Hydrogen Production from Hydrous Hydrazine Decomposition Using Ir Catalysts: Effect of the Preparation Method and the Support
Abstract
:1. Introduction
2. Results
2.1. Effect of the Preparation Method
2.2. Influence of the Support Material
3. Materials and Methods
3.1. Catalyst Preparation
3.1.1. Supported Ir Catalyst Preparation using Deposition–Precipitation/NaOH
3.1.2. Supported Ir Catalyst Preparation Using Deposition–Precipitation/Urea
3.1.3. Supported Ir Catalyst Preparation Using THPC/NaOH Colloidal Method
3.2. Catalyst Characterization
3.3. Catalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180. [Google Scholar] [CrossRef]
- Ji, M.; Wang, J. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. Int. J. Hydrogen Energy 2021, 46, 38612–38635. [Google Scholar] [CrossRef]
- Atilhan, S.; Park, S.; El-Halwagi, M.M.; Atilhan, M.; Moore, M.; Nielsen, R.B. Green hydrogen as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100668. [Google Scholar] [CrossRef]
- Kumar, S.S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Pareek, A.; Dom, R.; Gupta, J.; Chandran, J.; Adepu, V.; Borse, P.H. Insights into renewable hydrogen energy: Recent advances and prospects. Mater. Sci. Energy Technol. 2020, 3, 319–327. [Google Scholar] [CrossRef]
- Mazloomi, K.; Gomes, C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sustain. Energy Rev. 2012, 16, 3024–3033. [Google Scholar] [CrossRef]
- Ramachandran, R.; Menon, R.K. An overview of industrial uses of hydrogen. Int. J. Hydrogen Energy 1998, 23, 593–598. [Google Scholar] [CrossRef]
- Tarkowski, R. Underground hydrogen storage: Characteristics and prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Yadav, M.; Xu, Q. Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 2012, 5, 9698. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, X.; Xu, H. Catalytic decomposition of hydrous hydrazine for hydrogen production. Sustain. Energy Fuels 2018, 3, 343–365. [Google Scholar] [CrossRef]
- Matyshak, V.A.; Silchenkova, O.N. Catalytic Decomposition of Hydrazine and Hydrazine Derivatives to Produce Hydrogen-Containing Gas Mixtures: A Review. Kinet. Catal. 2022, 63, 339–350. [Google Scholar] [CrossRef]
- Zhang, P.-X.; Wang, Y.-G.; Huang, Y.-Q.; Zhang, T.; Wu, G.-S.; Li, J. Density functional theory investigations on the catalytic mechanisms of hydrazine decompositions on Ir(111). Catal. Today 2011, 165, 80–88. [Google Scholar] [CrossRef]
- Zheng, M.; Chen, X.; Cheng, R.; Li, N.; Sun, J.; Wang, X.; Zhang, T. Catalytic decomposition of hydrazine on iron nitride catalysts. Catal. Commun. 2006, 7, 187–191. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, T.; Xia, L.; Li, T.; Zheng, M.; Wu, Z.; Wang, X.; Wei, Z.; Xin, Q.; Li, C. Catalytic Decomposition of Hydrazine over Supported Molybdenum Nitride Catalysts in a Monopropellant Thruster. Catal. Lett. 2002, 79, 21–25. [Google Scholar] [CrossRef]
- McKay, H.L.; Jenkins, S.J.; Wales, D.J. Dissociative Chemisorption of Hydrazine on an Fe{211} Surface. J. Phys. Chem. C 2011, 115, 17812–17828. [Google Scholar] [CrossRef]
- Song-Il, O.; Yan, J.-M.; Wang, H.-L.; Wang, Z.-L.; Jiang, Q. High catalytic kinetic performance of amorphous CoPt NPs induced on CeO for H2 generation from hydrous hydrazine. Int. J. Hydrogen Energy 2014, 39, 3755–3761. [Google Scholar] [CrossRef]
- He, L.; Huang, Y.; Wang, A.; Wang, X.; Chen, X.; Delgado, J.J.; Zhang, T. A Noble-Metal-Free Catalyst Derived from Ni-Al Hydrotalcite for Hydrogen Generation from N2H4·H2O Decomposition. Angew. Chem. Int. Ed. 2012, 51, 6191–6194. [Google Scholar] [CrossRef]
- Kang, W.; Varma, A. Hydrogen generation from hydrous hydrazine over Ni/CeO2 catalysts prepared by solution combustion synthesis. Appl. Catal. B Environ. 2018, 220, 409–416. [Google Scholar] [CrossRef]
- Sanabria-Chinchilla, J.; Asazawa, K.; Sakamoto, T.; Yamada, K.; Tanaka, H.; Strasser, P. Noble Metal-Free Hydrazine Fuel Cell Catalysts: EPOC Effect in Competing Chemical and Electrochemical Reaction Pathways. J. Am. Chem. Soc. 2011, 133, 5425–5431. [Google Scholar] [CrossRef]
- Huang, W.; Liu, X. The “on–off” switch for on-demand H2 evolution from hydrous hydrazine over Ni8Pt1/C nano-catalyst. Fuel 2022, 315, 123210. [Google Scholar] [CrossRef]
- Yao, Q.; Long, J.; Yang, K.; Li, X.; Huang, B.; Chen, X.; Lu, Z.-H. Alkali-assisted synthesis of ultrafine NiPt nanoparticles immobilized on La2O2CO3 for highly efficient dehydrogenation of hydrous hydrazine and hydrazine borane. Catal. Today 2022, 400–401, 49–58. [Google Scholar] [CrossRef]
- Singh, S.K.; Zhang, X.-B.; Xu, Q. Room-Temperature Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage. J. Am. Chem. Soc. 2009, 131, 9894–9895. [Google Scholar] [CrossRef]
- Singh, S.K.; Iizuka, Y.; Xu, Q. Nickel-palladium nanoparticle catalyzed hydrogen generation from hydrous hydrazine for chemical hydrogen storage. Int. J. Hydrogen Energy 2011, 36, 11794–11801. [Google Scholar] [CrossRef]
- Singh, S.K.; Xu, Q. Complete Conversion of Hydrous Hydrazine to Hydrogen at Room Temperature for Chemical Hydrogen Storage. J. Am. Chem. Soc. 2009, 131, 18032–18033. [Google Scholar] [CrossRef]
- Wood, S.E.; Bryant, J.T. Decomposition of Hydrazine on Shell 405 Catalyst at High Presure. Prod. R&D 1973, 12, 117–122. [Google Scholar] [CrossRef]
- Jang, Y.B.; Kim, T.H.; Sun, M.H.; Lee, J.; Cho, S.J. Preparation of iridium catalyst and its catalytic activity over hydrazine hydrate decomposition for hydrogen production and storage. Catal. Today 2009, 146, 196–201. [Google Scholar] [CrossRef]
- Bellomi, S.; Barlocco, I.; Chen, X.; Delgado, J.J.; Arrigo, R.; Dimitratos, N.; Roldan, A.; Villa, A. Enhanced stability of sub-nanometric iridium decorated graphitic carbon nitride for H2 production upon hydrous hydrazine decomposition. Phys. Chem. Chem. Phys. 2022, 25, 1081–1095. [Google Scholar] [CrossRef] [PubMed]
- Prasad, V.; Vasanthkumar, M.S. Iridium-decorated multiwall carbon nanotubes and its catalytic activity with Shell 405 in hydrazine decomposition. J. Nanoparticle Res. 2015, 17, 1–8. [Google Scholar] [CrossRef]
- Motta, D.; Barlocco, I.; Bellomi, S.; Villa, A.; Dimitratos, N. Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity. Nanomaterials 2021, 11, 1340. [Google Scholar] [CrossRef] [PubMed]
- Cuenya, B.R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 2010, 518, 3127–3150. [Google Scholar] [CrossRef]
- Guczi, L.; Horváth, D.; Pászti, Z.; Tóth, L.; Horváth, Z.E.; Karacs, A.; Petõ, G. Modeling Gold Nanoparticles: Morphology, Electron Structure, and Catalytic Activity in CO Oxidation. J. Phys. Chem. B 2000, 104, 3183–3193. [Google Scholar] [CrossRef]
- Henry, C.R. Morphology of supported nanoparticles. Prog. Surf. Sci. 2005, 80, 92–116. [Google Scholar] [CrossRef]
- Munnik, P.; de Jongh, P.E.; de Jong, K.P. Recent Developments in the Synthesis of Supported Catalysts. Chem. Rev. 2015, 115, 6687–6718. [Google Scholar] [CrossRef]
- He, L.; Liang, B.; Li, L.; Yang, X.; Huang, Y.; Wang, A.; Wang, X.; Zhang, T. Cerium-Oxide-Modified Nickel as a Non-Noble Metal Catalyst for Selective Decomposition of Hydrous Hydrazine to Hydrogen. ACS Catal. 2015, 5, 1623–1628. [Google Scholar] [CrossRef]
- He, L.; Liang, B.; Huang, Y.; Zhang, T. Design strategies of highly selective nickel catalysts for H2 production via hydrous hydrazine decomposition: A review. Natl. Sci. Rev. 2017, 5, 356–364. [Google Scholar] [CrossRef]
- Campisi, S.; Motta, D.; Barlocco, I.; Stones, R.; Chamberlain, T.W.; Chutia, A.; Dimitratos, N.; Villa, A. Furfural Adsorption and Hydrogenation at the Oxide-Metal Interface: Evidence of the Support Influence on the Selectivity of Iridium-Based Catalysts. ChemCatChem 2022, 14, e202101700. [Google Scholar] [CrossRef]
- Wang, W.; Villa, A.; Kuebel, C.; Hahn, H.; Wang, D. Tailoring the 3D Structure of Pd Nanocatalysts Supported on Mesoporous Carbon for Furfural Hydrogenation. Chemnanomat 2018, 4, 1125–1132. [Google Scholar] [CrossRef]
- Freakley, S.J.; Ruiz-Esquius, J.; Morgan, D.J. The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited. Surf. Interface Anal. 2017, 49, 794–799. [Google Scholar] [CrossRef]
- Lykhach, Y.; Kubát, J.; Neitzel, A.; Tsud, N.; Vorokhta, M.; Skála, T.; Dvořák, F.; Kosto, Y.; Prince, K.C.; Matolín, V.; et al. Charge transfer and spillover phenomena in ceria-supported iridium catalysts: A model study. J. Chem. Phys. 2019, 151, 204703. [Google Scholar] [CrossRef]
- Lee, S.; Fan, C.; Wu, T.; Anderson, S.L. Hydrazine Decomposition over Irn/Al2O3 Model Catalysts Prepared by Size-Selected Cluster Deposition. J. Phys. Chem. B 2004, 109, 381–388. [Google Scholar] [CrossRef]
- Fan, C.; Wu, T.; Kaden, W.E.; Anderson, S.L. Cluster size effects on hydrazine decomposition on Irn/Al2O3/NiAl(110). Surf. Sci. 2006, 600, 461–467. [Google Scholar] [CrossRef]
- Parapat, R.Y.; Saputra, O.H.I.; Ang, A.P.; Schwarze, M.; Schomäcker, R. Support effect in the preparation of supported metal catalysts via microemulsion. RSC Adv. 2014, 4, 50955–50963. [Google Scholar] [CrossRef]
- Lou, Y.; Xu, J.; Zhang, Y.; Pan, C.; Dong, Y.; Zhu, Y. Metal-support interaction for heterogeneous catalysis: From nanoparticles to single atoms. Mater. Today Nano 2020, 12, 100093. [Google Scholar] [CrossRef]
- Gerber, I.C.; Serp, P. A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chem. Rev. 2019, 120, 1250–1349. [Google Scholar] [CrossRef]
- Campisi, S.; Chan-Thaw, C.E.; Chinchilla, L.E.; Chutia, A.; Botton, G.A.; Mohammed, K.M.H.; Dimitratos, N.; Wells, P.P.; Villa, A. Dual-Site-Mediated Hydrogenation Catalysis on Pd/NiO: Selective Biomass Transformation and Maintenance of Catalytic Activity at Low Pd Loading. ACS Catal. 2020, 10, 5483–5492. [Google Scholar] [CrossRef]
- Li, S.; Xu, Y.; Chen, Y.; Li, W.; Lin, L.; Li, M.; Deng, Y.; Wang, X.; Ge, B.; Yang, C.; et al. Tuning the Selectivity of Catalytic Carbon Dioxide Hydrogenation over Iridium/Cerium Oxide Catalysts with a Strong Metal–Support Interaction. Angew. Chem. Int. Ed. 2017, 56, 10761–10765. [Google Scholar] [CrossRef]
- Lu, X.; Francis, S.; Motta, D.; Dimitratos, N.; Roldan, A. Mechanistic study of hydrazine decomposition on Ir(111). Phys. Chem. Chem. Phys. 2020, 22, 3883–3896. [Google Scholar] [CrossRef]
- Jiang, H.; Sun, X.; Du, Y.; Chen, R.; Xing, W. Catalytic activity of palladium nanoparticles immobilized on an amino-functionalized ceramic membrane support. Chin. J. Catal. 2014, 35, 1990–1996. [Google Scholar] [CrossRef]
- Shirley, D.A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef]
Catalyst | XPS | TEM | Ir Loading (wt%) | Activity (h−1) | H2 Yield (%) | |||
---|---|---|---|---|---|---|---|---|
Ir 4f | Ir at (%) | Ir NP Size (nm) | ||||||
Ir0 | IrIV | |||||||
IrDPNaOH/CeO2 | BE | 61.6 | 62.6 | 0.39 | 0.9 ± 0.2 | 0.70 ± 0.10 | 1541 | 38.9 |
% | 87.6 | 12.4 | ||||||
IrDPurea/CeO2 | BE | 61.6 | 62.8 | 0.41 | 3.6 ± 0.5 | 0.98 ± 0.06 | 741 | 0.7 |
% | 70.6 | 29.4 | ||||||
IrTHPC/CeO2 | BE | 61.7 | 62.6 | 0.86 | 1.1 ± 0.3 | 1.04 ± 0.13 | 1740 | 36.6 |
% | 87.1 | 12.9 | ||||||
IrTHPC/TiO2 | BE | 60.9 | - | 0.40 | 1.3 ± 0.2 | 0.98 ± 0.08 | 984 | 4.5 |
% | 100 | - | ||||||
IrTHPC/NiO | BE | 60.9 | 62.2 | 1.73 | 1.2 ± 0.3 | 1.00 ± 0.10 | 151 | 83.9 |
% | 84.9 | 15.1 | ||||||
IrTHPC/NiO after stability tests | BE | 61.2 | 62.4 | 1.73 | 1.2 ± 0.3 | 1.00 ± 0.10 | - | - |
% | 87.2 | 13.8 | 1.64 | n.d. | 0.98 ± 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellomi, S.; Motta, D.; Stucchi, M.; Prati, L.; Dimitratos, N.; Villa, A. Hydrogen Production from Hydrous Hydrazine Decomposition Using Ir Catalysts: Effect of the Preparation Method and the Support. Catalysts 2024, 14, 119. https://doi.org/10.3390/catal14020119
Bellomi S, Motta D, Stucchi M, Prati L, Dimitratos N, Villa A. Hydrogen Production from Hydrous Hydrazine Decomposition Using Ir Catalysts: Effect of the Preparation Method and the Support. Catalysts. 2024; 14(2):119. https://doi.org/10.3390/catal14020119
Chicago/Turabian StyleBellomi, Silvio, Davide Motta, Marta Stucchi, Laura Prati, Nikolaos Dimitratos, and Alberto Villa. 2024. "Hydrogen Production from Hydrous Hydrazine Decomposition Using Ir Catalysts: Effect of the Preparation Method and the Support" Catalysts 14, no. 2: 119. https://doi.org/10.3390/catal14020119
APA StyleBellomi, S., Motta, D., Stucchi, M., Prati, L., Dimitratos, N., & Villa, A. (2024). Hydrogen Production from Hydrous Hydrazine Decomposition Using Ir Catalysts: Effect of the Preparation Method and the Support. Catalysts, 14(2), 119. https://doi.org/10.3390/catal14020119