Advanced Catalytic Materials for Renewable Energy Sources
Author Contributions
Conflicts of Interest
List of Contributions
- Stagniūnaitė, R.; Kepenienė, V.; Balčiūnaitė, A.; Drabavičius, A.; Pakštas, V.; Jasulaitienė, V.; Tamašauskaitė-Tamašiūnaitė, L.; Norkus, E. An Electrocatalytic Activity of AuCeO2/Carbon Catalyst in Fuel Cell Reactions: Oxidation of Borohydride and Reduction of Oxygen. Catalysts 2021, 11, 342. https://doi.org/10.3390/catal11030342.
- Kaleeswarran, P.; Praveen Kumar, M.; Mangalaraja, R.; Hartley, U.; Sasikumar, M.; Venugopalan, R.; Rajesh Kumar, M.; Rajabathar, J.; Peera, S.; Murugadoss, G. FeTiO3 Perovskite Nanoparticles for Efficient Electrochemical Water Splitting. Catalysts 2021, 11, 1028. https://doi.org/10.3390/catal11091028.
- Nacys, A.; Kilmonis, T.; Kepenienė, V.; Balčiūnaitė, A.; Stagniūnaitė, R.; Upskuvienė, D.; Jablonskienė, J.; Vaičiūnienė, J.; Skapas, M.; Tamašauskaitė-Tamašiūnaitė, L.; Norkus, E. One-Pot Microwave-Assisted Synthesis of Graphene-Supported PtCoM (M = Mn, Ru, Mo) Catalysts for Low-Temperature Fuel Cells. Catalysts 2021, 11, 1431. https://doi.org/10.3390/catal11121431.
- Thippeswamy, B.; Maligi, A.; Hegde, G. Roadmap of Effects of Biowaste-Synthesized Carbon Nanomaterials on Carbon Nano-Reinforced Composites. Catalysts 2021, 11, 1485. https://doi.org/10.3390/catal11121485.
- Dragan, M. Hydrogen Storage in Complex Metal Hydrides NaBH4: Hydrolysis Reaction and Experimental Strategies. Catalysts 2022, 12, 356. https://doi.org/10.3390/catal12040356.
- Balčiūnaitė, A.; Upskuvienė, D.; Antanaitis, A.; Šimkūnaitė, D.; Tamašauskaitė-Tamašiūnaitė, L.; Vaičiūnienė, J.; Norkus, E. 3D-Structured Au(NiMo)/Ti Catalysts for the Electrooxidation of Glucose. Catalysts 2022, 12, 892. https://doi.org/10.3390/catal12080892.
- Akkus, M. The Catalytic Performance of Nanorod Nickel Catalyst in the Hydrolysis of Lithium Borohydride and Dimethylamine Borane. Catalysts 2023, 13, 458. https://doi.org/10.3390/catal13030458.
- Elessawy, N.; Backović, G.; Hirunthanawat, J.; Martins, M.; Rakočević, L.; Gouda, M.; Toghan, A.; Youssef, M.; Šljukić, B.; Santos, D. From PET Bottles Waste to N-Doped Graphene as Sustainable Electrocatalyst Support for Direct Liquid Fuel Cells. Catalysts 2023, 13, 525. https://doi.org/10.3390/catal13030525.
- Liu, Q.; Wang, Y.; Lu, X. Construction of NiFe-Layered Double Hydroxides Arrays as Robust Electrocatalyst for Oxygen Evolution Reaction. Catalysts 2023, 13, 586. https://doi.org/10.3390/catal13030586.
References
- Hussain, A.; Arif, S.M.; Aslam, M. Emerging renewable and sustainable energy technologies: State of the art. Renew. Sustain. Energy Rev. 2017, 71, 12–28. [Google Scholar] [CrossRef]
- Zhang, W.; Valencia, A.; Gu, L.; Zheng, Q.P.; Chang, N.-B. Integrating emerging and existing renewable energy technologies into a community-scale microgrid in an energy-water nexus for resilience improvement. Appl. Energy 2020, 279, 115716. [Google Scholar] [CrossRef]
- Badwal, S.P.S.; Giddey, S.S.; Munnings, C.; Bhatt, A.I.; Hollenkamp, A.F. Emerging electrochemical energy conversion and storage technologies. Front. Chem. 2014, 2, 79. [Google Scholar] [CrossRef]
- He, M.; Turup, Z.; Jin, X.; Chen, F. Ag nanoparticle-loaded to MnO2 with rich oxygen vacancies and Mn3þ for the synergistically enhanced oxygen reduction reaction. Int. J. Hydrogen Energy 2023, 48, 25770–25782. [Google Scholar] [CrossRef]
- Ozturk, A.; Akay, R.G.; Erkan, S.; Yurtcan, A.B. Direct Liquid Fuel Cells, 1st ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 1–47. [Google Scholar] [CrossRef]
- Yu, E.H.; Wang, X.; Krewer, U.; Li, L.; Scott, K. Direct oxidation alkaline fuel cells: From materials to systems. Energy Environ. Sci. 2011, 5, 5668–5680. [Google Scholar] [CrossRef]
- Yongheng, L.; Chongchong, W.; Wenbo, W.; Jing, X.; Xiaotong, M.; Guoming, Y.; Mengjun, S.; Siran, Z.; Hongbao, L. Research progress on CO2 catalytic conversion to value-added oxygenates. J. Fuel Chem. Technol. 2024, 52, 496–511. [Google Scholar] [CrossRef]
- Molina Concha, B.; Chatenet, M. Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt–Ag electrodes in basic media. Part I: Bulk electrodes. Electrochim. Acta 2009, 54, 6119–6129. [Google Scholar] [CrossRef]
- Wietecha, M.S.; Zhu, J.; Gao, G.; Wang, N.; Feng, H.; Gorring, M.L.; Kasner, M.L.; Hou, S. Platinum nanoparticles anchored on chelating group-modified graphene for methanol oxidation. J. Power Sources 2012, 198, 30–35. [Google Scholar] [CrossRef]
- Prabu, N.; Jeyakumar, D. Superior electrocatalytic performance of Au-Pt graded nano-alloys towards alcohol oxidation reaction. Chem. Sel. 2018, 3, 13207–13216. [Google Scholar] [CrossRef]
- Hanifah, M.F.R.; Jaafar, J.; Othman, M.H.D.; Ismail, A.F.; Rahman, M.A.; Yusof, N.; Aziz, F.; Rahman, N.A. One-pot synthesis of efficient reduced graphene oxide supported binary Pt-Pd alloy nanoparticles as superior electrocatalyst and its electrocatalytic performance toward methanol electro-oxidation reaction in direct methanol fuel cell. J. Alloys Compd. 2019, 793, 232–246. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, G.-M.; Yao, R.; Yu, T.; Han, M.-F.; Huang, R.-S. High oxygen reduction activity of Pt-Ni alloy catalyst for proton exchange membrane fuel cells. Catalysts 2022, 12, 250. [Google Scholar] [CrossRef]
- Jia, W.; Li, J.; Lu, Z.; Juan, Y.; Jiang, Y. Synthesis of honeycomb-like Co3O4 nanosheets with excellent supercapacitive performance by morphological controlling derived from the alkaline source ratio. Materials 2018, 11, 1560. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yan, L.; Hu, X.; Feng, H.; Guo, B.; Ha, X.; Xu, H.; Wang, R.; Tan, X.; Huang, H. Manganese dioxides with different exposed crystal plane supported on g-C3N4 for photocatalytic H2 evolution from water splitting. Int. J. Hydrogen Energy 2022, 47, 36110–36117. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Zhao, F.; Hu, C.; Zhao, Y.; Zhang, Z.; Chen, S.; Shi, G.; Qu, L. Monoatomic-thick graphitic carbon nitride dots on graphene sheets as an efficient catalyst in the oxygen reduction reaction. Nanoscale 2015, 7, 3035–3042. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.H.; Elessawy, N.A.; Al-Hussain, S.A.; Toghan, A. Design of promising green cation-exchange-membranes-based sulfonated PVA and doped with nano sulfated zirconia for direct borohydride fuel cells. Polymers 2021, 13, 4205. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.H.; Elessawy, N.A.; Toghan, A. Novel crosslinked sulfonated PVA/PEO doped with phosphated titanium oxide nanotubes as effective green cation exchange membrane for direct borohydride fuel cells. Polymers 2021, 13, 2050. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.M.R.R.; Oliveira, V.B.; Falcao, D.S. Direct Alcohol Fuel Cells for Portable Applications: Fundamentals, Engineering and Advances, 1st ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 209–244. [Google Scholar]
- Ma, J.; Choudhury, N.A.; Sahai, Y. A comprehensive review of direct borohydride fuel cells. Renew. Sustain. Energy Rev. 2010, 14, 183–199. [Google Scholar] [CrossRef]
- Li, S.; Li, E.; An, X.; Hao, X.; Jiange, Z.; Guan, G. Transition metal-based catalysts for electrochemical water splitting at high current density: Current status and perspectives. Nanoscale 2021, 13, 12788–127817. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, T.; Idris, M.B.; Harshini Sai, G.; Devaraj, S. The effect of the crystallographic form of MnO2 on the kinetics of oxygen reduction and evolution reaction. Mat. Chem. Phys. 2023, 30, 127845. [Google Scholar] [CrossRef]
- Suntivich, J.; Gasteiger, H.A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J.B.; Horn, Y.S. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 2011, 3, 546–550. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, Y.; Du, Q.; Yin, Y.; Jiao, K. Transient investigation of passive alkaline membrane direct methanol fuel cell. Appl. Therm. Eng. 2016, 100, 1245–1258. [Google Scholar] [CrossRef]
- Yang, Z.; You, J. Synthesis of a three-dimensional porous Co3O4 network interconnected by MWCNTs and decorated with Au nanoparticles for enhanced nonenzymatic glucose sensing. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 126064. [Google Scholar] [CrossRef]
- Al-Akraa, I.M.; Mohammad, A.M. A spin-coated TiOx/Pt nanolayered anodic catalyst for the direct formic acid fuel cells. Arab. J. Chem. 2020, 13, 4703–4711. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kepenienė, V.; Tamašauskaitė-Tamašiūnaitė, L. Advanced Catalytic Materials for Renewable Energy Sources. Catalysts 2024, 14, 497. https://doi.org/10.3390/catal14080497
Kepenienė V, Tamašauskaitė-Tamašiūnaitė L. Advanced Catalytic Materials for Renewable Energy Sources. Catalysts. 2024; 14(8):497. https://doi.org/10.3390/catal14080497
Chicago/Turabian StyleKepenienė, Virginija, and Loreta Tamašauskaitė-Tamašiūnaitė. 2024. "Advanced Catalytic Materials for Renewable Energy Sources" Catalysts 14, no. 8: 497. https://doi.org/10.3390/catal14080497
APA StyleKepenienė, V., & Tamašauskaitė-Tamašiūnaitė, L. (2024). Advanced Catalytic Materials for Renewable Energy Sources. Catalysts, 14(8), 497. https://doi.org/10.3390/catal14080497