Green Synthesis of Silver-Incorporated Rutile TiO2 for Enhanced Photocatalytic Degradation of Ciprofloxacin and Carmine G Dye Pollutants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surface Morphology
2.2. Material Chemistry
2.3. Function Groups and Crystallinity Analysis
2.4. Mechanism of Ag/TiO2 Material Formation
2.5. Photocatalytic Degradation of Ciprofloxacin (CIP)
2.6. Photocatalytic Degradation of Azo Carmine G Dye (ACGD)
3. Materials and Methods
3.1. Chemical Materials
3.2. Sustainable Synthesis of Ag/TiO2 by Mushroom-Assisted Methodology
3.3. Characterization
3.4. Photocatalytic Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bak, T.; Sherif, S.A.; Black, D.S.; Nowotny, J. Defect Chemistry of Titanium Dioxide (Rutile). Progress Toward Sustainable Energy. Chem. Rev. 2024, 124, 11848–11914. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, Y.; Dong, X.; Xi, X.; Dong, P. Recent advances in TiO2-based photocatalytic concrete: Synthesis strategies, structure characteristics, multifunctional applications, and CFD simulation. Chem. Eng. J. 2024, 496, 154186. [Google Scholar] [CrossRef]
- Yasin, A.S.; Mohamed, I.M.A.; Park, C.H.; Kim, C.S. Design of novel electrode for capacitive deionization using electrospun composite titania/zirconia nanofibers doped-activated carbon. Mater. Lett. 2018, 213, 62–66. [Google Scholar] [CrossRef]
- Puri, N.; Gupta, A. Water remediation using titanium and zinc oxide nanomaterials through disinfection and photo catalysis process: A review. Environ. Res. 2023, 227, 115786. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, L.; Gao, Y.; Ji, L.; Yang, Z.; Wang, H.; Shang, M.; Du, J.; Yang, X. TiO2/p-BC Composite Photocatalyst for Efficient Removal of Tetracycline from Aqueous Solutions under Simulated Sunlight. Catalysts 2024, 14, 357. [Google Scholar] [CrossRef]
- Chen, Z.; Xiong, J.; Cheng, G. Recent advances in brookite phase TiO2-based photocatalysts toward CO2 reduction. Fuel 2024, 357, 129806. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, F.; Li, M.; Cheng, Q.; Deng, J.; Wang, P.; Cai, M.; Sun, S. Facet-Dependent Photocatalytic Behavior of Rutile TiO2 for the Degradation of Volatile Organic Compounds: In Situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Density Functional Theory Investigations. Langmuir 2024, 40, 2120–2129. [Google Scholar] [CrossRef]
- Cheng, F.; Liang, L.; Lin, G.; Xi, S. Enhanced photoelectrocatalysis in porous single crystalline rutile titanium dioxide electrodes. J. Mater. Chem. A 2024, 12, 3879–3885. [Google Scholar] [CrossRef]
- Mohaghegh, N.; Endo-Kimura, M.; Wang, K.; Wei, Z.; Najafabadi, A.H.; Zehtabi, F.; Kouchehbaghi, N.H.; Sharma, S.; Markowska-Szczupak, A.; Kowalska, E. Apatite-coated Ag/AgBr/TiO2 nanocomposites: Insights into the antimicrobial mechanism in the dark and under visible-light irradiation. Appl. Surf. Sci. 2023, 617, 156574. [Google Scholar] [CrossRef]
- Zhou, Q.; Wu, W.-W.; Song, Y.-C.; Wang, Z.; Yuan, C.; Han, L.-L.; Liu, J.-Q.; Yang, Y.; Liu, P. Improvement of the dielectric properties of rutile TiO2 ceramics at megahertz. J. Eur. Ceram. Soc. 2023, 43, 1500–1508. [Google Scholar] [CrossRef]
- Sun, Z.; Cao, J.; Wang, S.; Zhang, Z.; Li, J.; Xu, X.; Wang, Y.; Ye, Z.; Zhang, H. LSPR effect enabled Ag-TiO2 nanotube arrays for high sensitivity and selectivity detection of acetone under visible light. J. Alloys Compd. 2024, 1003, 175533. [Google Scholar] [CrossRef]
- Mohamed, I.M.A.; Motlak, M.; Fouad, H.; Barakat, N.A.M. Cobalt/Chromium Nanoparticles-Incorporated Carbon Nanofibers as Effective Nonprecious Catalyst for Methanol Electrooxidation in Alkaline Medium. Nano 2016, 11, 1650049. [Google Scholar] [CrossRef]
- Guo, C.; Han, C.-Y.; Zhou, K.-H.; Huo, G.-N.; Zhang, S.-S.; Wang, G.-C.; Zhang, S.-M.; Huang, W.-P.; Zhu, B.-L. Fast monitoring of organic dye degradation coupled with a colorimetric approach in a Ag-modified TiO2 nanotube photocatalytic system. Ceram. Int. 2023, 49, 12653–12661. [Google Scholar] [CrossRef]
- Janbandhu, S.Y.; Patra, U.; Sukhadeve, G.K.; Kumar, R.; Gedam, R.S. Photocatalytic performance of glasses embedded with Ag-TiO2 quantum dots on photodegradation of indigo carmine and eosin Y dyes in sunlight. Inorg. Chem. Commun. 2023, 148, 110317. [Google Scholar] [CrossRef]
- Muneeb, A.; Rafique, M.S.; Murtaza, M.G.; Arshad, T.; Shahadat, I.; Rafique, M.; Nazir, A. Fabrication of Ag–TiO2 nanocomposite employing dielectric barrier discharge plasma for photodegradation of methylene blue. Phys. B Condens. Matter 2023, 665, 414995. [Google Scholar] [CrossRef]
- Chen, W.; Xiong, J.; Wen, Z.; Chen, R.; Cheng, G. Synchronistic embedding of oxygen vacancy and Ag nanoparticles into potholed TiO2 nanoparticles-assembly for collaboratively promoting photocatalytic CO2 reduction. Mol. Catal. 2023, 542, 113138. [Google Scholar] [CrossRef]
- Lopes, F.C.S.; Rocha, M.d.G.C.d.; Bargiela, P.; Ferreira, H.S.; Pires, C.A.d.M. Ag/TiO2 photocatalyst immobilized onto modified natural fibers for photodegradation of anthracene. Chem. Eng. Sci. 2020, 227, 115939. [Google Scholar] [CrossRef]
- Wang, K.; Zeng, S.; Li, G.; Dong, Y.; Wang, Q.; Zhang, L.; Ren, Z.; Wang, P. Superoxide radical induced redox processes for simultaneous reduction of Cr (VI) and oxidation of ciprofloxacin in wastewater. Appl. Catal. B 2024, 343, 123565. [Google Scholar] [CrossRef]
- Liu, F.; Shen, Y.; Hou, Y.; Wu, J.; Ting, Y.; Nie, C.; Tong, M. Elimination of representative antibiotic-resistant bacteria, antibiotic resistance genes and ciprofloxacin from water via photoactivation of periodate using FeS2. J. Hazard. Mater. 2024, 476, 134982. [Google Scholar] [CrossRef]
- Raikar, L.G.; Patel, A.; Gandhi, J.; Gupta, K.; Prakash, H. Nano-TiO2 immobilized polyvinylidene fluoride based spongy-spheres for ciprofloxacin photocatalytic degradation: Antibacterial activity removal, mechanisms, UVA LED irradiation and easy recovery. Environ. Sci. Nano 2024, 11, 3729–3743. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, F.; Li, L.; Su, C.; Song, B.; Zhang, H.; Guo, S.; Pan, F. Progress and prospects of Mg-based amorphous alloys in azo dye wastewater treatment. J. Magnes. Alloys 2024, 12, 873–889. [Google Scholar] [CrossRef]
- Damotharan, K.; Sudhakaran, G.; Ramu, M.; Krishnan, M.; S, K.R.N.; Arockiaraj, J. Biochemical processes mediating neurotoxicity induced by synthetic food dyes: A review of current evidence. Chemosphere 2024, 364, 143295. [Google Scholar] [CrossRef]
- Mouele, E.S.M.; Mukaba, J.-L.; Ndayambaje, G.; Tijani, J.O.; Eze, C.P.; Ntsa, E.; Myint, M.T.Z.; Kyaw, H.H.; Al-Abri, M.; Dobretsov, S.; et al. Innovative carbon-nitrogen-TiO2 catalyst immobilised on stainless steel mesh for effective removal of orange II organic dye in the DCDBD plasma actuator. Catal. Commun. 2023, 183, 106778. [Google Scholar] [CrossRef]
- Chen, F.; Ma, T.; Zhang, T.; Zhang, Y.; Huang, H. Atomic-Level Charge Separation Strategies in Semiconductor-Based Photocatalysts. Adv. Mater. 2021, 33, 2005256. [Google Scholar] [CrossRef]
- Wang, R.; Li, H.; Hao, Z.; Feng, T.; Li, Y.; Dong, B.; Cao, L. Plasma Ag-loaded bandgap variational Zn1-xMgxO-enhanced charge separation for photoelectrochemical water oxidation of CuWO4 photoanodes. Chem. Eng. J. 2023, 455, 140861. [Google Scholar] [CrossRef]
- Manimaran, K.; Yanto, D.H.Y.; Anita, S.H.; Nurhayat, O.D.; Selvaraj, K.; Basavarajappa, S.; Hashem, M.I.; Palanisamy, G.; Lin, M.-C.; Kumarasamy, K. Synthesis and characterization of Hypsizygus ulmarius extract mediated silver nanoparticles (AgNPs) and test their potentiality on antimicrobial and anticancer effects. Environ. Res. 2023, 235, 116671. [Google Scholar] [CrossRef]
- Youssef, M.S.; Ahmed, S.I.; Mohamed, I.M.; Abdel-Kareem, M.M. Biosynthesis, Spectrophotometric Follow-Up, Characterization, and Variable Antimicrobial Activities of Ag Nanoparticles Prepared by Edible Macrofungi. Biomolecules 2023, 13, 1102. [Google Scholar] [CrossRef]
- Mohamed, I.M.A.; Wu, X.-Y.; Zhu, J.-H.; El-Lateef, H.M.A.; Mousa, H.M.; Xing, F. Microstructure and interface analyses of novel external anode mortar incorporated calcined hydrotalcite nanoparticles towards an enhanced impressed current cathodic protection. J. Taiwan Inst. Chem. Eng. 2023, 145, 104803. [Google Scholar] [CrossRef]
- Ali, T.; Ahmad, N.; Nabeel, M.I.; Xiao, H.-M.; Hussain, D. Facile and scalable growth of bimetallic 3D Ag/MIL125-NH2 on cotton fabric for multifaceted anti-wetting and self-healing characteristics. Carbon 2024, 228, 119395. [Google Scholar] [CrossRef]
- Alnajjar, A.O.; Abd El-Lateef, H.M.; Khalaf, M.M.; Mohamed, I.M.A. Steel protection in acidified 3.5% NaCl by novel hybrid composite of CoCrO3/polyaniline: Chemical fabrication, physicochemical properties, and corrosion inhibition performance. Constr. Build. Mater. 2022, 317, 125918. [Google Scholar] [CrossRef]
- Aziz, N.A.; Salleh, N.H.M.; Gopinath, S.C.B.; Kamaruddin, A.H.; Ridzuan, M.I.; Ahmad, N.A. Valorization of Momordica charantia seeds into phytogenically synthesized silver nanoparticles for the protection of oyster mushrooms against Trichoderma pleuroticola. J. Environ. Chem. Eng. 2023, 11, 111064. [Google Scholar] [CrossRef]
- Mohamed, I.M.A.; Dao, V.-D.; Yasin, A.S.; Choi, H.-S.; Khalil, K.; Barakat, N.A.M. Facile synthesis of GO@SnO2/TiO2 nanofibers and their behavior in photovoltaics. J. Colloid Interface Sci. 2017, 490, 303–313. [Google Scholar] [CrossRef]
- Montakhab, E.; Rashchi, F.; Sheibani, S. Enhanced photocatalytic activity of TiO2 nanotubes decorated with Ag nanoparticles by simultaneous electrochemical deposition and reduction processes. Appl. Surf. Sci. 2023, 615, 156332. [Google Scholar] [CrossRef]
- Ban, C.; Wang, Y.; Ma, J.; Feng, Y.; Wang, X.; Qin, S.; Jing, S.; Duan, Y.; Zhang, M.; Tao, X.; et al. Metal–oxygen hybridization in Agcluster/TiO2 for selective CO2 photoreduction to CH4. Chem. Eng. J. 2024, 488, 150845. [Google Scholar] [CrossRef]
- Zhao, P.; Sun, H.; Gao, F.; Yu, L.; Shang, K.; Fang, M.; Ma, B.; Tan, X.; Wang, S.; Wang, X. Magnetic Field Induced Dielectric Polarization to Enhance Raman Detection of Nitrite by NiFe2O4@Ag. Adv. Funct. Mater. 2024, 34, 2414319. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, M.; Meng, L.; Su, S.; Ding, W.; Yuan, S.; Li, H.; Li, X. Plasma Ag nanoparticles loaded on Bi2MoO6 to enhance surface oxygen vacancies for efficient nitrogen conversion to ammonia. J. Mater. Chem. C 2024, 12, 10070–10082. [Google Scholar] [CrossRef]
- Khalaf, M.M.; Abd El-Lateef, H.M.; Touny, A.H.; Saleh, M.M.; Mohamed, I.M.A. Electrocatalytic performance of inorganic nanoflakes nickel phosphates under adjusted synthetic parameters towards urea and methanol oxidation in alkaline media. Microchem. J. 2021, 163, 105901. [Google Scholar] [CrossRef]
- Belkassa, K.; Khelifa, M.; Batonneau-Gener, I.; Marouf-Khelifa, K.; Khelifa, A. Understanding of the mechanism of crystal violet adsorption on modified halloysite: Hydrophobicity, performance, and interaction. J. Hazard. Mater. 2021, 415, 125656. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, I.M.A.; Shehata, A.G.; Al-Anazi, A.; Khairy, M.; Newair, E.F. A template-assisted method for synthesizing TiO2 nanoparticles and Ni/TiO2 nanocomposites for urea electrooxidation. Mater. Chem. Phys. 2024, 316, 129112. [Google Scholar] [CrossRef]
- Uthiravel, V.; Narayanamurthi, K.; Raja, V.; Anandhabasker, S.; Kuppusamy, K. Green synthesis and characterization of TiO2 and Ag-doped TiO2 nanoparticles for photocatalytic and antimicrobial applications. Inorg. Chem. Commun. 2024, 170, 113327. [Google Scholar] [CrossRef]
- Singh, G.; Nimanpure, S.; Acharyya, N.; Rane, S.; Roychowdhury, D.; Singh, B.P.; Tawale, J.S.; Sharma, R.; Jewariya, M. High-performing TiO2 flower-like nanostructures based on flexible MWCNTs for dual-band terahertz absorption. J. Mater. Chem. C 2023, 11, 14199–14206. [Google Scholar] [CrossRef]
- Vinothkumar, V.; Abinaya, M.; Chen, S.-M.; Sethupathi, V.; Muthuraj, V. Ultrasound assisted synthesis of silver titanate for the differential pulse voltammetric determination of antibiotic drug metronidazole. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 134, 114865. [Google Scholar] [CrossRef]
- Miao, Y.; Zhao, Y.; Zhang, S.; Shi, R.; Zhang, T. Strain engineering: A boosting strategy for photocatalysis. Adv. Mater. 2022, 34, 2200868. [Google Scholar] [CrossRef]
- Amr, M.; Abu-Hussien, S.H.; Ismail, R.; Aboubakr, A.; Wael, R.; Yasser, M.; Hemdan, B.; El-Sayed, S.M.; Bakry, A.; Ebeed, N.M.; et al. Utilization of biosynthesized silver nanoparticles from Agaricus bisporus extract for food safety application: Synthesis, characterization, antimicrobial efficacy, and toxicological assessment. Sci. Rep. 2023, 13, 15048. [Google Scholar] [CrossRef]
- Rathi, V.H.; Jeice, A.R.; Jayakumar, K. Green synthesis of Ag/CuO and Ag/TiO2 nanoparticles for enhanced photocatalytic dye degradation, antibacterial, and antifungal properties. Appl. Surf. Sci. Adv. 2023, 18, 100476. [Google Scholar] [CrossRef]
- Sodhi, K.K.; Singh, D.K. Insight into the fluoroquinolone resistance, sources, ecotoxicity, and degradation with special emphasis on ciprofloxacin. J. Water Process Eng. 2021, 43, 102218. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Yue, C.; He, L.; Li, H.; Zhang, H.; Yang, S.; Ma, T. Photocatalytic degradation by TiO2-conjugated/coordination polymer heterojunction: Preparation, mechanisms, and prospects. Appl. Catal. B 2024, 344, 123605. [Google Scholar] [CrossRef]
- Bopape, D.A.; Mathobela, S.; Matinise, N.; Motaung, D.E.; Hintsho-Mbita, N.C. Green Synthesis of CuO-TiO2 Nanoparticles for the Degradation of Organic Pollutants: Physical, Optical and Electrochemical Properties. Catalysts 2023, 13, 163. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Zhou, Y.; Wang, J.; Li, A.; Corvini, P.F.-X. Boosting light harvesting and charge separation over hollow double-shelled Ag@SrTiO3-TiO2 with Z-scheme heterostructure for highly efficient photocatalytic reduction of nitrate to N2. Chem. Eng. J. 2023, 457, 140992. [Google Scholar] [CrossRef]
- da Silva, M.P.C.; Gomes, A.M.C.; Oliveira, A.F.; Huanca, D.R. Enhanced Schottky barrier engineering in silver-doped TiO2/p-Si heterojunctions: Insights into electrical behavior and charge carrier dynamics. Mater. Chem. Phys. 2024, 328, 129995. [Google Scholar] [CrossRef]
- Mutukwa, D.; Taziwa, R.T.; Tichapondwa, S.M.; Khotseng, L. Optimisation, Synthesis, and Characterisation of ZnO Nanoparticles Using Leonotis ocymifolia (L. ocymifolia) Leaf Extracts for Antibacterial and Photodegradation Applications. Int. J. Mol. Sci. 2024, 25, 11621. [Google Scholar] [CrossRef]
- Khadka, D.; Gautam, P.; Dahal, R.; Ashie, M.D.; Paudyal, H.; Ghimire, K.N.; Pant, B.; Poudel, B.R.; Bastakoti, B.P.; Pokhrel, M.R. Evaluating the Photocatalytic Activity of Green Synthesized Iron Oxide Nanoparticles. Catalysts 2024, 14, 751. [Google Scholar] [CrossRef]
- Sabzehparvar, M.; Kiani, F.; Tabrizi, N.S. Mesoporous-assembled TiO2-NiO-Ag nanocomposites with p-n/Schottky heterojunctions for enhanced photocatalytic performance. J. Alloys Compd. 2021, 876, 160133. [Google Scholar] [CrossRef]
- Kang, S.; Hwang, J. rGO-wrapped Ag-doped TiO2 nanofibers for photocatalytic CO2 reduction under visible light. J. Clean. Prod. 2022, 374, 134022. [Google Scholar] [CrossRef]
- Lai, C.; Zhang, M.; Li, B.; Huang, D.; Zeng, G.; Qin, L.; Liu, X.; Yi, H.; Cheng, M.; Li, L.; et al. Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for Ciprofloxacin degradation and mechanism insight. Chem. Eng. J. 2019, 358, 891–902. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Hu, S.; Wang, H.; Jiang, W.; Chen, X. Facile construction of novel Bi2WO6/Ta3N5 Z-scheme heterojunction nanofibers for efficient degradation of harmful pharmaceutical pollutants. Chem. Eng. J. 2020, 402, 126165. [Google Scholar] [CrossRef]
- Yang, W.; He, X.; He, T.; Li, Y.; Yang, J.; Huang, H.; Cui, S. Broad spectral response of Y-NaBi(MoO4)2@NaYF4:Yb, Tm photocatalysts for efficient degradation of ciprofloxacin: Upconversion mechanism and theoretical calculations. Ceram. Int. 2024, 50, 46904–46915. [Google Scholar] [CrossRef]
- El-Sayed, F.; Hussien, M.S.A.; AlAbdulaal, T.H.; Ismail, A.; Zahran, H.Y.; Yahia, I.S.; Abdel-wahab, M.S.; Khairy, Y.; Ali, T.E.; Ibrahim, M.A. Comparative Degradation Studies of Carmine Dye by Photocatalysis and Photoelectrochemical Oxidation Processes in the Presence of Graphene/N-Doped ZnO Nanostructures. Crystals 2022, 12, 535. [Google Scholar] [CrossRef]
- El-Sayed, F.; Hussien, M.S.A.; AlAbdulaal, T.H.; Abdel-Aty, A.-H.; Zahran, H.Y.; Yahia, I.S.; Abdel-wahab, M.S.; Ibrahim, E.H.; Ibrahim, M.A.; Elhaes, H. Study of catalytic activity of G-SrO nanoparticles for degradation of cationic and anionic dye and comparative study photocatalytic and electro & photo-electrocatalytic of anionic dye degradation. J. Mater. Res. Technol. 2022, 20, 959–975. [Google Scholar] [CrossRef]
- Hassani, A.; Khataee, A.; Karaca, S.; Karaca, C.; Gholami, P. Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite. Ultrason. Sonochem. 2017, 35, 251–262. [Google Scholar] [CrossRef]
- Song, S.Y.; Chen, H.D.; Li, C.X.; Shi, D.S.; Ying, Y.; Han, Y.B.; Xu, J.C.; Hong, B.; Jin, H.X.; Jin, D.F.; et al. Magnetic Bi2WO6 nanocomposites: Synthesis, magnetic response and their visible-light-driven photocatalytic performance for ciprofloxacin. Chem. Phys. 2020, 530, 110614. [Google Scholar] [CrossRef]
- Kadi, M.W.; Mohamed, R.M.; Bahnemann, D.W. Controlled synthesis of Ag2O/g-C3N4 heterostructures using soft and hard templates for efficient and enhanced visible-light degradation of ciprofloxacin. Ceram. Int. 2021, 47, 31073–31083. [Google Scholar] [CrossRef]
- Cheikh, S.; Imessaoudene, A.; Bollinger, J.-C.; Hadadi, A.; Manseri, A.; Bouzaza, A.; Assadi, A.; Amrane, A.; Zamouche, M.; El Jery, A.; et al. Complete Elimination of the Ciprofloxacin Antibiotic from Water by the Combination of Adsorption–Photocatalysis Process Using Natural Hydroxyapatite and TiO2. Catalysts 2023, 13, 336. [Google Scholar] [CrossRef]
No. | Pos. [2Th.] | FWHM [2Th.] | Area [cts*2Th.] | d-Spacing [Å] | Height [cts] | Rel. Int. [%] |
---|---|---|---|---|---|---|
1 | 27.3983 | 0.1181 | 85.67 | 3.25532 | 735.48 | 100 |
3 | 32.2246 | 0.1968 | 6.6 | 2.77794 | 33.98 | 4.62 |
4 | 35.9938 | 0.1574 | 65.85 | 2.49522 | 423.97 | 57.65 |
5 | 39.2792 | 0.3936 | 14.02 | 2.29376 | 36.1 | 4.91 |
6 | 41.2899 | 0.3542 | 81.04 | 2.18659 | 231.93 | 31.53 |
7 | 44.1597 | 0.1181 | 8.11 | 2.05092 | 69.62 | 9.47 |
8 | 46.2268 | 0.2362 | 4.72 | 1.96391 | 20.25 | 2.75 |
9 | 54.3544 | 0.3542 | 192.83 | 1.6879 | 551.82 | 75.03 |
10 | 56.5538 | 0.5117 | 82.93 | 1.62737 | 164.29 | 22.34 |
11 | 62.728 | 0.3542 | 31.03 | 1.48122 | 88.8 | 12.07 |
12 | 64.1218 | 0.3149 | 18.49 | 1.45235 | 59.52 | 8.09 |
13 | 68.9735 | 0.2755 | 47.08 | 1.36156 | 173.22 | 23.55 |
14 | 69.7397 | 0.1574 | 17.43 | 1.34847 | 112.2 | 15.26 |
No. | Photocatalysts | Degradation Efficiency | Pollutant | Reference |
---|---|---|---|---|
1 | Bi2WO6/Ta3N5 | 81.10% | Ciprofloxacin | [56] |
2 | CuS/BiVO4 binary heterojunction | 86.70% | Ciprofloxacin | [55] |
3 | TiO2/montmorillonite | 65.01% | Ciprofloxacin | [60] |
4 | Hydrothermal TiO2 | 45.61% | Ciprofloxacin | |
5 | γ-Fe2O3/Bi2WO6 nanocomposite | 65% | Ciprofloxacin | [61] |
6 | NaBi(MoO4)2 | 59.8% | Ciprofloxacin | [57] |
7 | Y-NaBi(MoO4)2 | 80.60% | Ciprofloxacin | |
8 | Pure Ag2O | 25% | Ciprofloxacin | [62] |
9 | Mushroom Ag/TiO2 | 82.46% | Ciprofloxacin | This work |
10 | G/N-doped ZnO nanocomposite | 66.76% | Carmine G | [58] |
11 | G-SrO nanoparticles | 52.50% | Carmine G | [59] |
12 | Mushroom Ag/TiO2 | 83.64% | Carmine G | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El-Lateef, H.M.; Zeng, C.-Q.; Khalaf, M.M.; Mohamed, I.M.A. Green Synthesis of Silver-Incorporated Rutile TiO2 for Enhanced Photocatalytic Degradation of Ciprofloxacin and Carmine G Dye Pollutants. Catalysts 2024, 14, 904. https://doi.org/10.3390/catal14120904
Abd El-Lateef HM, Zeng C-Q, Khalaf MM, Mohamed IMA. Green Synthesis of Silver-Incorporated Rutile TiO2 for Enhanced Photocatalytic Degradation of Ciprofloxacin and Carmine G Dye Pollutants. Catalysts. 2024; 14(12):904. https://doi.org/10.3390/catal14120904
Chicago/Turabian StyleAbd El-Lateef, Hany M., Chao-Qun Zeng, Mai M. Khalaf, and Ibrahim M. A. Mohamed. 2024. "Green Synthesis of Silver-Incorporated Rutile TiO2 for Enhanced Photocatalytic Degradation of Ciprofloxacin and Carmine G Dye Pollutants" Catalysts 14, no. 12: 904. https://doi.org/10.3390/catal14120904
APA StyleAbd El-Lateef, H. M., Zeng, C.-Q., Khalaf, M. M., & Mohamed, I. M. A. (2024). Green Synthesis of Silver-Incorporated Rutile TiO2 for Enhanced Photocatalytic Degradation of Ciprofloxacin and Carmine G Dye Pollutants. Catalysts, 14(12), 904. https://doi.org/10.3390/catal14120904