VO Supported on Functionalized CNTs for Oxidative Conversion of Furfural to Maleic Anhydride
Abstract
:1. Introduction
2. Results
2.1. Thermal Properties and Chemical Composition
2.2. Textural Properties
2.3. Structural Properties
2.4. Acid Properties
2.5. XPS
2.6. Catalytic Properties
3. Materials and Methods
3.1. Synthesis
3.2. Characterization
3.3. Catalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kabbour, M.; Luque, R. Chapter 10—Furfural as a platform chemical: From production to applications. In Biomass, Biofuels, Biochemicals; Saravanamurugan, S., Pandey, A., Li, H., Riisager, A., Eds.; Elsevier: Berlin/Heidelberg, Germany, 2020; pp. 283–297. [Google Scholar]
- Felthouse, T.R.; Burnett, J.C.; Horrell, B.; Mummey, M.J.; Kuo, Y.-J. Maleic Anhydride, Maleic Acid, and Fumaric Acid. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Lohbeck, K.; Haferkorn, H.; Fuhrmann, W.; Fedtke, N. Maleic and Fumaric Acids. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Agirre, I.; Gandarias, I.; Granados, M.L.; Arias, P.L. Process design and techno-economic analysis of gas and aqueous phase maleic anhydride production from biomass-derived furfural. Biomass Convers. Biorefin. 2020, 10, 1021–1033. [Google Scholar] [CrossRef]
- Harth, F.M.; Likozar, B.; Grilc, M. Stability of solid rhenium catalysts for liquid-phase biomass valorization–various facets of catalyst deactivation and rhenium leaching. Mater. Today Chem. 2022, 26, 101191. [Google Scholar] [CrossRef]
- Rodríguez-Montaña, A.; Brijaldo, M.H.; Rache, L.Y.; Silva, L.P.C.; Esteves, L.M. Reacciones comunes de Furfural en procesos escalables de Biomasa Residual. Cienc. Desarro. 2020, 11, 63–80. [Google Scholar] [CrossRef]
- Gómez-Cápiro, O.; Bravo, L.; Lagos, P.; Santander, P.; Pecchi, G.; Karelovic, A. Kinetic and structural understanding of bulk and supported vanadium-based catalysts for furfural oxidation to maleic anhydride. Catal. Sci. Technol. 2021, 11, 6477–6489. [Google Scholar] [CrossRef]
- Murthy, M.S.; Rajamani, K. Kinetics of vapour phase oxidation of furfural on vanadium catalyst. Chem. Eng. Sci. 1974, 29, 601–609. [Google Scholar] [CrossRef]
- Alonso-Fagúndez, N.; Granados, M.L.; Mariscal, R.; Ojeda, M. Selective Conversion of Furfural to Maleic Anhydride and Furan with VOx/Al2O3 Catalysts. ChemSusChem 2012, 5, 1984–1990. [Google Scholar] [CrossRef]
- Li, X.; Ho, B.; Zhang, Y. Selective aerobic oxidation of furfural to maleic anhydride with heterogeneous Mo–V–O catalysts. Green Chem. 2016, 18, 2976–2980. [Google Scholar] [CrossRef]
- Santander, P.; Bravo, L.; Pecchi, G.; Karelovic, A. The consequences of support identity on the oxidative conversion of furfural to maleic anhydride on vanadia catalysts. Appl. Catal. A Gen. 2020, 595, 117513. [Google Scholar] [CrossRef]
- Rajamani, K.; Subramanian, P.; Murthy, M.S. Kinetics and Mechanism of Vapor Phase Oxidation of Furfural over Tin Vanadate Catalyst. Ind. Eng. Chem. Process Des. Dev. 1976, 15, 232–234. [Google Scholar] [CrossRef]
- Alonso-Fagúndez, N.; Ojeda, M.; Mariscal, R.; Fierro, J.L.G.; López Granados, M. Gas phase oxidation of furfural to maleic anhydride on V2O5/γ-Al2O3 catalysts: Reaction conditions to slow down the deactivation. J. Catal. 2017, 348, 265–275. [Google Scholar] [CrossRef]
- Mars, P.; van Krevelen, D.W. Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci. 1954, 3, 41–59. [Google Scholar] [CrossRef]
- Piccolo, L.; Loridant, S.; Christopher, P. Supported Metal Single-Atom Thermocatalysts for Oxidation Reactions. In Supported Metal Single Atom Catalysis; Wiley: Hoboken, NJ, USA, 2022; pp. 377–423. [Google Scholar]
- Zhao, X.; Xu, J.; Wang, A.; Zhang, T. Porous carbon in catalytic transformation of cellulose. Chin. J. Catal. 2015, 36, 1419–1427. [Google Scholar] [CrossRef]
- Ma, P.-C.; Siddiqui, N.A.; Marom, G.; Kim, J.-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Liang, C.; Li, Z.; Dai, S. Mesoporous Carbon Materials: Synthesis and Modification. Angew. Chem. Int. Ed. 2008, 47, 3696–3717. [Google Scholar] [CrossRef]
- Taghvaei, H.; Bakhtyari, A.; Reza Rahimpour, M. Carbon nanotube supported nickel catalysts for anisole and cyclohexanone conversion in the presence of hydrogen and synthesis gas: Effect of plasma, acid, and thermal functionalization. Fuel 2021, 288, 119698. [Google Scholar] [CrossRef]
- Rahzani, B.; Saidi, M.; Rahimpour, H.R.; Gates, B.C.; Rahimpour, M.R. Experimental investigation of upgrading of lignin-derived bio-oil component anisole catalyzed by carbon nanotube-supported molybdenum. RSC Adv. 2017, 7, 10545–10556. [Google Scholar] [CrossRef]
- Liu, L.; Lou, H.; Chen, M. Selective hydrogenation of furfural to tetrahydrofurfuryl alcohol over Ni/CNTs and bimetallic CuNi/CNTs catalysts. Int. J. Hydrogen Energy 2016, 41, 14721–14731. [Google Scholar] [CrossRef]
- Ye, B.; Kim, S.-I.; Lee, M.; Ezazi, M.; Kim, H.-D.; Kwon, G.; Lee, D.H. Synthesis of oxygen functionalized carbon nanotubes and their application for selective catalytic reduction of NOx with NH3. RSC Adv. 2020, 10, 16700–16708. [Google Scholar] [CrossRef]
- Ghogia, A.C.; Machado, B.F.; Cayez, S.; Nzihou, A.; Serp, P.; Soulantica, K.; Pham Minh, D. Beyond confinement effects in Fischer-Tropsch Co/CNT catalysts. J. Catal. 2021, 397, 156–171. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Jeon, S. The Nanostructure of Nitrogen Atom Linked Carbon Nanotubes with Platinum Employed to the Electrocatalytic Oxygen Reduction. J. Nanosci. Nanotechnol. 2013, 13, 306–314. [Google Scholar] [CrossRef]
- Lee, C.-H.; Lin, T.-S.; Mou, C.-Y. (VO)2+ Ions Immobilized on Functionalized Surface of Mesoporous Silica and Their Activity toward the Hydroxylation of Benzene. J. Phys. Chem. B 2003, 107, 2543–2551. [Google Scholar] [CrossRef]
- Figueiredo, J.L.; Pereira, M.F.R. The role of surface chemistry in catalysis with carbons. Catal. Today 2010, 150, 2–7. [Google Scholar] [CrossRef]
- Xia, W.; Wang, Y.; Bergsträßer, R.; Kundu, S.; Muhler, M. Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption. Appl. Surf. Sci. 2007, 254, 247–250. [Google Scholar] [CrossRef]
- Kundu, S.; Wang, Y.; Xia, W.; Muhler, M. Thermal Stability and Reducibility of Oxygen-Containing Functional Groups on Multiwalled Carbon Nanotube Surfaces: A Quantitative High-Resolution XPS and TPD/TPR Study. J. Phys. Chem. C 2008, 112, 16869–16878. [Google Scholar] [CrossRef]
- Rocha, R.P.; Sousa, J.P.S.; Silva, A.M.T.; Pereira, M.F.R.; Figueiredo, J.L. Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: The role of the basic nature induced by the surface chemistry. Appl. Catal. B Environ. 2011, 104, 330–336. [Google Scholar] [CrossRef]
- Toebes, M.L.; van Heeswijk, J.M.P.; Bitter, J.H.; Jos van Dillen, A.; de Jong, K.P. The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers. Carbon 2004, 42, 307–315. [Google Scholar] [CrossRef]
- Rocha, R.P.; Pereira, M.F.R.; Figueiredo, J.L. Characterisation of the surface chemistry of carbon materials by temperature-programmed desorption: An assessment. Catal. Today 2023, 418, 114136. [Google Scholar] [CrossRef]
- Friedel Ortega, K.; Arrigo, R.; Frank, B.; Schlögl, R.; Trunschke, A. Acid–Base Properties of N-Doped Carbon Nanotubes: A Combined Temperature-Programmed Desorption, X-ray Photoelectron Spectroscopy, and 2-Propanol Reaction Investigation. Chem. Mater. 2016, 28, 6826–6839. [Google Scholar] [CrossRef]
- Rocha, R.P.; Silva, A.M.T.; Romero, S.M.M.; Pereira, M.F.R.; Figueiredo, J.L. The role of O- and S-containing surface groups on carbon nanotubes for the elimination of organic pollutants by catalytic wet air oxidation. Appl. Catal. B Environ. 2014, 147, 314–321. [Google Scholar] [CrossRef]
- Strong, K.L.; Anderson, D.P.; Lafdi, K.; Kuhn, J.N. Purification process for single-wall carbon nanotubes. Carbon 2003, 41, 1477–1488. [Google Scholar] [CrossRef]
- Nowicki, P.; Szymanowski, W.T.; Pietrzak, R. Textural, surface, thermal and sorption properties of the functionalized activated carbons and carbon nanotubes. Pol. J. Chem. Technol. 2015, 17, 120–127. [Google Scholar] [CrossRef]
- Belin, T.; Epron, F. Characterization methods of carbon nanotubes: A review. Mater. Sci. Eng. B 2005, 119, 105–118. [Google Scholar] [CrossRef]
- Güler, Ö. Mechanical and Thermal Properties of a Cu-CNT Composite with Carbon Nanotubes Synthesized by CVD Process. Mater. Test. 2014, 56, 662–666. [Google Scholar] [CrossRef]
- Shklover, V.; Haibach, T.; Ried, F.; Nesper, R.; Novák, P. Crystal Structure of the Product of Mg2+ Insertion into V2O5 Single Crystals. J. Solid State Chem. 1996, 123, 317–323. [Google Scholar] [CrossRef]
- Porwal, D.; Esther, A.C.M.; Dey, A.; Gupta, A.K.; Kumar, D.R.; Bera, P.; Barshilia, H.C.; Bhattacharya, M.; Mukhopadhyay, A.K.; Khan, K.; et al. Effect of low temperature vacuum annealing on microstructural, optical, electronic, electrical, nanomechanical properties and phase transition behavior of sputtered vanadium oxide thin films. Mater. Res. Express 2016, 3, 106407. [Google Scholar] [CrossRef]
- Roslan, M.S.; Chaudhary, K.T.; Doylend, N.; Agam, A.; Kamarulzaman, R.; Haider, Z.; Mazalan, E.; Ali, J. Growth of Wall-controlled MWCNTs by Magnetic Field Assisted Arc Discharge Plasma. J. Saudi Chem. Soc. 2019, 23, 171–181. [Google Scholar] [CrossRef]
- Choi, Y.C.; Min, K.-I.; Jeong, M.S. Novel Method of Evaluating the Purity of Multiwall Carbon Nanotubes Using Raman Spectroscopy. J. Nanomater. 2013, 2013, 615915. [Google Scholar] [CrossRef]
- Brown, S.D.M.; Jorio, A.; Corio, P.; Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Kneipp, K. Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys. Rev. B 2001, 63, 155414. [Google Scholar] [CrossRef]
- Shylesh, S.; Radhika, T.; Rani, K.S.; Sugunan, S. Synthesis, characterization and catalytic activity of Nd2O3 supported V2O5 catalysts. J. Mol. Catal. A Chem. 2005, 236, 253–259. [Google Scholar] [CrossRef]
- Biesinger, M.C. Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review. Appl. Surf. Sci. 2022, 597, 153681. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Mendialdua, J.; Casanova, R.; Barbaux, Y. XPS studies of V2O5, V6O13, VO2 and V2O3. J. Electron Spectrosc. Relat. Phenom. 1995, 71, 249–261. [Google Scholar] [CrossRef]
- Hassan, H.M.A.; Betiha, M.A.; El-Sharkawy, E.A.; Elshaarawy, R.F.M.; El-Assy, N.B.; Essawy, A.A.; Tolba, A.M.; Rabie, A.M. Highly selective epoxidation of olefins using vanadium (IV) schiff base- amine-tagged graphene oxide composite. Colloids Surf. A Physicochem. Eng. Asp. 2020, 591, 124520. [Google Scholar] [CrossRef]
- Gonçalves, L.P.L.; Meledina, M.; Meledin, A.; Petrovykh, D.Y.; Sousa, J.P.S.; Soares, O.S.G.P.; Kolen’ko, Y.V.; Pereira, M.F.R. Understanding the importance of N−doping for CNT-supported Ni catalysts for CO2 methanation. Carbon 2022, 195, 35–43. [Google Scholar] [CrossRef]
- Ruiz Puigdollers, A.; Schlexer, P.; Tosoni, S.; Pacchioni, G. Increasing Oxide Reducibility: The Role of Metal/Oxide Interfaces in the Formation of Oxygen Vacancies. ACS Catal. 2017, 7, 6493–6513. [Google Scholar] [CrossRef]
- Kauppi, E.I.; Honkala, K.; Krause, A.O.I.; Kanervo, J.M.; Lefferts, L. ZrO2 Acting as a Redox Catalyst. Top. Catal. 2016, 59, 823–832. [Google Scholar] [CrossRef]
wt% V | SBET m2 g−1 | Vp cm3; g−1 | ID/IG | ID″/IG | Acidity mmol NH3 g−1 | |
---|---|---|---|---|---|---|
CNT | - | 241 | 0.43 | 2.0 | 0.21 | 0.13 |
CNT-COOH | - | 234 | 0.41 | 2.3 | 0.15 | 0.31 |
CNT-NH2 | - | 222 | 0.38 | 2.4 | 0.11 | 0.44 |
VO/CNT | 5.2 | 160 | 0.29 | 2.2 | 0.20 | 12.0 |
VO/CNT-COOH | 4.8 | 158 | 0.28 | 2.8 | 0.23 | 13.0 |
VO/CNT-NH2 | 4.5 | 118 | 0.20 | 2.3 | 0.19 | 11.0 |
Binding Energy, eV | V/C Atomic Ratio | |||
---|---|---|---|---|
O 1s | N 1s | V 2p3/2 | ||
CNT | 532.2 (49) 533.7 (52) | - | - | - |
CNT-COOH | 532.2 (47) 533.6 (53) | - | - | - |
CNT-NH2 | 532.2 (47) 533.6 (53) | 398.8 (63.1) 400.6 (36.9) | - | - |
VO/CNT | 530.3 (22) 531.4 (22) 532.3 (37) 533.5 (19) | - | 516.6 (53) 517.6 (47) | 0.076 |
VO/CNT-COOH | 530.3 (27) 531.5 (30) 532.6 (30) 533.7 (13) | - | 516.5 (50) 517.6 (50) | 0.115 |
VO/CNT-NH2 | 530.0 (24) 531.0 (20) 532.3 (37) 533.5 (19) | 398.9 (48.2) 400.7 (39.4) 402.8 (12.4) | 516.4 (55) 517.5 (45) | 0.075 |
Temperature, °C | ||||||
---|---|---|---|---|---|---|
XF (%) | MA Yield (%) | |||||
305 °C | 320 °C | 335 °C | 350 °C | Fresh (350 °C) | Recycle (350 °C) | |
VO/CNT | 42 | 80 | 100 | 100 | 23 | 22 |
VO/CNT-COOH | 41 | 74 | 99 | 100 | 26 | 27 |
VO/CNT-NH2 | 59 | 90 | 100 | 100 | 29 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, P.; Parra, C.; Díaz de León, J.N.; Karelovic, A.; Riffo, S.; Herrera, C.; Pecchi, G.; Sepúlveda, C. VO Supported on Functionalized CNTs for Oxidative Conversion of Furfural to Maleic Anhydride. Catalysts 2024, 14, 510. https://doi.org/10.3390/catal14080510
Rodríguez P, Parra C, Díaz de León JN, Karelovic A, Riffo S, Herrera C, Pecchi G, Sepúlveda C. VO Supported on Functionalized CNTs for Oxidative Conversion of Furfural to Maleic Anhydride. Catalysts. 2024; 14(8):510. https://doi.org/10.3390/catal14080510
Chicago/Turabian StyleRodríguez, Pedro, Carolina Parra, J. Noe Díaz de León, Alejandro Karelovic, Sebastian Riffo, Carla Herrera, Gina Pecchi, and Catherine Sepúlveda. 2024. "VO Supported on Functionalized CNTs for Oxidative Conversion of Furfural to Maleic Anhydride" Catalysts 14, no. 8: 510. https://doi.org/10.3390/catal14080510
APA StyleRodríguez, P., Parra, C., Díaz de León, J. N., Karelovic, A., Riffo, S., Herrera, C., Pecchi, G., & Sepúlveda, C. (2024). VO Supported on Functionalized CNTs for Oxidative Conversion of Furfural to Maleic Anhydride. Catalysts, 14(8), 510. https://doi.org/10.3390/catal14080510