The Effect of H2O2 Pretreatment on TiO2-Supported Ruthenium Catalysts for the Gas Phase Catalytic Combustion of Dichloromethane (CH2Cl2)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Analysis
2.2. Catalytic Activity and Discussion
2.3. Stability Tests
3. Experiment
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Activity and Stability Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nevanperä, T.K.; Pitkäaho, S.; Ojala, S.; Keiski, R.L. Oxidation of Dichloromethane over Au, Pt, and Pt-Au Containing Catalysts Supported on γ-Al2O3 and CeO2-Al2O3. Molecules 2020, 25, 4644. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, H.; Li, C.J.C. A review and perspective of recent research in biological treatment applied in removal of chlorinated volatile organic compounds from waste air. Chemosphere 2020, 250, 126338–126349. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Xue, X.; Meng, Z.; Zhou, R. Enhanced catalytic activity and stability of Ce doping on Cr supported HZSM-5 catalysts for deep oxidation of chlorinated volatile organic compounds. Chem. Eng. J. 2013, 234, 203–210. [Google Scholar] [CrossRef]
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Yang, C.; Miao, G.; Pi, Y.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J. 2019, 370, 1128–1153. [Google Scholar] [CrossRef]
- Cao, S.; Fei, X.; Wen, Y.; Sun, Z.; Wang, H.; Wu, Z. Bimodal mesoporous TiO2 supported Pt, Pd and Ru catalysts and their catalytic performance and deactivation mechanism for catalytic combustion of Dichloromethane (CH2Cl2). Appl. Catal. A Gen. 2018, 550, 20–27. [Google Scholar] [CrossRef]
- Giraudon, J.-M.; Nguyen, T.; Leclercq, G.; Siffert, S.; Lamonier, J.-F.; Aboukaïs, A.; Vantomme, A.; Su, B.-L. Chlorobenzene total oxidation over palladium supported on ZrO2, TiO2 nanostructured supports. Catal. Today 2008, 137, 379–384. [Google Scholar] [CrossRef]
- Van den Brink, R.W.; Louw, R.; Mulder, P. Formation of polychlorinated benzenes during the catalytic combustion of chlorobenzene using a Pt/γ-Al2O3 catalyst. Appl. Catal. B Environ. 1998, 16, 219–226. [Google Scholar] [CrossRef]
- Cho, C.-H.; Ihm, S.-K. Development of new vanadium-based oxide catalysts for decomposition of chlorinated aromatic pollutants. Environ. Sci. Technol. 2002, 36, 1600–1606. [Google Scholar] [CrossRef]
- Yang, P.; Meng, Z.; Yang, S.; Shi, Z.; Zhou, R. Highly active behaviors of CeO2–CrOx mixed oxide catalysts in deep oxidation of 1, 2-dichloroethane. J. Mol. Catal. A Chem. 2014, 393, 75–83. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, M.; Wei, Z.; Xin, Q.; Ying, P.; Li, C. Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts. Appl. Catal. B Environ. 2001, 29, 61–67. [Google Scholar] [CrossRef]
- Ma, R.; Hu, P.; Jin, L.; Wang, Y.; Lu, J.; Luo, M. Characterization of CrOx/Al2O3 catalysts for dichloromethane oxidation. Catal. Today 2011, 175, 598–602. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.; Wang, M.; Liu, X.; Shang, S.; Wang, Z.; Zhang, C. Micro-meso hierarchical ZSM-5 zeolite supported RuOx nanoparticles for activity enhancement of catalytic vinyl chloride oxidation. Appl. Surf. Sci. 2022, 606, 154906–154916. [Google Scholar] [CrossRef]
- Over, H. Atomic-scale understanding of the HCl oxidation over RuO2, a novel deacon process. J. Phys. Chem. C 2012, 116, 6779–6792. [Google Scholar] [CrossRef]
- Posada-Pérez, S.; Solà, M.; Poater, A. Carbon dioxide conversion on supported metal nanoparticles: A brief review. Catalysts 2023, 13, 305–332. [Google Scholar] [CrossRef]
- Xie, B.; Wang, Z.; Zhang, X.; Ding, M.; Li, M.; Guo, X.; Dai, Q.; Wang, L.; Zhan, W.; Guo, Y.; et al. Morphology effect of cerium dioxide on the catalytic performance of Ru/CeO2 catalyst for the oxidation of different CVOCs. Sep. Purif. Technol. 2024, 345, 127428. [Google Scholar] [CrossRef]
- Shen, K.; Ding, Q.; Fan, H.; Pan, F.; Shou, Y.; Jiao, K.; Xia, C.; Xie, B.; Zhan, W.; Guo, Y.; et al. Biotemplate preparation of Ru/CeO2 catalysts for the catalytic combustion of vinyl chloride. Catal. Commun. 2023, 184, 106801. [Google Scholar] [CrossRef]
- Jung, H.; Lim, Y.H.; Pophali, A.; Lee, E.; Kim, H.; Kim, H.S.; Suh, J.; Choi, J.S.; Kim, S.; Bang, J.; et al. Promotional effect of WO3 in V2O5–WO3/TiO2 on low-temperature activity in the catalytic oxidation of 1, 2-dichloroethane. Chem. Eng. J. 2024, 494, 153029. [Google Scholar] [CrossRef]
- Sui, C.; Zeng, S.; Ma, X.; Zhang, Y.; Zhang, J.; Xie, X. Research progress of catalytic oxidation of volatile organic compounds over Mn-based catalysts—A review. Rev. Inorg. Chem. 2023, 43, 1–12. [Google Scholar] [CrossRef]
- Tauster, S.J.; Fung, S.C.; Garten, R.L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170–175. [Google Scholar] [CrossRef]
- Ying, Q.; Liu, Y.; Wang, N.; Zhang, Y.; Wu, Z. The superior performance of dichloromethane oxidation over Ru doped sulfated TiO2 catalysts: Synergistic effects of Ru dispersion and acidity. Appl. Surf. Sci. 2020, 515, 145971–145978. [Google Scholar] [CrossRef]
- He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471–4568. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zheng, Z.; Kong, M.; Hua, Z.; Yang, Z.; Jiang, Y.; Liu, S.; Yan, X.; Gao, X. The Study on the Active Site Regulated RuOx/Sn0.2Ti0.8O2 Catalysts with Different Ru Precursors for the Catalytic Oxidation of Dichloromethane. Catalysts 2021, 11, 1306–1319. [Google Scholar] [CrossRef]
- Chai, S.; Li, S.; Zhang, L.; Fan, G.; Nie, L.; Zhou, X.; Yang, W.; Li, W.; Chen, Y. Abatement of dichloromethane with high selectivity over defect-rich MOF-derived Ru/TiO2 catalysts. Nanoscale 2022, 14, 15724–15734. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Jiang, M.; Chen, J.; Yan, D.; Jia, H.J.A.C.B.E. Unveiling the lead resistance mechanism and interface regulation strategy of Ru-based catalyst during chlorinated VOCs oxidation. Appl. Catal. B Environ. 2022, 315, 121592. [Google Scholar] [CrossRef]
- Jia, H.; Xing, Y.; Zhang, L.; Zhang, W.; Wang, J.; Zhang, H.; Su, W. Progress of catalytic oxidation of typical chlorined volatile organic compounds (CVOCs): A review. Sci. Total Environ. 2023, 865, 161063. [Google Scholar] [CrossRef]
- Zhou, F.; Xin, Q.; Fu, Y.; Hua, Z.; Dong, Y.; Ran, M.; Song, H.; Liu, S.; Qu, R.; Yang, Y.; et al. Efficient catalytic oxidation of chlorinated volatile organic compounds over RuO2-WOx/Sn0.2Ti0.8O2 catalysts: Insight into the Cl poisoning mechanism of acid sites. Chem. Eng. J. 2023, 464, 142471. [Google Scholar] [CrossRef]
- Hiragond, C.B.; Biswas, S.; Powar, N.S.; Lee, J.; Gong, E.; Kim, H.; Kim, H.S.; Jung, J.W.; Cho, C.H.; Wong, B.M.; et al. Surface—modified Ag@ Ru-P25 for photocatalytic CO2 conversion with high selectivity over CH4 formation at the solid–gas interface. Carbon Energy 2024, 6, 386. [Google Scholar] [CrossRef]
- Dong, W.; Pan, F.; Wang, H. Investigation of facets-dependent photoactivity of anatase TiO2 nanobelt with high percentage of {100} facets. Funct. Mater. Lett. 2017, 10, 1750059–1750062. [Google Scholar] [CrossRef]
- Yuan, C.-Z.; Jiang, Y.-F.; Zhao, Z.-W.; Zhao, S.-J.; Zhou, X.; Cheang, T.-Y.; Xu, A.-W. Molecule-Assisted Synthesis of Highly Dispersed Ultrasmall RuO2 Nanoparticles on Nitrogen-Doped Carbon Matrix as Ultraefficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Sustain. Chem. Eng. 2018, 6, 11529–11535. [Google Scholar] [CrossRef]
- Low, I.M.; Albetran, H.; Prida, V.M.; Vega, V.; Manurung, P.; Ionescu, M. A comparative study on crystallization behavior, phase stability, and binding energy in pure and Cr-doped TiO2 nanotubes. J. Mater. Res. 2013, 28, 304–312. [Google Scholar] [CrossRef]
- Linh, N.T.T.; Tuan, P.D.; Dzung, N.V. The shifts of band gap and binding energies of titania/hydroxyapatite material. J. Compos. 2014, 2014, 283034–283038. [Google Scholar] [CrossRef]
- Elmasides, C.; Kondarides, D.; Grünert, W.; Verykios, X. XPS and FTIR study of Ru/Al2O3 and Ru/TiO2 catalysts: Reduction characteristics and interaction with a methane-oxygen mixture. J. Phys. Chem. B 1999, 103, 5227–5239. [Google Scholar] [CrossRef]
- Guo, N.; Zhang, J.; Jiang, L.; Wang, D.; Wang, Z. Highly efficient and selective Ru and Ce modified ZSM-5 catalysts for catalytic oxidation of toluene. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129709–129720. [Google Scholar] [CrossRef]
- Zhang, S.; Han, M. Effect of Mo Dispersion on the Catalytic Properties and Stability of Mo–Fe Catalysts for the Partial Oxidation of Methanol. Molecules 2020, 25, 2410–2420. [Google Scholar] [CrossRef]
- Wang, D.; Huang, J.; Liu, F.; Xu, X.; Fang, X.; Liu, J.; Xie, Y.; Wang, X. Rutile RuO2 dispersion on rutile and anatase TiO2 supports: The effects of support crystalline phase structure on the dispersion behaviors of the supported metal oxides. Catal. Today 2020, 339, 220–232. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, B.; Xie, Z.; Li, Y.; Shen, Z.-Y. Preparation and photocatalytic properties of RuO2/TiO2 composite nanotube arrays. Ceram. Int. 2016, 42, 13664–13669. [Google Scholar] [CrossRef]
- Dai, Q.; Bai, S.; Wang, J.; Li, M.; Wang, X.; Lu, G. The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene. Appl. Catal. B Environ. 2013, 142, 222–233. [Google Scholar] [CrossRef]
- Miran, H.A.; Altarawneh, M.; Jiang, Z.-T.; Oskierski, H.; Almatarneh, M.; Dlugogorski, B.Z. Decomposition of selected chlorinated volatile organic compounds by ceria (CeO2). Catal. Sci. Technol. 2017, 7, 3902–3919. [Google Scholar] [CrossRef]
- He, F.; Luo, J.; Liu, S. Novel metal loaded KIT-6 catalysts and their applications in the catalytic combustion of chlorobenzene. Chem. Eng. J. 2016, 294, 362–370. [Google Scholar] [CrossRef]
- López, N.; Gómez-Segura, J.; Marín, R.P.; Pérez-Ramírez, J. Mechanism of HCl oxidation (Deacon process) over RuO2. J. Catal. 2008, 255, 29–39. [Google Scholar] [CrossRef]
- Sun, P.; Zhai, S.; Chen, J.; Yuan, J.; Wu, Z.; Weng, X. Development of a multi-active center catalyst in mediating the catalytic destruction of chloroaromatic pollutants: A combined experimental and theoretical study. Appl. Catal. B Environ. 2020, 272, 119015–119023. [Google Scholar] [CrossRef]
- Cao, S.; Shi, M.; Wang, H.; Yu, F.; Weng, X.; Liu, Y.; Wu, Z. A two-stage Ce/TiO2–Cu/CeO2 catalyst with separated catalytic functions for deep catalytic combustion of CH2Cl2. Chem. Eng. J. 2016, 290, 147–153. [Google Scholar] [CrossRef]
- Su, Y.; Fu, K.; Pang, C.; Zheng, Y.; Song, C.; Ji, N.; Ma, D.; Lu, X.; Liu, C.; Han, R.; et al. Recent Advances of Chlorinated Volatile Organic Compounds’ Oxidation Catalyzed by Multiple Catalysts: Reasonable Adjustment of Acidity and Redox Properties. Environ. Sci. Technol. 2022, 56, 9854–9871. [Google Scholar] [CrossRef]
- Ying, Q.; Liu, Y.; Li, H.; Zhang, Y.; Wu, Z. A comparative study of the dichloromethane catalytic combustion over ruthenium-based catalysts: Unveiling the roles of acid types in dissociative adsorption and by-products formation. J. Colloid. Interface Sci. 2022, 605, 537–546. [Google Scholar] [CrossRef]
Samples | Ru Content/wt% | RuO2 Particle Size/nm | Specific Surface Area /m2·g−1 |
---|---|---|---|
Initial support TiO2 (P25) | — | — | 58.5 |
(0 H2O2)-Ru@TiO2 catalyst | 0.28 | 6.4 | 49.1 |
(1 H2O2)-Ru@TiO2 catalyst | 0.26 | 7.0 | 49.7 |
(3 H2O2)-Ru@TiO2 catalyst | 0.26 | 8.5 | 48.8 |
Samples | Fresh Catalysts | Spent Catalysts | ||||
---|---|---|---|---|---|---|
Ru0 | RuOx | RuO2 | Ru0 | RuOx | RuO2 | |
(0 H2O2)-Ru@TiO2 catalyst | 41.72% | 30.79% | 27.49% | 32.60% | 47.76% | 19.64% |
(1 H2O2)-Ru@TiO2 catalyst | 28.42% | 34.99% | 36.59% | 29.03% | 38.66% | 32.31% |
(3 H2O2)-Ru@TiO2 catalyst | 29.82% | 29.65% | 40.53% | 27.46% | 33.85% | 38.69% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Z.; Song, X. The Effect of H2O2 Pretreatment on TiO2-Supported Ruthenium Catalysts for the Gas Phase Catalytic Combustion of Dichloromethane (CH2Cl2). Catalysts 2024, 14, 886. https://doi.org/10.3390/catal14120886
Fang Z, Song X. The Effect of H2O2 Pretreatment on TiO2-Supported Ruthenium Catalysts for the Gas Phase Catalytic Combustion of Dichloromethane (CH2Cl2). Catalysts. 2024; 14(12):886. https://doi.org/10.3390/catal14120886
Chicago/Turabian StyleFang, Zhiyong, and Xiangyu Song. 2024. "The Effect of H2O2 Pretreatment on TiO2-Supported Ruthenium Catalysts for the Gas Phase Catalytic Combustion of Dichloromethane (CH2Cl2)" Catalysts 14, no. 12: 886. https://doi.org/10.3390/catal14120886
APA StyleFang, Z., & Song, X. (2024). The Effect of H2O2 Pretreatment on TiO2-Supported Ruthenium Catalysts for the Gas Phase Catalytic Combustion of Dichloromethane (CH2Cl2). Catalysts, 14(12), 886. https://doi.org/10.3390/catal14120886