Facile Asymmetric Syntheses of Non-Natural Amino Acid (S)-Cyclopropylglycine by the Developed NADH-Driven Biocatalytic System
Abstract
1. Introduction
2. Results and Discussion
2.1. Expression and Purification of Recombinant Enzymes
2.2. The Effect of Temperature and pH on the Recombinant Enzyme Activity
2.3. Steady-State Kinetic Parameters
2.4. Preparation of Cyclopropylglyoxylic Acid
2.5. Proximity Effect Study
2.6. NADH-Driven Biocatalytic Asymmetric Synthesis of (S)-Cyclopropylglycine
2.7. Continuous Synthesis of (S)-Cyclopropylglycine
3. Experimental Section
3.1. Materials
3.2. Construct and Expression Bifunctional Enzyme
3.3. Enzyme Activity Assay
3.4. Steady-State Kinetic Assays
3.5. Preparation of Cyclopropylglyoxylate
3.6. Proximity Effect Study
3.7. Reductive Amination of Cyclopropylglyoxylic Acid with the Self-Sufficient Whole-Cell Biocatalysts
3.8. Continuous Synthesis of (S)-Cyclopropylglycine
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Kotha, S.; Goyal, D.A.; Chavan, S. Diversity-Oriented Approaches to Unusual α-Amino Acids and Peptides: Step Economy, Atom Economy, Redox Economy, and Beyond. J. Org. Chem. 2013, 78, 12288–12313. [Google Scholar] [CrossRef] [PubMed]
- Hyslop, J.F.; Lovelock, S.L.; Sutton, P.W.; Brown, K.K.; Watson, A.J.B.; Roiban, G.D. Biocatalytic Synthesis of Chiral N-Functionalized Amino Acids. Angew. Chem. Int. Ed. 2018, 57, 13821–13824. [Google Scholar] [CrossRef] [PubMed]
- Hyslop, J.F.; Allan, S.L.L.; Watson, J.B.; Sutton, P.W.; Roiban, G.D. N-Alkyl-α-amino acids in Nature and their biocatalytic preparation. J. Biotechnol. 2019, 293, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Hoveyda, H.R.; Marsault, E.; Gagnon, R.; Mathieu, A.P.; Vezina, M.; Landry, A.; Wang, Z.; Benakli, K.; Beaubien, S.; Saint-Louis, C.; et al. Optimization of the Potency and Pharmacokinetic Properties of a Macrocyclic Ghrelin Receptor Agonist (Part I): Development of Ulimorelin (TZP-101) from Hit to Clinic. J. Med. Chem. 2011, 54, 8305–8320. [Google Scholar] [CrossRef] [PubMed]
- Garbaccio, R.M.; Fraley, M.E.; Tasber, E.S.; Olson, C.M.; Hoffman, W.F.; Arrington, K.L.; Torrent, M.C.; Buser, A.; Walsh, E.S.; Hamilton, K.; et al. Kinesin spindle protein (KSP) inhibitors. Part 3: Synthesis and evaluation of phenolic 2,4-diaryl-2,5-dihydropyrroles with reduced hERG binding and employment of a phosphate prodrug strategy for aqueous solubility. Bioorg. Med. Chem. Lett. 2006, 16, 1780–1783. [Google Scholar] [CrossRef] [PubMed]
- Vallin, K.S.A.; Sterky, K.J.; Nyman, E.; Bernström, J.; From, R.; Linde, C.; Minidis, A.B.E.; Nolting, A.; Närhi, K.; Santangelo, E.M.; et al. N-1-Alkyl-2-oxo-2-aryl amides as novel antagonists of the TRPA1 receptor. Bioorg. Med. Chem. Lett. 2012, 22, 5485–5492. [Google Scholar] [CrossRef] [PubMed]
- Cumming, J.N.; Smith, E.M.; Wang, L.; Misiaszek, J.; Durkin, J.; Pan, J.; Iserloh, U.; Wu, Y.; Zhu, Z.; Strickland, C.; et al. Structure based design of iminohydantoin BACE1 inhibitors: Identification of an orally available, centrally active BACE1 inhibitor. Bioorg. Med. Chem. Lett. 2012, 22, 2444–2449. [Google Scholar] [CrossRef] [PubMed]
- Talele, T.T. The “Cyclopropyl Fragment” is a Versatile Player that Frequently Appears in Preclinical/Clinical Drug Molecules. J. Med. Chem. 2016, 59, 8712–8756. [Google Scholar] [CrossRef]
- Zuend, S.J.; Coughlin, M.P.; Lalonde, M.P.; Jacobsen, E.N. Scaleable catalytic asymmetric Strecker syntheses of unnatural a-amino acids. Nature 2009, 461, 968–971. [Google Scholar] [CrossRef]
- Larionov, O.V.; de Meijere, A. Practical Syntheses of Both Enantiomers of Cyclopropylglycine and of Methyl 2-Cyclopropyl-2- N-Boc-iminoacetate. Adv. Synth. Catal. 2006, 348, 1071–1078. [Google Scholar] [CrossRef]
- Hallinan, K.O.; Crout, D.H.G.; Errington, W. Simple synthesis of L- and D-vinylglycine (2-aminobut-3-enoic acid) and related amino acids. J. Chem. Soc. Perkin Trans. 1994, 1, 3537–3543. [Google Scholar] [CrossRef]
- Chenault, H.K.; Dahmer, J.; Whitesides, G.M. Kinetic Resolution of Unnatural and Rarely Occurring Amino Acids: Enantioselective Hydrolysis of N-Acyl Amino Acids Catalyzed by Acylase 1. J. Am. Chem. Soc. 1989, 111, 6354–6364. [Google Scholar] [CrossRef]
- Parker, W.L.; Hanson, R.L.; Goldberg, S.L.; Tully, T.P.; Goswami, A. Preparation of (S)-1-Cyclopropyl-2-methoxyethanamine by a Chemoenzymatic Route Using Leucine Dehydro-genase. Org. Process Res. Dev. 2012, 16, 464–469. [Google Scholar] [CrossRef]
- Bülow, L.; Ljungcrantz, P.; Mosbach, K. Preparation of a soluble biofunctional enzyme by gene fusion. Nat. Biotechnol. 1985, 3, 821–823. [Google Scholar] [CrossRef]
- Conrado, R.J.; Varner, J.D.; DeLisa, M.P. Engineering the spatial organization of metabolic enzymes: Mimicking nature’s synergy. Curr. Opin. Biotechnol. 2008, 19, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Castellana, M.; Wilson, M.Z.; Xu, Y.; Joshi, P.; Cristea, I.M.; Rabinowitz, J.D.; Gitai, Z.; Wingreen, N.S. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotechnol. 2014, 32, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Iqbal, H.M.N. Tailoring Multipurpose Biocatalysts via Protein Engineering Approaches: A Review. Catal. Lett. 2019, 149, 2204–2217. [Google Scholar] [CrossRef]
- Obata, T. Toward an evaluation of metabolite channeling in vivo. Curr. Opin. Biotechnol. 2020, 64, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Albertsen, L.; Chen, Y.; Bach, L.S.; Rattleff, S.; Maury, J.; Brix, S.; Nielsen, J.; Mortensen, U.H. Diversion of Flux toward Sesquiterpene Production in Saccharomyces cerevisiae by Fusion of Host and Heterologous Enzyme. Appl. Environ. Microbiol. 2011, 77, 1033–1040. [Google Scholar] [CrossRef]
- Liu, L.K.; Becker, D.F.; Tanner, J.J. Structure, function, and mechanism of proline utilization A (PutA). Arch. Biochem. Biophys. 2017, 632, 142–157. [Google Scholar] [CrossRef]
- Korasick, D.A.; Gamage, T.T.; Christgen, S.; Stiers, K.M.; Beamer, L.J.; Henzl, M.T.; Becker, D.F.; Tanner, J.J. Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis. J. Biol. Chem. 2017, 292, 9652–9665. [Google Scholar] [CrossRef]
- Moxley, M.A.; Sanyal, N.; Krishnan, N.; Tanner, J.J.; Becke, D.F. Evidence for Hysteretic Substrate Channeling in the Proline Dehydrogenase and Δ1-Pyrroline-5-carboxylate Dehydrogenase Coupled Reaction of Proline Utilization A (PutA). J. Biol. Chem. 2014, 289, 3639–3651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, S.Z.; Li, J.; Pan, X.; Cahoon, R.E.; Jaworski, J.G.; Wang, X.; Jez, J.M.; Chen, F.; Yu, O. Using Unnatural Protein Fusions to Engineer Resveratrol Biosynthesis in Yeast and Mammalian Cells. J. Am. Chem. Soc. 2006, 128, 13030–13031. [Google Scholar] [CrossRef] [PubMed]
- Iturrate, L.; Sánchez-Moreno, I.; Doyagüez, E.G.; García-Junceda, E. Substrate channeling in an engineered bifunctional aldolase/kinase enzyme confers catalytic advantage for C-C bond formation. Chem. Commun. 2009, 13, 1721–1723. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Xie, B.; Zhou, L.; Sun, L.; Li, S.; Chen, Y.; Shi, S.; Li, Y.; Yu, M.; Li, W. A Tailor-Made Self-Sufficient Whole-Cell Biocatalyst Enables Scalable Enantioselective Synthesis of (R)-3-Quinuclidinol in a High Space-Time Yield. Org. Process Res. Dev. 2019, 23, 1813–1821. [Google Scholar] [CrossRef]
- Cheng, F.; Zhang, J.M.; Jiang, Z.T.; Wu, X.H.; Xue, Y.P.; Zheng, Y.G. Development of an NAD(H)-driven biocatalytic system for asymmetric synthesis of chiral amino acids. Adv. Synth. Catal. 2022, 364, 1450–1459. [Google Scholar] [CrossRef]
- Luetz, S.; Giver, L.; Lalonde, J.B. Engineered Enzymes for Chemical Production. Biotechnol. Bioeng. 2008, 101, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Fitzpatrick, W.H. Spectrophotometric determination of Amino Acids by the Ninhydrin Reaction. Science 1949, 109, 469. [Google Scholar] [CrossRef]
- Sheng, S.; Kraft, J.J.; Schuster, S.M. A specific quantitative colorimetric assay for L-asparagine. Anal. Biochem. 1993, 211, 242–249. [Google Scholar] [CrossRef]
- Asano, Y.; Yamada, A.; Kato, Y.; Yamaguchi, K.; Hibino, Y.; Hirai, K.; Kondo, K. Enantio-selective Synthesis of (S)-Amino Acids by Phenylalanine Dehydrogenase from Bacillus sphaericus: Use of Natural and Recombinant Enzymes. J. Org. Chem. 1990, 55, 5567–5571. [Google Scholar] [CrossRef]
Enzyme | Optimal Expression Conditions | Specific Activity (U·g−1) | |||
---|---|---|---|---|---|
Temperature | Time | IPTG | Reductive Amination | Coenzyme Regeneration | |
Ti-LDH | 25 °C | 24 h | 0.4 mM | 2086 | / |
Kp-FDH | 25 °C | 48 h | 0.2 mM | / | 398 |
TLK | 16 °C | 48 h | 0.4 mM | 659 | 145 |
Kp-FDH | Ti-LDH | TLK | ||
---|---|---|---|---|
Kp-FDH | Ti-LDH | |||
Km (mM) | 10.15 | 2.35 | 34.00 | 0.33 |
kcat (S−1) | 75.31 | 919.77 | 56.10 | 95.74 |
kcat/Km (S−1 mM−1) | 7.42 | 391.39 | 1.65 | 290.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Li, S.; Zhou, L.; Sun, L.; Xin, J.; Li, W. Facile Asymmetric Syntheses of Non-Natural Amino Acid (S)-Cyclopropylglycine by the Developed NADH-Driven Biocatalytic System. Catalysts 2024, 14, 321. https://doi.org/10.3390/catal14050321
Tang Q, Li S, Zhou L, Sun L, Xin J, Li W. Facile Asymmetric Syntheses of Non-Natural Amino Acid (S)-Cyclopropylglycine by the Developed NADH-Driven Biocatalytic System. Catalysts. 2024; 14(5):321. https://doi.org/10.3390/catal14050321
Chicago/Turabian StyleTang, Qian, Shanshan Li, Liping Zhou, Lili Sun, Juan Xin, and Wei Li. 2024. "Facile Asymmetric Syntheses of Non-Natural Amino Acid (S)-Cyclopropylglycine by the Developed NADH-Driven Biocatalytic System" Catalysts 14, no. 5: 321. https://doi.org/10.3390/catal14050321
APA StyleTang, Q., Li, S., Zhou, L., Sun, L., Xin, J., & Li, W. (2024). Facile Asymmetric Syntheses of Non-Natural Amino Acid (S)-Cyclopropylglycine by the Developed NADH-Driven Biocatalytic System. Catalysts, 14(5), 321. https://doi.org/10.3390/catal14050321