The Regeneration of Dolomite as a Heterogeneous Catalyst for Biodiesel Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effectiveness of Catalyst Regeneration Methods
2.2. X-ray Diffraction Analysis (XRDA) Results
2.3. Fourier-Transformed Infrared Spectroscopy (FTIR) Analysis Results
2.4. Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) Analysis Results
3. Materials and Methods
3.1. Materials
3.2. Transesterification of Rapeseed Oil and Studies on the Reusability of Dolomite
3.3. Catalyst Regeneration
3.4. Determination of Rapeseed Methyl Ester Yield
3.5. X-ray Diffraction Analysis
3.6. Fourier-Transform Infrared Spectroscopy Analysis
3.7. Scanning Electron Microscope and Energy Dispersive Spectroscopy Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bastida-Molina, P.; Hurtado-Pérez, E.; Moros Gómez, M.C.; Cárcel-Carrasco, J.; Pérez-Navarro, Á. Energy sustainability evolution in the Mediterranean countries and synergies a global energy scenario for the area. Energy 2022, 252, 124067. [Google Scholar] [CrossRef]
- Gonca, G.; Dobrucali, E. Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends. Renew. Energy 2016, 93, 658–666. [Google Scholar] [CrossRef]
- Makareviciene, V.; Sendzikiene, E.; Gaide, I. Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil. Front. Environ. Sci. Eng. 2021, 15, 97. [Google Scholar] [CrossRef]
- Moraes, P.S.; Engelmann, J.I.; Igansi, A.V.; Sant Anna Cadaval, T.R., Jr.; De Almeida Pinto, L.A. Nile tilapia industrialization waste: Evaluation of the yield, quality and cost of the biodiesel production process. J. Clean. Prod. 2021, 287, 125041. [Google Scholar] [CrossRef]
- Karciauskiene, D.; Sendzikiene, E.; Makareviciene, V.; Zaleckas, E.; Repsiene, R. False flax (Camelina sativa L.) as an alternative source for biodiesel production. Agriculture 2014, 101, 161–168. [Google Scholar]
- Anantapinitwatna, A.; Ngaosuwan, K.; Kiatkittipong, W.; Wongsawaeng, D.; Anantpinijwatna, A.; Quitain, A.T.; Assabumrungrat, S. Water influence on the kinetics of transesterification using CaO catalyst to produce biodiesel. Fuel 2021, 296, 120653. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, L.; Esmaeili, H. A review on biodiesel production using various heterogeneous nanocatalysts: Operation mechanisms and performances. Biomass Bioenergy 2022, 158, 106356. [Google Scholar] [CrossRef]
- Hu, M.; Pu, J.; Qian, E.W.; Wang, H. Biodiesel Production Using MgO–CaO Catalysts via Transesterification of Soybean Oil: Effect of MgO Addition and Insights of Catalyst Deactivation. BioEnergy Res. 2023, 16, 2398–2410. [Google Scholar] [CrossRef]
- Mohan, S.K. Studies on optimization of biodiesel production-snail shell as eco-friendly catalyst by transesterification of neem oil. Int. J. Innov. Res. Technol. Sci. Eng. 2015, 1, 5–10. [Google Scholar]
- Dietrich, R.V. “Dolomite”. Encyclopedia Britannica. 9 August 2018. Available online: https://www.britannica.com/science/dolomite-mineral (accessed on 17 October 2023).
- Ajala, E.O.; Ajala, M.A.; Odetoye, T.E.; Okunlola, A.T. Synthesis of solid catalyst from dolomite for biodiesel production using palm kernel oil in an optimization process by definitive screening design. Kinetics and Catalysis, Reaction Engineering, and Materials Science. Braz. J. Chem. 2019, 36, 979–994. [Google Scholar] [CrossRef]
- Muthu, K.; Viruthagiri, T. Study of solid base calcium oxide as a heterogeneous catalyst for the production of biodiesel. J. Adv. Chem. Sci. 2015, 1, 160–163. [Google Scholar]
- Gaide, I.; Makareviciene, V.; Sendzikiene, E.; Kazancev, K. Natural rocks–heterogeneous catalysts for oil transesterification in biodiesel synthesis. Catalysts 2021, 11, 384. [Google Scholar] [CrossRef]
- Gaide, I.; Makareviciene, V.; Sendzikiene, E.; Kazancev, K. Snail Shells as a Heterogeneous Catalyst for Biodiesel Fuel Production. Processes 2023, 11, 260. [Google Scholar] [CrossRef]
- Gaide, I.; Makareviciene, V.; Sendzikiene, E.; Gumbyte, M. Application of dolomite as solid base catalyst for transesterification of rapeseed oil with butanol. Sustain. Energy Technol. Assess. 2022, 52, 102278. [Google Scholar] [CrossRef]
- Reddy, C.R.V.; Oshel, R.; Verkade, J.G. Room-temperature conversion of soybean oil and poultry fat to biodiesel catalyzed by nanocrystalline calcium oxides. Energy Fuels 2006, 20, 1310–1314. [Google Scholar] [CrossRef]
- Yoosuk, B.; Udomsap, P.; Puttasawat, B.; Pitakjakpipop-Krasae, P. Modification of calcite by hydration–dehydration method for heterogeneous biodiesel production process: The effects of water on properties and activity. J. Chem. Eng. 2010, 162, 135–141. [Google Scholar] [CrossRef]
- Ilgen, O. Dolomite as a heterogeneous catalyst for transesterification of canola oil. Fuel Process. Technol. 2011, 92, 452–455. [Google Scholar] [CrossRef]
- Correia, L.M.; Saboya, R.M.A.; de Susa Campelo, N.; Cecilia, J.A.; Rodrguez-Castelln, E.; Cavalcante, C.L.; Vieira, M.R.S. Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresour. Technol. 2014, 151, 207–213. [Google Scholar] [CrossRef]
- Korkut, I.; Bayramoglu, M. Ultrasound assisted biodiesel production in presence of dolomite catalyst. Fuel 2016, 180, 624–629. [Google Scholar] [CrossRef]
- Sendzikiene, E.; Makareviciene, V.; Kazancev, K. Application of dolomite as a heterogeneous catalyst of biodiesel synthesis. Transport 2018, 33, 1155–1161. [Google Scholar] [CrossRef]
- Xue, J.; Miao, Y.; Xia, F. Regeneration capability of porous dolomite pellets as the catalyst for decomposition of biomass gasification tar. Catal. Ind. 2009, 17, 71. [Google Scholar]
- Oueda, N.; Bonzi-Coulibaly, Y.L.; Ouedraogo, I.W.K. Deactivation Processes, Regeneration Conditions and Reusability Performance of CaO or MgO Based Catalysts Used for Biodiesel Production—A Review. Mater. Sci. Appl. 2017, 8, 94–122. [Google Scholar] [CrossRef]
- Correia, L.M.; Campelo, N.D.S.; Novaes, D.S.; Cavalcante, C.L.; Cecilia, J.A.; Rodríguez-Castellón, E.; Vieira, R.S. Characterization and Application of Dolomite as Catalytic Precursor for Canola and Sunflower Oils for Biodiesel Production. J. Chem. Eng. 2015, 269, 35–43. [Google Scholar] [CrossRef]
- Widiarti, N.; Bahruji, H.; Holilah, H.; Ni’mah, Y.L.; Ediati, R.; Santoso, E.; Jalil, A.A.; Hamid, A.; Prasetyoko, D. Upgrading catalytic activity of NiO/CaO/MgO from natural limestone as catalysts for transesterification of coconut oil to biodiesel. Biomass Convers. Biorefinery 2023, 13, 3001–3015. [Google Scholar] [CrossRef]
- Teo, S.H.; Taufiq-Yap, Y.H.; Rashid, U.; Islam, A. Hydrothermal effect on synthesis, characterization and catalytic properties of calcium methoxide for biodiesel production from crude Jatropha curcas. RSC Adv. 2015, 5, 4266–4276. [Google Scholar] [CrossRef]
- Chumuang, N.; Punsuvon, V. Response Surface Methodology for Biodiesel Production Using Calcium Methoxide Catalyst Assisted with Tetrahydrofuran as Cosolvent. J. Chem. 2017, 2017, 4190818. [Google Scholar] [CrossRef]
- Saxena, K.S.; Drozd, V.; Durygin, A. Synthesis of metal hydride from water. Int. J. Hydrogen Energy 2007, 32, 2501–2503. [Google Scholar] [CrossRef]
- Ergan, B.T.; Yılmazer, G.; Bayramoğlu, M. Fast, High Quality and Low-Cost Biodiesel Production using Dolomite Catalyst in an Enhanced Microwave System with Simultaneous Cooling. Clean. Chem. Eng. 2022, 3, 100051. [Google Scholar] [CrossRef]
- Nassar, A.M.; Alotaibi, N.F. Eggshell recycling for fabrication of Pd@CaO, characterization and high-performance solar photocatalytic activity. Environ. Sci. Pollut. Res. 2021, 28, 3515–3523. [Google Scholar] [CrossRef]
- Kandiban, M.; Vigneshwaran, P.; Potheher, I.V. Synthesis and characterization of MgO nanoparticles for photocatalytic applications. In Proceedings of the National Conference on Advances in Crystal Growwth and Nanotechnology, Kottayam, India, 15–16 January 2015. [Google Scholar]
- Abdellaoui, K.; Bedghiou, D.; Boumaza, A. Comparative study of thermal and compositional properties of Aïn M’lila dolomite, CaCO3, and MgCO3 using TG and FTIR analyses. J. Adv. Sci. Technol. Res. 2020, 7, 42–53. [Google Scholar]
- Gunasekaran, S.; Anbalagan, G. Thermal decomposition of natural dolomite. Bull. Mater. Sci. 2007, 30, 339–344. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; p. 419. [Google Scholar]
- IR Spectrum: Alkanes. Available online: https://www.quimicaorganica.org/en/infrared-spectroscopy/1592-ir-spectrum-alkanes.html (accessed on 10 January 2024).
- Advanced Organic Chemistry: Infrared Spectrum of Methanol CH3OH. Available online: https://docbrown.info/page06/spectra/methanol-ir.htm (accessed on 10 January 2024).
- Lavat, A.E.; Grasselli, M.C. Synthesis and Characterization of Ceramic Materials Based on the System MgO-CaO-TiO2 from Dolomite. Procedia Mater. Sci. 2015, 8, 162–171. [Google Scholar] [CrossRef]
- Védrine, J.C. Heterogeneous Catalysis on Metal Oxides. Catalysts 2017, 7, 341. [Google Scholar] [CrossRef]
- Shen, C.; Luo, C.; Luo, T.; Xu, J.; Lu, B.; Liu, S.; Zhang, L. Effect of Sodium Bromide on CaO-Based Sorbents Derived from Three Kinds of Sources for CO2 Capture. ACS Omega 2020, 5, 17908–17917. [Google Scholar] [CrossRef]
- Bailer, J.; Hödl, P.; de Hueber, K.; Mitelbach, M.; Plank, C.; Schindlbauer, H. Handbook of Analytical Methods for Fatty Acid Methyl Esters Used as Biodiesel Fuel Substitutes; Fichte, Ed.; Research Institute for Chemistry and Technology of Petroleum Products, University of Technology: Vienna, Austria, 1994; pp. 36–38. [Google Scholar]
Cycle Number | Ester Yield, wt% | |
---|---|---|
Calcination | Washing | |
1 | 98.66 ± 0.21 | 98.66 ± 0.11 |
2 | 98.57 ± 0.18 | 77.85 ± 0.24 |
3 | 98.45± 0.15 | 47.11 ± 0.21 |
4 | 98.42 ± 0.19 | 22.45 ± 0.14 |
5 | 97.93 ± 0.22 | |
6 | 97.23 ± 0.32 |
Regeneration Method | Washing | Calcination | ||||
---|---|---|---|---|---|---|
Concentration, wt% | ||||||
Ca | Mg | C | Ca | Mg | C | |
Before use | 27.77 | 16.00 | 6.61 | 27.77 | 16.00 | 6.61 |
After the first cycle | 32.12 | 18.11 | 8.13 | 38.31 | 21.49 | 4.17 |
After the second cycle | 21.72 | 14.05 | 18.26 | 38.21 | 21.08 | 4.04 |
After the third cycle | - | - | - | 44.92 | 20.02 | 2.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šlinkšienė, R.; Paleckienė, R.; Gaidė, I.; Makarevičienė, V.; Sendžikienė, E. The Regeneration of Dolomite as a Heterogeneous Catalyst for Biodiesel Production. Catalysts 2024, 14, 139. https://doi.org/10.3390/catal14020139
Šlinkšienė R, Paleckienė R, Gaidė I, Makarevičienė V, Sendžikienė E. The Regeneration of Dolomite as a Heterogeneous Catalyst for Biodiesel Production. Catalysts. 2024; 14(2):139. https://doi.org/10.3390/catal14020139
Chicago/Turabian StyleŠlinkšienė, Rasa, Rasa Paleckienė, Ieva Gaidė, Violeta Makarevičienė, and Eglė Sendžikienė. 2024. "The Regeneration of Dolomite as a Heterogeneous Catalyst for Biodiesel Production" Catalysts 14, no. 2: 139. https://doi.org/10.3390/catal14020139
APA StyleŠlinkšienė, R., Paleckienė, R., Gaidė, I., Makarevičienė, V., & Sendžikienė, E. (2024). The Regeneration of Dolomite as a Heterogeneous Catalyst for Biodiesel Production. Catalysts, 14(2), 139. https://doi.org/10.3390/catal14020139