Boosting PMS Activation Through Fe3S4/WO3: The Essential Impact of WX and SX on Catalyst Activity and Regeneration Fe Active Sites for Efficient Pollutant Removal
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Catalytic Performance of Fe3S4/WO3 in PMS System
2.3. Factors Affecting the Performance of Fe3S4/WO3/PMS System
2.4. The Identification of Active Species in Fe3S4/WO3/PMS System
2.5. Active Site Regeneration and Proposed PMS Activation Mechanism
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of Fe3S4/WO3
3.3. Catalysts Characterization
3.4. Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Q.-L.; An, X.-L.; Zheng, B.-X.; Ma, Y.-B.; Su, J.-Q. Long-term organic fertilization increased antibiotic resistome in phyllosphere of maize. Sci. Total Environ. 2018, 645, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Spielmeyer, A. Occurrence and fate of antibiotics in manure during manure treatments: A short review. Sustain. Chem. Pharm. 2018, 9, 76–86. [Google Scholar] [CrossRef]
- Wang, J.H.; Lu, J.; Zhang, Y.X.; Wu, J.; Luo, Y.; Liu, H. Metagenomic analysis of antibiotic resistance genes in coastal industrial mariculture systems. Bioresour. Technol. 2018, 253, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Teng, M.; Liu, M.; Liu, S.; Li, J.; Yu, H.; Teng, C.; Huang, Z.; Liu, H.; Shao, Q.; et al. Biomass-derived nitrogen-doped carbon quantum dots: Highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines. J. Colloid Interface Sci. 2019, 539, 332–341. [Google Scholar] [CrossRef]
- Xie, Z.; Feng, Y.; Wang, F.; Chen, D.; Zhang, Q.; Zeng, Y.; Lv, W.; Liu, G. Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Appl. Catal. B Environ. 2018, 229, 96–104. [Google Scholar] [CrossRef]
- Zhu, X.D.; Wang, Y.J.; Sun, R.J.; Zhou, D.M. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere 2013, 92, 925–932. [Google Scholar] [CrossRef]
- Scaria, J.; Anupama, K.V.; Nidheesh, P.V. Tetracyclines in the environment: An overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management. Sci. Total Environ. 2021, 771, 145291. [Google Scholar] [CrossRef]
- Li, L.; Yang, M.; Lu, Q.; Zhu, W.; Ma, H.; Dai, L. Oxygen-rich biochar from torrefaction: A versatile adsorbent for water pollution control. Bioresour. Technol. 2019, 294, 122142. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Li, Y.; Li, J.; Wang, F.; Xia, S.; Zhao, J. Biofilm alters tetracycline and copper adsorption behaviors onto polyethylene microplastics. Chem. Eng. J. 2020, 392, 123808. [Google Scholar] [CrossRef]
- Malakootian, M.; Asadzadeh, S.N. Removal of tetracycline from aqueous solution by ultrasound and ultraviolet enhanced persulfate oxidation. Desalination Water Treat. 2020, 197, 191–199. [Google Scholar] [CrossRef]
- Kang, Z.; Jia, X.; Zhang, Y.; Kang, X.; Ge, M.; Liu, D.; Wang, C.; He, Z. A Review on Application of Biochar in the Removal of Pharmaceutical Pollutants through Adsorption and Persulfate-Based AOPs. Sustainability 2022, 14, 10128. [Google Scholar] [CrossRef]
- Wang, J.L.; Wang, S.Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Yang, Q.J.; Choi, H.; Chen, Y.J.; Dionysiou, D.D. Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2,4-dichlorophenol in water: The effect of support, cobalt precursor, and UV radiation. Appl. Catal. B-Environ. 2008, 77, 300–307. [Google Scholar] [CrossRef]
- Wang, H.; Zou, Y.; Luo, T.; Benouahmane, M.; Zhou, D.; Wu, F. Mechanism of thermal activation of sulfite and its application in the heat-electro-S(IV) system for As(III) oxidation in water. Sep. Purif. Technol. 2022, 298, 121607. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, S.; Cui, M.; Ren, Y.; Park, B.; Ma, J.; Han, Z.; Khim, J. Activation of peroxodisulfate and peroxymonosulfate by ultrasound with different frequencies: Impact on ibuprofen removal efficient, cost estimation and energy analysis. Chem. Eng. J. 2021, 413, 127487. [Google Scholar] [CrossRef]
- Lv, X.S.; Qin, Y.; Liang, H.; Han, Y.C.; Li, J.; He, Y.; Cui, X.M. Potassium methyl silicate (CH5SiO3Na) assisted activation and modification of alkali-activated-slag-based drying powder coating for protecting cement concrete. Constr. Build. Mater. 2022, 326, 126858. [Google Scholar] [CrossRef]
- Alruwaili, H.A.; Alhumaimess, M.S.; Alsirhani, S.K.M.; Alsohaimi, I.H.; Alanazi, S.J.F.; El-Aassar, M.R.; Hassan, H.M.A. Bimetallic nanoparticles supported on Ce-BTC for highly efficient and stable reduction of nitroarenes: Towards environmental sustainability. Environ. Res. 2024, 249, 118473. [Google Scholar] [CrossRef]
- Hassan, H.M.A.; Alruwaili, H.A.; Alhumaimess, M.S.; Alanazi, A.H.; El-Aassar, M.R.; Alshammari, M.S.; Hussein, M.F.; Alsohaimi, I.H. Sustainable nitrophenol reduction using Ce-mof-808-supported bimetallic nanoparticles optimized by response surface methodology. Environ. Res. 2025, 264, 120340. [Google Scholar] [CrossRef]
- Khan, A.; Liao, Z.; Liu, Y.; Jawad, A.; Ifthikar, J.; Chen, Z. Synergistic degradation of phenols using peroxymonosulfate activated by CuO-Co3O4@MnO2 nanocatalyst. J. Hazard. Mater. 2017, 329, 262–271. [Google Scholar] [CrossRef]
- Zhang, T.; Zhu, H.; Croué, J.-P. Production of Sulfate Radical from Peroxymonosulfate Induced by a Magnetically Separable CuFe2O4 Spinel in Water: Efficiency, Stability, and Mechanism. Environ. Sci. Technol. 2013, 47, 2784–2791. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Liu, J.; Wu, D.; Zhou, Z.; Deng, Y.; Zhang, T.; Shih, K. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation. Chem. Eng. J. 2015, 280, 514–524. [Google Scholar] [CrossRef]
- Wang, J.; Hasaer, B.; Yang, M.; Liu, R.; Hu, C.; Liu, H.; Qu, J. Anaerobically-digested sludge disintegration by transition metal ions-activated peroxymonosulfate (PMS): Comparison between Co2+, Cu2+, Fe2+and Mn2+. Sci. Total Environ. 2020, 713, 136530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gu, W.; Liu, D.; Zhou, L.; Huy, N.N.; Wang, L.; Zhang, J.; Liu, Y.; Lei, J. Fe(II) and Pyridinic N complex sites synergy to activate PMS for specific generation of 1O2 to degrade antibiotics with high efficiency. Sci. Total Environ. 2023, 892, 164067. [Google Scholar] [CrossRef]
- Nikoorazm, M.; Tahmasbi, B.; Gholami, S.; Khanmoradi, M.; Tyula, Y.A.; Darabi, M.; Koolivand, M. Synthesis and characterization of a new Schiff-base complex of copper on magnetic MCM-41 nanoparticles as efficient and reusable nanocatalyst in the synthesis of tetrazoles. Polyhedron 2023, 244, 116587. [Google Scholar] [CrossRef]
- Qin, Q.; Liu, T.; Zhang, J.; Wei, R.; You, S.; Xu, Y. Facile synthesis of oxygen vacancies enriched α-Fe2O3 for peroxymonosulfate activation: A non-radical process for sulfamethoxazole degradation. J. Hazard. Mater. 2021, 419, 126447. [Google Scholar] [CrossRef]
- Wang, D.; Si, Y.; Han, Y.; Xie, M.; Xu, L.; Sun, C. Effective activation of PMS by encapsulating monodispersed Fe3O4 within N, S heteroatoms co-doped carbon chamber for ROX removal dominated by the non-radical pathway. Sep. Purif. Technol. 2025, 358, 130256. [Google Scholar] [CrossRef]
- Chen, P.; Cheng, Z.; Zhang, X.; Yan, C.; Wei, J.; Qiu, F.; Liu, Y. Fe–Mn bimetallic catalyst to activate peroxymonosulfate (PMS) for efficient degradation of tetracycline: Mechanism insights and application for pharmaceutical wastewater. J. Clean. Prod. 2024, 445, 141365. [Google Scholar] [CrossRef]
- Yan, C.; Cai, X.; Zhou, X.; Luo, Z.; Deng, J.; Tian, X.; Shi, J.; Li, W.; Luo, Y. Boosting peroxymonosulfate activation via Fe–Cu bimetallic hollow nanoreactor derived from copper smelting slag for efficient degradation of organics: The dual role of Cu. J. Colloid Interface Sci. 2025, 678, 858–871. [Google Scholar] [CrossRef]
- Xie, X.; Xie, R.; Suo, Z.; Huang, H.; Xing, M.; Lei, D. A highly dispersed Co–Fe bimetallic catalyst to activate peroxymonosulfate for VOC degradation in a wet scrubber. Environ. Sci. Nano 2021, 8, 2976–2987. [Google Scholar] [CrossRef]
- Deng, J.; Chen, W.; Wu, F.; Dai, Y.; Dionysiou, D.D.; Huang, L.-Z. Peroxymonosulfate activation by Ni-Fe (hydr)oxides through radical and nonradical pathways for efficient trichloroethylene degradation. Sep. Purif. Technol. 2023, 325, 124675. [Google Scholar] [CrossRef]
- Ruan, X.; Gu, X.; Lu, S.; Qiu, Z.; Sui, Q. Trichloroethylene degradation by persulphate with magnetite as a heterogeneous activator in aqueous solution. Environ. Technol. 2015, 36, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Huang, B.; Wang, Z.; Tang, L.; Ji, C.; Zhao, C.; Feng, L.; Feng, Y. Homogeneous/heterogeneous metal-catalyzed persulfate oxidation technology for organic pollutants elimination: A review. J. Environ. Chem. Eng. 2023, 11, 109586. [Google Scholar] [CrossRef]
- Lu, J.; Zhou, Y.; Zhou, Y. Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides. Chem. Eng. J. 2021, 422, 130126. [Google Scholar] [CrossRef]
- Xie, M.; Liu, X.; Wang, S. Degradation of methylene blue through Fenton-like reaction catalyzed by MoS2-doped sodium alginate/Fe hydrogel. Colloids Surf. B Biointerfaces 2022, 214, 112443. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, Y.; Chen, Z.; Yu, R.; Ye, Y.; Ma, R.; Li, K.; Wang, L.; Wang, D.; Ni, B.-J. Sulfur-decorated Fe/C composite synthesized from MIL-88A(Fe) for peroxymonosulfate activation towards tetracycline degradation: Multiple active sites and non-radical pathway dominated mechanism. J. Environ. Manag. 2023, 344, 118440. [Google Scholar] [CrossRef]
- Yi, C.; He, Z.; Hu, Y.; Liang, D.; Zhang, Y.; Chen, Y. FeOOH@MoS2 as a highly effective and stable activator of peroxymonosulfate-based advanced oxidation processes for pollutant degradation. Surf. Interfaces 2021, 27, 101465. [Google Scholar] [CrossRef]
- Ali, J.; Li, D.; Shahzad, A.; Wajid Ullah, M.; Ifthikar, J.; Asif, M.; Yanan, C.; Lei, X.; Chen, Z.; Wang, S. MoS4-LDH: A dual centre Fe-based layered double hydroxide catalyst for efficient atrazine removal and peroxymonsulfate activation. Chem. Eng. J. 2023, 456, 141161. [Google Scholar] [CrossRef]
- Ali, J.; Lei, W.; Shahzad, A.; Ifthikar, J.; Aregay, G.G.; Shahib, I.I.; Elkhlifi, Z.; Chen, Z.; Chen, Z. Regulating the redox centers of Fe through the enrichment of Mo moiety for persulfate activation: A new strategy to achieve maximum persulfate utilization efficiency. Water Res. 2020, 181, 115862. [Google Scholar] [CrossRef]
- Shahzad, A.; Ali, J.; Ullah, M.W.; Aziz, K.; Javed, M.A.; Hussain, F.; Manan, S.; Khan, K.A.; Alomayri, T.; M, W.A.R.; et al. Fe-based dual-center heterogeneous catalyst assisted with reduced graphene oxide for the activation of peroxymonosulfate. Adv. Compos. Hybrid Mater. 2023, 6, 185. [Google Scholar] [CrossRef]
- Lin, X.; Shih, K.; Chen, J.; Xie, X.; Zhang, Y.; Chen, Y.; Chen, Z.; Li, Y. Insight into flower-like greigite-based peroxydisulfate activation for effective bisphenol a abatement: Performance and electron transfer mechanism. Chem. Eng. J. 2020, 391, 123558. [Google Scholar] [CrossRef]
- Nguyen, N.T.T.; Nguyen, A.Q.K.; Kim, M.S.; Lee, C.; Kim, S.; Kim, J. Degradation of aqueous organic pollutants using an Fe2O3/WO3 composite photocatalyst as a magnetically separable peroxymonosulfate activator. Sep. Purif. Technol. 2021, 267, 118610. [Google Scholar] [CrossRef]
- Kong, L.; Yan, R.; Liu, M.; Xu, J.; Hagio, T.; Ichino, R.; Li, L.; Cao, X. Simultaneous reduction and sequestration of hexavalent chromium by magnetic β-Cyclodextrin stabilized Fe3S4. J. Hazard. Mater. 2022, 431, 128592. [Google Scholar] [CrossRef]
- Pudukudy, M.; Shan, S.; Miao, Y.; Gu, B.; Jia, Q. WO3 nanocrystals decorated Ag3PO4 tetrapods as an efficient visible-light responsive Z-scheme photocatalyst for the enhanced degradation of tetracycline in aqueous medium. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124457. [Google Scholar] [CrossRef]
- Feng, X.; Chen, H.; Guo, S.; Wang, X.; Xie, T.; Wang, D.; Lin, Y. Fe0-modified sulfur-rich vacancy CoS2 enhanced persulfate photoactivation: Achieving high surface adsorption and rapid degradation of antibiotics. Sep. Purif. Technol. 2025, 356, 129864. [Google Scholar] [CrossRef]
- Sun, L.; Geng, J.; Gao, M.; Zheng, D.; Jing, Z.; Zhao, Q.; Lin, J. Novel WS2/Fe0.95S1.05 Hierarchical Nanosphere as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. Chem.-Eur. J. 2021, 27, 10998–11004. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, R.; Wang, H.; Zhang, Z.; Chen, Y.; Zhang, Y. Enhanced synergistic removal of tetracycline and uranium in wastewater using Defective-Enriched S-scheme hollow dodecahedron K3PW12O40@WS2 heterojunction. Chem. Eng. J. 2024, 495, 153322. [Google Scholar] [CrossRef]
- Hassan, H.M.A.; Alruwaili, M.S.; Alsohaimi, I.H.; El-Hashemy, M.A.; Alqadami, A.A.; Alshammari, K.; Alali, I.K.; Alanazi, S.J.F.; El-Aassar, M.R. Electrospun polyacrylonitrile nanofiber composites integrated with Al-MOF/mesoporous carbon for superior CO2 capture and VOC removal. Diam. Relat. Mater. 2024, 149, 111649. [Google Scholar] [CrossRef]
- Li, D.; Ali, J.; Shahzad, A.; Abdelnasser Gendy, E.; Nie, H.; Jiang, W.; Xiao, H.; Chen, Z.; Wang, S. Persulfate coupled with Cu2+/LDH-MoS4: A novel process for the efficient atrazine abatement, mechanism and degradation pathway. Chem. Eng. J. 2022, 436, 134933. [Google Scholar] [CrossRef]
- Sun, Y.; Xiong, R.; Zhang, J.; Ma, Y.; Li, Y.; Ji, W.; Ma, Y.; Wang, Z. Insight into synergetic mechanism of CuyMn5-yOx/hG-activated peroxydisulfate enhances tetracycline antibiotics degradation and toxicity assessment. Sep. Purif. Technol. 2022, 293, 121066. [Google Scholar] [CrossRef]
- Liu, Z.; Ding, H.J.; Zhao, C.; Wang, T.; Wang, P.; Dionysiou, D.D. Electrochemical activation of peroxymonosulfate with ACF cathode: Kinetics, influencing factors, mechanism, and application potential. Water Res. 2019, 159, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhou, Y.; Ling, L.; Zhou, Y. Enhanced activation of PMS by a novel Fenton-like composite Fe3O4/S-WO3 for rapid chloroxylenol degradation. Chem. Eng. J. 2022, 446, 137067. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Jin, Y.; Yan, B.; Jiang, Y.; Yang, S.; Song, T. Degradation of tetracycline by heat/peroxymonosulfate and ultrasound/peroxymonosulfate systems: Performance and kinetics. Water Sci. Technol. 2024, 89, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Gao, J.; Wang, J.; Xu, J.; Wang, L. Oxygen-doped and pyridine-grafted g-C3N4 for visible-light driven peroxymonosulfate activation: Insights of enhanced tetracycline degradation mechanism. Sep. Purif. Technol. 2023, 314, 123565. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Huebner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Oh, W.-D.; Dong, Z.; Lim, T.-T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B-Environ. Energy 2016, 194, 169–201. [Google Scholar] [CrossRef]
- Kang, J.; Tang, Y.; Wang, M.; Jin, C.; Liu, J.; Li, S.; Li, Z.; Zhu, J. The enhanced peroxymonosulfate-assisted photocatalytic degradation of tetracycline under visible light by g-C3N4/Na-BiVO4 heterojunction catalyst and its mechanism. J. Environ. Chem. Eng. 2021, 9, 105524. [Google Scholar] [CrossRef]
- Ma, Q.; Sun, Y.; Zhang, C.; Xue, Y.; Chen, Y.; Teng, W.; Fan, J. Iron pyrophosphate doped carbon nanocomposite for tetracycline degradation by activation of peroxymonosulfate. New J. Chem. 2022, 46, 17985–17994. [Google Scholar] [CrossRef]
- Peng, X.; Yang, Z.; Zhan, P.; Chai, Y.; Ning, Z.; Hu, F.; Dai, H. Construction of core-shell Fe3O4@MoS2 activates peroxymonosulfate for the degradation of tetracycline: Structure-activity relationship, performance and mechanisms. J. Alloys Compd. 2023, 961, 170991. [Google Scholar] [CrossRef]
- Liu, L.; Han, C.; Ding, G.; Yu, M.; Li, Y.; Liu, S.; Xie, Y.; Liu, J. Oxygen vacancies-enriched Cu/Co bimetallic oxides catalysts for high-efficiency peroxymonosulfate activation to degrade TC: Insight into the increase of Cu+ triggered by Co doping. Chem. Eng. J. 2022, 450, 138302. [Google Scholar] [CrossRef]
- Zhou, X.; Luo, H.; Sheng, B.; Chen, X.; Wang, Y.; Chen, Q.; Zhou, J. Cu2+/Cu+ cycle promoted PMS decomposition with the assistance of Mo for the degradation of organic pollutant. J. Hazard. Mater. 2021, 411, 125050. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Guo, S.; Chen, Y.; Shahzad, A.; Wajid Ullah, M.; Chen, F. Metal sulfides as emerging materials for advanced oxidation of wastewater: Recent developments, challenges, and prospects. Coord. Chem. Rev. 2024, 509, 215765. [Google Scholar] [CrossRef]
- Sheng, B.; Yang, F.; Wang, Y.; Wang, Z.; Li, Q.; Guo, Y.; Lou, X.; Liu, J. Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS. Chem. Eng. J. 2019, 375, 121989. [Google Scholar] [CrossRef]
- Guo, D.; Wang, Y.; Chen, C.; He, J.; Zhu, M.; Chen, J.; Zhang, C. A multi-structural carbon nitride co-modified by Co, S to dramatically enhance mineralization of Bisphenol f in the photocatalysis-PMS oxidation coupling system. Chem. Eng. J. 2021, 422, 130035. [Google Scholar] [CrossRef]
- He, D.; Zhu, K.; Huang, J.; Shen, Y.; Lei, L.; He, H.; Chen, W. N, S co-doped magnetic mesoporous carbon nanosheets for activating peroxymonosulfate to rapidly degrade tetracycline: Synergistic effect and mechanism. J. Hazard. Mater. 2022, 424, 127569. [Google Scholar] [CrossRef]
- Ali, J.; Shahzad, A.; Wang, J.; Ifthikar, J.; Lei, W.; Aregay, G.G.; Chen, Z.; Chen, Z. Modulating the redox cycles of homogenous Fe(III)/PMS system through constructing electron rich thiomolybdate centres in confined layered double hydroxides. Chem. Eng. J. 2021, 408, 127242. [Google Scholar] [CrossRef]
- Jawad, A.; Zhan, K.; Wang, H.B.; Shahzad, A.; Zeng, Z.H.; Wang, J.; Zhou, X.Q.; Ullah, H.; Chen, Z.L.; Chen, Z.Q. Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide. Environ. Sci. Technol. 2020, 54, 2476–2488. [Google Scholar] [CrossRef]
- Liang, C.; Liang, C.-P.; Chen, C.-C. pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene. J. Contam. Hydrol. 2009, 106, 173–182. [Google Scholar] [CrossRef]
- Usman, M.; Faure, P.; Ruby, C.; Hanna, K. Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils. Chemosphere 2012, 87, 234–240. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Jin, L.; Lu, Z.; Xiang, M.; Wang, C.; Wang, W.; Zhang, J.; Li, C.; Xie, H. Activation of peroxymonosulfate by magnetic Fe3S4/biochar composites for the efficient degradation of 2,4,6-trichlorophenol: Synergistic effect and mechanism. J. Environ. Chem. Eng. 2022, 10, 107085. [Google Scholar] [CrossRef]
- Wang, J.; Wang, M.; Kang, J.; Tang, Y.; Liu, J.; Li, S.; Xu, Z.; Tang, P. The promoted tetracycline visible-light-driven photocatalytic degradation efficiency of g-C3N4/FeWO4 Z-scheme heterojunction with peroxymonosulfate assisting and mechanism. Sep. Purif. Technol. 2022, 296, 121440. [Google Scholar] [CrossRef]
- Xu, P.; Xie, S.; Liu, X.; Wang, L.; Wu, R.; Hou, B. Efficient removal of tetracycline using magnetic MnFe2O4/MoS2 nanocomposite activated peroxymonosulfate: Mechanistic insights and performance evaluation. Chem. Eng. J. 2024, 480, 148233. [Google Scholar] [CrossRef]
- Huang, Y.; Kou, S.; Zhang, X.; Wang, L.; Lu, P.; Zhang, D. Facile Fabrication of Z-Scheme Bi2WO6/WO3 Composites for Efficient Photodegradation of Bisphenol A with Peroxymonosulfate Activation. Nanomaterials 2020, 10, 724. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, S.; Jiang, J.; Shao, L.; Li, D.; Yuan, J.; Xu, F. Magnetic Fe3S4/MoS2 with visible-light response as an efficient photo-Fenton-like catalyst: Validation in degrading tetracycline hydrochloride under mild pH conditions. J. Alloys Compd. 2022, 921, 166023. [Google Scholar] [CrossRef]
- Dong, N.; Ju, J.; Huang, J.; Du, M.; Wang, L.; Huang, H.; Li, D.; Xu, F. Photo-assisted Fenton degradation of tetracycline hydrochloride with magnetic Fe3S4/CuS composite. Appl. Surf. Sci. 2025, 681, 161581. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Ali, J.; Shahzad, A.; Chen, Y.; Ma, H.; Huang, Q.; Xie, L.; Xing, F. Boosting PMS Activation Through Fe3S4/WO3: The Essential Impact of WX and SX on Catalyst Activity and Regeneration Fe Active Sites for Efficient Pollutant Removal. Catalysts 2025, 15, 230. https://doi.org/10.3390/catal15030230
Wang Z, Ali J, Shahzad A, Chen Y, Ma H, Huang Q, Xie L, Xing F. Boosting PMS Activation Through Fe3S4/WO3: The Essential Impact of WX and SX on Catalyst Activity and Regeneration Fe Active Sites for Efficient Pollutant Removal. Catalysts. 2025; 15(3):230. https://doi.org/10.3390/catal15030230
Chicago/Turabian StyleWang, Zhao, Jawad Ali, Ajmal Shahzad, Yanan Chen, Haiqing Ma, Qiao Huang, Lei Xie, and Futang Xing. 2025. "Boosting PMS Activation Through Fe3S4/WO3: The Essential Impact of WX and SX on Catalyst Activity and Regeneration Fe Active Sites for Efficient Pollutant Removal" Catalysts 15, no. 3: 230. https://doi.org/10.3390/catal15030230
APA StyleWang, Z., Ali, J., Shahzad, A., Chen, Y., Ma, H., Huang, Q., Xie, L., & Xing, F. (2025). Boosting PMS Activation Through Fe3S4/WO3: The Essential Impact of WX and SX on Catalyst Activity and Regeneration Fe Active Sites for Efficient Pollutant Removal. Catalysts, 15(3), 230. https://doi.org/10.3390/catal15030230