Desulfurization Technology" Catalysts 15, no. 3: 251. https://doi.org/10.3390/catal15030251
APA StyleHu, Y., Li, N., Wang, M., Qiao, Z., Gu, D., Zhu, L., Yuan, D., & Wang, B. (2025). Overview of Research Status and Development Trends in Diesel Desulfurization Technology. Catalysts, 15(3), 251. https://doi.org/10.3390/catal15030251