Optimizing Algal Oil Extraction and Transesterification Parameters through RSM, PCA, and MRA for Sustainable Biodiesel Production
Abstract
:1. Introduction
2. Results and Discussions
2.1. Dynamics of Algal Oil Extraction Parameters
2.1.1. Effects of Biomass–Solvent Ratio on Algal Oil Yield
2.1.2. Effects of Algae Particle Sizes on Algal Oil Yield
2.1.3. Effects of Extraction-Contact Time on Algal Oil Yield
2.2. Dynamics of Transesterification Parameters
2.2.1. Effects of Methanol–Oil Ratio on Biodiesel Conversion Efficiency
2.2.2. Effects of Transesterification-Contact Time on Biodiesel Conversion Efficiency
2.3. Synthesis of Algal Oil Extraction Parameters
2.4. Synthesis of Transesterification Parameters
2.5. Development and Validation of Predictive Models
2.5.1. Predictive Model for Algal Oil Yield
2.5.2. Predictive Model for Biodiesel Conversion Efficiency
2.6. Analysis of Produced Biodiesel
3. Materials and Methods
3.1. Sample Collection and Preparation
3.2. Chemical Extraction of Algal Oil
3.3. Transesterification for Biodiesel Production
3.4. Estimation of Biodiesel Yield after Transesterification Reaction
3.5. Analysis of Produced Biodiesel
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Naveenkumar, R.; Baskar, G. Optimization and Techno-Economic Analysis of Biodiesel Production from Calophyllum Inophyllum Oil Using Heterogeneous Nanocatalyst. Bioresour. Technol. 2020, 315, 123852. [Google Scholar] [CrossRef]
- Karthikeyan, M.; Renganathan, S.; Baskar, G. Production of Biodiesel from Waste Cooking Oil Using MgMoO4 -Supported TiO2 as a Heterogeneous Catalyst. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 2053–2059. [Google Scholar] [CrossRef]
- Chakraborty, R.; Chatterjee, S.; Mukhopadhyay, P.; Barman, S. Progresses in Waste Biomass Derived Catalyst for Production of Biodiesel and Bioethanol: A Review. Procedia Environ. Sci. 2016, 35, 546–554. [Google Scholar] [CrossRef]
- Sarangi, P.K.; Singh, A.K.; Ganachari, S.V.; Pengadeth, D.; Mohanakrishna, G.; Aminabhavi, T.M. Biobased Heterogeneous Renewable Catalysts: Production Technologies, Innovations, Biodiesel Applications and Circular Bioeconomy. Environ. Res. 2024, 261, 119745. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.-S.; Chew, L.-L. Valuable Compounds Produced by Microalgae. In Handbook of Biorefinery Research and Technology: Production of Biofuels and Biochemicals; Springer Nature Singapore: Singapore, 2024; pp. 731–749. [Google Scholar]
- Feyzi, M.; Shahbazi, E. Catalytic Performance and Characterization of Cs–Ca/SiO2–TiO2 Nanocatalysts for Biodiesel Production. J. Mol. Catal. A Chem. 2015, 404–405, 131–138. [Google Scholar] [CrossRef]
- Mustafa, A.; Faisal, S.; Ahmed, I.A.; Munir, M.; Cipolatti, E.P.; Manoel, E.A.; Pastore, C.; di Bitonto, L.; Hanelt, D.; Nitbani, F.O.; et al. Has the Time Finally Come for Green Oleochemicals and Biodiesel Production Using Large-Scale Enzyme Technologies? Current Status and New Developments. Biotechnol. Adv. 2023, 69, 108275. [Google Scholar] [CrossRef]
- Singh, A.; Nigam, P.S.; Murphy, J.D. Renewable Fuels from Algae: An Answer to Debatable Land Based Fuels. Bioresour. Technol. 2011, 102, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Ali Ijaz Malik, M.; Zeeshan, S.; Khubaib, M.; Ikram, A.; Hussain, F.; Yassin, H.; Qazi, A. A Review of Major Trends, Opportunities, and Technical Challenges in Biodiesel Production from Waste Sources. Energy Convers. Manag. X 2024, 23, 100675. [Google Scholar] [CrossRef]
- Ponnuswamy, I.; Madhavan, S.; Shabudeen, S. Isolation and Characterization of Green Microalgae for Carbon Sequestration, Waste Water Treatment and Bio-Fuel Production. Int. J. Bio-Sci. Bio-Technol. 2013, 5, 17–26. [Google Scholar]
- Nguyen, L.N.; Vu, M.T.; Vu, H.P.; Johir, M.A.H.; Labeeuw, L.; Ralph, P.J.; Mahlia, T.M.I.; Pandey, A.; Sirohi, R.; Nghiem, L.D. Microalgae-Based Carbon Capture and Utilization: A Critical Review on Current System Developments and Biomass Utilization. Crit. Rev. Environ. Sci. Technol. 2023, 53, 216–238. [Google Scholar] [CrossRef]
- Dębowski, M.; Świca, I.; Kazimierowicz, J.; Zieliński, M. Large Scale Microalgae Biofuel Technology—Development Perspectives in Light of the Barriers and Limitations. Energies 2022, 16, 81. [Google Scholar] [CrossRef]
- Pate, R.C. Resource Requirements for the Large-Scale Production of Algal Biofuels. Biofuels 2013, 4, 409–435. [Google Scholar] [CrossRef]
- Mehrotra, R.; Hasan Khanc, Z. Lipase Catalysed Transesterfication. Enzym. Eng. 2016, 5, e113. [Google Scholar] [CrossRef]
- Jamaluddin, M.’A.; Ismail, K.; Mohd Ishak, M.A.; Ab Ghani, Z.; Abdullah, M.F.; Safian, M.T.; Idris, S.S.; Tahiruddin, S.; Mohammed Yunus, M.F.; Mohd Hakimi, N.I.N. Microwave-Assisted Pyrolysis of Palm Kernel Shell: Optimization Using Response Surface Methodology (RSM). Renew. Energy 2013, 55, 357–365. [Google Scholar] [CrossRef]
- Outili, N.; Kerras, H.; Nekkab, C.; Merouani, R.; Meniai, A.H. Biodiesel Production Optimization from Waste Cooking Oil Using Green Chemistry Metrics. Renew. Energy 2020, 145, 2575–2586. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Liang, K.-Y.; Zeger, S.L.; Qaqish, B. Multivariate Regression Analyses for Categorical Data. J. R. Stat. Soc. Ser. B Stat. (Methodol.) 1992, 54, 3–24. [Google Scholar] [CrossRef]
- Efthymiopoulos, I.; Hellier, P.; Ladommatos, N.; Kay, A.; Mills-Lamptey, B. Effect of Solvent Extraction Parameters on the Recovery of Oil from Spent Coffee Grounds for Biofuel Production. Waste Biomass Valorization 2019, 10, 253–264. [Google Scholar] [CrossRef]
- Singh, S.; Meena, P.; Bhoi, R.; Saharan, V.K.; George, S. Optimization of Bio-Oil Extraction from Chlorella Biomass via a Green Approach to Obtain Algal-Based Di-Ethyl Phthalate. Environ. Sci. Pollut. Res. 2023, 20, 9. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, M.; Evaristo, R.; de Macedo, J.; Ghesti, G. Extraction and Characterization of Pequi Seed Oil for Biodiesel Production: A Green Management of Waste to Biofuel Using Ethanol and Heterogeneous Catalysis. J. Braz. Chem. Soc. 2022, 33, 327–339. [Google Scholar] [CrossRef]
- Larida, A.Q.; Bañaga, J.B. Extraction and Characterization of Algal Oil from Lake Sebu, South Cotabato. J. Sci. Sci. Educ. 2021, 5, 12–25. [Google Scholar] [CrossRef]
- Ntalikwa, J.W. Solvent Extraction of Jatropha Oil for Biodiesel Production: Effects of Solvent-to-Solid Ratio, Particle Size, Type of Solvent, Extraction Time, and Temperature on Oil Yield. J. Renew. Energy 2021, 2021, 9221168. [Google Scholar] [CrossRef]
- Haris Mulyadi, A.; Setianingsih, E.; Hasanah, Y.R. Effect of Extraction Parameters (Raw Material Particle Size, Volume of Solvent, and Time) on the Process Yield of Rice Bran Oil. Res. Chem. Eng. (RiCE) 2022, 1, 1–6. [Google Scholar] [CrossRef]
- Baig, R.U.; Malik, A.; Ali, K.; Arif, S.; Hussain, S.; Mehmood, M.; Sami, K.; Mengal, A.N.; Khan, M.N. Extraction of Oil from Algae for Biodiesel Production, from Quetta, Pakistan. IOP Conf. Ser. Mater. Sci. Eng. 2018, 414, 012022. [Google Scholar] [CrossRef]
- Andersson, V.; Heyne, S.; Harvey, S.; Berntsson, T. Integration of Algae-based Biofuel Production with an Oil Refinery: Energy and Carbon Footprint Assessment. Int. J. Energy Res. 2020, 44, 10860–10877. [Google Scholar] [CrossRef]
- Devi, T.; Pravin, R.; Baskar, G. Chlorella Biomass as a Potential Source of Algal Oil: Investigations on Optimization of Ultrasonic Assisted Extraction, Kinetics and Characterization of Algal Oil. Indian J. Chem. Technol. 2023, 30, 430–434. [Google Scholar] [CrossRef]
- Rani, D.S.; Watanabe, M.; Demura, M.; Yoshida, M.; Ahamed, T.; Noguchi, R. A Novel Polyculture Growth Model of Native Microalgal Communities to Estimate Biomass Productivity for Biofuel Production. Biotechnol. Prog. 2021, 37, e3156. [Google Scholar] [CrossRef]
- Hassan Najim, Y.; Al-Abdraba, M.S.W.; Hassan Ahmad, A. Effects of Temperature, Alkaline Catalysts and Molar Ratio of Alcohol to Oil on the Efficiency of Production Biodiesel from Castor Oil. Kirkuk Univ. J. Sci. Stud. 2016, 11, 56–69. [Google Scholar] [CrossRef]
- Andami, P.; Zinatizadeh, A.A.; Feyzi, M.; Zangeneh, H.; Azizi, S.; Norouzi, L.; Maaza, M. Optimization of Biodiesel Production from Sunflower Oil Transesterification Using Ca-K/Al2O3 Nanocatalysts. Int. J. Eng. 2022, 35, 351–359. [Google Scholar] [CrossRef]
- Jain, S. An Assessment of the Operation and Emission Characteristics of a Diesel Engine Powered by a New Biofuel Prepared Using In Situ Transesterification of a Dry Spirogyra Algae–Jatropha Powder Mixture. Energies 2023, 16, 1470. [Google Scholar] [CrossRef]
- Hundie, K.B. Optimization of Biodiesel Production Parameters from Cucurbita Maxima Waste Oil Using Microwave Assisted via Box-Behnken Design Approach. J. Chem. 2022, 2022, 8516163. [Google Scholar] [CrossRef]
- Li, H.; Niu, S.; Lu, C.; Cheng, S. Comparative Evaluation of Thermal Degradation for Biodiesels Derived from Various Feedstocks through Transesterification. Energy Convers. Manag. 2015, 98, 81–88. [Google Scholar] [CrossRef]
- Ayu, D.; Aulyana, R.; Astuti, E.W.; Kusmiyati, K.; Hidayati, N. Catalytic Transesterification of Used Cooking Oil to Biodiesel: Effect of Oil-Methanol Molar Ratio and Reaction Time. Automot. Exp. 2019, 2, 73–77. [Google Scholar] [CrossRef]
- Riayatsyah, T.M.I.; Thaib, R.; Silitonga, A.S.; Milano, J.; Shamsuddin, A.H.; Sebayang, A.H.; Rahmawaty; Sutrisno, J.; Mahlia, T.M.I. Biodiesel Production from Reutealis Trisperma Oil Using Conventional and Ultrasonication through Esterification and Transesterification. Sustainability 2021, 13, 3350. [Google Scholar] [CrossRef]
- Pasawan, M.; Chen, S.-S.; Das, B.; Chang, H.-M.; Chang, C.-T.; Nguyen, T.X.Q.; Ku, H.-M.; Chen, Y.-F. Ultrasonication Assisted Catalytic Transesterification of Ceiba Pentandra (Kapok) Oil Derived Biodiesel Using Immobilized Iron Nanoparticles. Fuels 2022, 3, 113–131. [Google Scholar] [CrossRef]
- Shaah, M.A.; Hossain, M.S.; Allafi, F.; Ab Kadir, M.O.; Ahmad, M.I. Biodiesel Production from Candlenut Oil Using a Non-Catalytic Supercritical Methanol Transesterification Process: Optimization, Kinetics, and Thermodynamic Studies. RSC Adv. 2022, 12, 9845–9861. [Google Scholar] [CrossRef] [PubMed]
- Aravind, S.; Barik, D.; Ashok, N. Optimization of Oil Yield from the Macro Algae Spirogyra by Solvent Extraction Process Using RSM and ANN. Int. J. Photoenergy 2022, 2022, 3690635. [Google Scholar] [CrossRef]
- Hamzah, M.H.; Ibrahim, S.K.; Nor, M.Z.M.; Hamzah, A.F.A.; Shamsudin, R.; Ali, A.H.M. Optimization of Electrochemical Pre-Treatment for Essential Oil Extraction from Lemon Myrtle (B. Citriodora) Leaves by Response Surface Methodology. J. Food Meas. Charact. 2023, 17, 3732–3744. [Google Scholar] [CrossRef]
- Rodríguez-Miranda, J.; Hernández-Santos, B.; Herman-Lara, E.; Gómez-Aldapa, C.A.; Garcia, H.S.; Martínez-Sánchez, C.E. Effect of Some Variables on Oil Extraction Yield from Mexican Pumpkin Seeds. CyTA J. Food 2014, 12, 9–15. [Google Scholar] [CrossRef]
- Falletti, P.; Barrera Vázquez, M.F.; Cabrera, J.L.; Martini, R.E.; Comini, L.R. Valorization of Biomass Generated by Weeding of Flaveria Bidentis: Optimization of the Process of Extraction Sulfated Flavonoids Using a Doehlert Experimental Design. Waste Biomass Valorization 2023, 14, 3739–3749. [Google Scholar] [CrossRef]
- da Silva, F.C.; Guardiola, J.F.H.; Teixeira, L.P.; Maria, A.C.L.; da Souza, L.A.; Belém, A.L. Optimization of Palm Oil Biodiesel Production Using Response Surface Methodology. Rev. Bras. Ciências Ambient. 2021, 56, 274–285. [Google Scholar] [CrossRef]
- Razzaq, L.; Abbas, M.M.; Miran, S.; Asghar, S.; Nawaz, S.; Soudagar, M.E.M.; Shaukat, N.; Veza, I.; Khalil, S.; Abdelrahman, A.; et al. Response Surface Methodology and Artificial Neural Networks-Based Yield Optimization of Biodiesel Sourced from Mixture of Palm and Cotton Seed Oil. Sustainability 2022, 14, 6130. [Google Scholar] [CrossRef]
- Dharmegowda, I.Y.; Muniyappa, L.M.; Siddalingaiah, P.; Suresh, A.B.; Gowdru Chandrashekarappa, M.P.; Prakash, C. MgO Nano-Catalyzed Biodiesel Production from Waste Coconut Oil and Fish Oil Using Response Surface Methodology and Grasshopper Optimization. Sustainability 2022, 14, 11132. [Google Scholar] [CrossRef]
- Jain, D. Soxhlet Apparatus: Hot Continuous Extraction. In DNA Centre for Applied Sciences (DLCAS) Training Manual; DLCAS: Dehra Dun, India, 2020. [Google Scholar]
- Mckee, R.H.; Adenuga, M.D.; Carrillo, J.-C. Characterization of the Toxicological Hazards of Hydrocarbon Solvents. Crit. Rev. Toxicol. 2015, 45, 273–365. [Google Scholar] [CrossRef]
- Akaranta, O.; Anusiem, A.C.I. A Bioresource Solvent for Extraction of Castor Oil. Ind. Crops Prod. 1996, 5, 273–277. [Google Scholar] [CrossRef]
- Saeed, A.; Hanif, M.A.; Hanif, A.; Rashid, U.; Iqbal, J.; Majeed, M.I.; Moser, B.R.; Alsalme, A. Production of Biodiesel from Spirogyra Elongata, a Common Freshwater Green Algae with High Oil Content. Sustainability 2021, 13, 12737. [Google Scholar] [CrossRef]
- Aravind, S.; Barik, D.; Ragupathi, P.; Vignesh, G. Investigation on Algae Oil Extraction from Algae Spirogyra by Soxhlet Extraction Method. Mater. Today Proc. 2021, 43, 308–313. [Google Scholar] [CrossRef]
- Sánchez, A.; Maceiras, R.; Cancela, A.; Rodríguez, M. Influence of N-Hexane on In Situ Transesterification of Marine Macroalgae. Energies 2012, 5, 243–257. [Google Scholar] [CrossRef]
- Makareviciene, V.; Skorupskaite, V. Transesterification of Microalgae for Biodiesel Production. In Second and Third Generation of Feedstocks; Elsevier: Amsterdam, The Netherlands, 2019; pp. 469–510. [Google Scholar]
- Thao, N.T.P.; Thanh Tin, N.; Thanh, B.X. Biodiesel Production from Microalgae by Extraction–Transesterification Method. Waste Technol. 2013, 1, 6–9. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, H. Effect of Major Impurities in Crude Glycerol on Solubility and Properties of Glycerol/Methanol/Bio-Oil Blends. Fuel 2015, 159, 118–127. [Google Scholar] [CrossRef]
Property | Unit | Produced Biodiesel | International Standard Limits | |||
---|---|---|---|---|---|---|
ASTM D6751 | EN 14214 | |||||
Test Method | Limits | Test Method | Limits | |||
Density at 15 °C | kg/m3 | 890 | D4052 | 860–900 | EN ISO 3675 | 860–900 |
K. viscosity at 40 °C | mm2/s | 4.5 | D445 | 1.9–6.0 | EN ISO 3104 | 1.9–6.0 |
Flash point (min.) | °C | 145 | D93 | 130 | EN ISO 2719 | 101 |
Cloud point (max.) | °C | −2 | D2500 | - | EN ISO 20887 | - |
Pour point (max.) | °C | −9 | D97 | −12 | EN ISO 3016 | −15 |
Acid number (max.) | mg KOH/g | 0.28 | D664 | 0.50 | EN ISO 14104 | 0.50 |
Saponification value | mg KOH/g | 185 | D1693 | 170–200 | EN ISO 3657 | 170–200 |
Iodine value | g I2/100g | 115 | D6584 | 120 | EN ISO 14111 | 120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Otho, A.R.; Laghari, M.; Junejo, A.R.; Brohi, S.A.; Chandio, F.A.; Otho, S.A.; Hao, L.; Mari, I.A.; Dahri, J.; et al. Optimizing Algal Oil Extraction and Transesterification Parameters through RSM, PCA, and MRA for Sustainable Biodiesel Production. Catalysts 2024, 14, 675. https://doi.org/10.3390/catal14100675
Tang L, Otho AR, Laghari M, Junejo AR, Brohi SA, Chandio FA, Otho SA, Hao L, Mari IA, Dahri J, et al. Optimizing Algal Oil Extraction and Transesterification Parameters through RSM, PCA, and MRA for Sustainable Biodiesel Production. Catalysts. 2024; 14(10):675. https://doi.org/10.3390/catal14100675
Chicago/Turabian StyleTang, Lingdi, Ali Raza Otho, Mahmood Laghari, Abdul Rahim Junejo, Sheeraz Aleem Brohi, Farman Ali Chandio, Sohail Ahmed Otho, Li Hao, Irshad Ali Mari, Jahangeer Dahri, and et al. 2024. "Optimizing Algal Oil Extraction and Transesterification Parameters through RSM, PCA, and MRA for Sustainable Biodiesel Production" Catalysts 14, no. 10: 675. https://doi.org/10.3390/catal14100675
APA StyleTang, L., Otho, A. R., Laghari, M., Junejo, A. R., Brohi, S. A., Chandio, F. A., Otho, S. A., Hao, L., Mari, I. A., Dahri, J., & Channa, J. A. (2024). Optimizing Algal Oil Extraction and Transesterification Parameters through RSM, PCA, and MRA for Sustainable Biodiesel Production. Catalysts, 14(10), 675. https://doi.org/10.3390/catal14100675