Enhanced Diclofenac Photomineralization under Solar Light Using Ce1−xZnxO2−x Solid Solution Catalysts: Synergistic Effect of Photoexcited Electrons and Oxygen Vacancies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Analysis
2.2. Optical Properties
2.3. Photocatalytic Mineralization of Diclofenac
3. Materials and Methods
3.1. Materials
3.2. Synthesis of ZnO, CeO2 and Ce1−xZnxO2−x Solid Solutions
3.3. Methods of Characterization
3.4. Evaluation of Photocatalytic Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Evgenidou, E.N.; Konstantinou, I.K.; Lambropoulou, D.A. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: A review. Sci. Total Environ. 2015, 505, 905–926. [Google Scholar] [CrossRef]
- Nakada, N.; Shinohara, H.; Murata, A.; Kiri, K.; Managaki, S.; Sato, N.; Takada, H. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Res. 2007, 41, 4373–4382. [Google Scholar] [CrossRef]
- Nguela, C.B.D.; Manga, N.H.; Marchal, C.; Abega, A.V.; Nsami, N.J.; Robert, D. Effect of Biogenic Silica Behavior in the Incorporation of Mesoporous Anatase TiO2 for Excellent Photocatalytic Mineralization of Sodium Diclofenac. Catalysts 2022, 12, 1001. [Google Scholar] [CrossRef]
- Hofmann, J.; Freier, U.; Wecks, M.; Hohmann, S. Degradation of diclofenac in water by heterogeneous catalytic oxidation with H2O2. Appl. Catal. B Environ. 2007, 70, 447–451. [Google Scholar] [CrossRef]
- Rosales, E.; Diaz, S.; Pazos, M.; Sanromán, M.A. Comprehensive strategy for the degradation of anti-inflammatory drug diclofenac by different advanced oxidation processes. Sep. Purif. Technol. 2019, 208, 130–141. [Google Scholar] [CrossRef]
- An, J.; Zhou, Q. Degradation of some typical pharmaceuticals and personal care products with copper-plating iron doped Cu2O under visible light irradiation. J. Environ. Sci. 2012, 24, 827–833. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P.; Robert, D. Modified TiO2 for environmental photocatalytic applications: A review. Ind. Eng. Chem. Res. 2013, 52, 3581–3599. [Google Scholar] [CrossRef]
- Pruna, A.; Wu, Z.; Zapien, J.; Li, Y.; Ruotolo, A. Enhanced photocatalytic performance of ZnO nanostructures by electrochemical hybridization with graphene oxide. Appl. Surf. Sci. 2018, 441, 936–944. [Google Scholar] [CrossRef]
- Rahman, A.; Jalil, A.; Triwahyono, S.; Ripin, A.; Aziz, F.; Fatah, N.; Jaafar, N.; Hitam, C.; Salleh, N.; Hassan, N. Strategies for introducing titania onto mesostructured silica nanoparticles targeting enhanced photocatalytic activity of visible-light-responsive Ti-MSN catalysts. J. Clean. Prod. 2017, 143, 948–959. [Google Scholar] [CrossRef]
- Liu, J.; Wang, B.; Li, Z.; Wu, Z.; Zhu, K.; Zhuang, J.; Xi, Q.; Hou, Y.; Chen, J.; Cong, M. Photo-Fenton reaction and H2O2 enhanced photocatalytic activity of α-Fe2O3 nanoparticles obtained by a simple decomposition route. J. Alloys Compd. 2019, 771, 398–405. [Google Scholar] [CrossRef]
- Meng, A.; Zhu, B.; Zhong, B.; Zhang, L.; Cheng, B. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl. Surf. Sci. 2017, 422, 518–527. [Google Scholar] [CrossRef]
- Baxter, J.B.; Schmuttenmaer, C.A. Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J. Phys. Chem. B 2006, 110, 25229–25239. [Google Scholar] [CrossRef]
- Meulenkamp, E.A. Electron transport in nanoparticulate ZnO films. J. Phys. Chem. B 1999, 103, 7831–7838. [Google Scholar] [CrossRef]
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016, 88, 428–448. [Google Scholar] [CrossRef]
- Yusoff, N.; Ho, L.-N.; Ong, S.-A.; Wong, Y.-S.; Khalik, W. Photocatalytic activity of zinc oxide (ZnO) synthesized through different methods. Desalination Water Treat. 2016, 57, 12496–12507. [Google Scholar] [CrossRef]
- Kositzi, M.; Poulios, I.; Samara, K.; Tsatsaroni, E.; Darakas, E. Photocatalytic oxidation of cibacron yellow LS-R. J. Hazard. Mater. 2007, 146, 680–685. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, H.-B.; Zheng, Y.-Z.; Ye, R.; Tao, X.; Chen, J.-F. Controllable assembly of well-defined monodisperse Au nanoparticles on hierarchical ZnO microspheres for enhanced visible-light-driven photocatalytic and antibacterial activity. Nanoscale 2015, 7, 19118–19128. [Google Scholar] [CrossRef]
- Yu, W.; Xu, D.; Peng, T. Enhanced photocatalytic activity of gC3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: A direct Z-scheme mechanism. J. Mater. Chem. A 2015, 3, 19936–19947. [Google Scholar] [CrossRef]
- Zha, R.; Nadimicherla, R.; Guo, X. Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. J. Mater. Chem. A 2015, 3, 6565–6574. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Samadi, M.; Yousefzadeh, S.; Soltani, M.; Rahimi, A.; Chou, T.; Chen, L.-C.; Chen, K.-H.; Moshfegh, A.Z. Improved solar-driven photocatalytic activity of hybrid graphene quantum dots/ZnO nanowires: A direct Z-scheme mechanism. ACS Sustain. Chem. Eng. 2017, 5, 367–375. [Google Scholar] [CrossRef]
- Ma, Y.; Bian, Y.; Liu, Y.; Zhu, A.; Wu, H.; Cui, H.; Chu, D.; Pan, J. Construction of Z-scheme system for enhanced photocatalytic H2 evolution based on CdS quantum dots/CeO2 nanorods heterojunction. ACS Sustain. Chem. Eng. 2018, 6, 2552–2562. [Google Scholar] [CrossRef]
- Li, R.; Yabe, S.; Yamashita, M.; Momose, S.; Yoshida, S.; Yin, S.; Sato, T. UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes. Mater. Chem. Phys. 2002, 75, 39–44. [Google Scholar] [CrossRef]
- Haneda, M.; Kaneko, T.; Kamiuchi, N.; Ozawa, M. Improved three-way catalytic activity of bimetallic Ir–Rh catalysts supported on CeO2/ZrO2. Catal. Sci. Technol. 2015, 5, 1792–1800. [Google Scholar] [CrossRef]
- Xiong, Z.; Lei, Z.; Xu, Z.; Chen, X.; Gong, B.; Zhao, Y.; Zhao, H.; Zhang, J.; Zheng, C. Flame spray pyrolysis synthesized ZnO/CeO2 nanocomposites for enhanced CO2 photocatalytic reduction under UV–Vis light irradiation. J. CO2 Util. 2017, 18, 53–61. [Google Scholar] [CrossRef]
- Zhu, L.; Li, H.; Xia, P.; Liu, Z.; Xiong, D. Hierarchical ZnO Decorated with CeO2 Nanoparticles as the Direct Z-Scheme Heterojunction for Enhanced Photocatalytic Activity. ACS Appl. Mater. Interfaces 2018, 10, 39679–39687. [Google Scholar] [CrossRef]
- Liu, I.-T.; Hon, M.-H.; Teoh, L.G. The preparation, characterization and photocatalyticactivity of radical-shaped CeO2/ZnO microstructures. Ceram. Int. 2014, 40, 4019–4024. [Google Scholar] [CrossRef]
- Cerrato, E.; Gonçalves, N.P.F.; Calza, P.; Paganini, M.C. Comparison of the photocatalytic activity of ZnO/CeO2 and ZnO/Yb2O3 mixed systems in the phenol removal from water: A mechanicistic approach. Catalysts 2020, 10, 1222. [Google Scholar] [CrossRef]
- Caregnato, P.; Jimenez, K.R.E.; Villabrille, P.I. Ce-doped ZnO as photocatalyst for carbamazepine degradation. Catal. Today 2020, in press. [Google Scholar] [CrossRef]
- Al Abri, R.; Al Marzouqi, F.; Kuvarega, A.T.; Meetani, M.A.; Al Kindy, S.M.Z.; Karthikeyan, S.; Kim, Y.; Selvaraj, R. Nanostructured cerium-doped ZnO for photocatalytic degradation of pharmaceuticals in aqueous solution. J. Photochem. Photobiol. A Chem. 2019, 384, 112065. [Google Scholar] [CrossRef]
- Wolski, L.; Grzelak, K.; Muńko, M.; Frankowski, M.; Grzyb, T.; Nowaczyk, G. Insight into photocatalytic degradation of ciprofloxacin over CeO2/ZnO nanocomposites: Unravelling the synergy between the metal oxides and analysis of reaction pathways. Appl. Surf. Sci. 2021, 563, 150338. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, X.; Duan, L.; Shen, H.; Liu, R. Controlling oxygen vacancies and enhanced visible light photocatalysis of CeO2/ZnO nanocomposites. J. Photochem. Photobiol. A Chem. 2020, 392, 112156. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, P.; Cheng, Y.; Liao, L.; Li, S.; Luo, Y.; Peng, Z.; Lin, P.; He, D. Cerium oxide immobilized reduced graphene oxide hybrids with excellent microwave absorbing performance. Phys. Chem. Chem. Phys. 2018, 20, 14155–14165. [Google Scholar] [CrossRef]
- Liu, X.; Li, F.; Liu, Y.; Li, P.; Chen, L.; Li, B.; Qian, T.; Liu, W. Degradation of diclofenac in a photosensitization-like photocatalysis process using palladium quantum dots deposited graphite carbon nitride under solar light. J. Environ. Chem. Eng. 2022, 10, 107545. [Google Scholar] [CrossRef]
- Cheng, T.; Gao, H.; Wang, S.; Yi, Z.; Liu, G.; Pu, Z.; Wang, X.; Yang, H. Surface doping of Bi4Ti3O12 with S/Enhanced photocatalytic activity, mechanism and potential photodegradation application. Mater. Res. Bull. 2022, 149, 111711. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, X.; Ma, J.; Yi, Z.; Xian, T.; Wang, S.; Liu, G.; Wang, X.; Yang, H. Development of highly-efficient 0D/1D/0D dual Z-scheme CdS/ZnWO4/ZnS hetreojunction photocatalysts in polluant removal and involved mechanism. Appl. Surf. Sci. 2023, 611, 155681. [Google Scholar] [CrossRef]
2θ (Degree) | Microstrain (ε) | Dislocation Density (δ) | ||
---|---|---|---|---|
CeO2 | 28.16 | 0.617 | 1.820 | |
0.1 | 28.58 | 0.589 | 1.505 | |
Ce1−xZnxO2−x | 0.2 | 27.98 | 0.544 | 1.439 |
0.3 | 28.10 | 0.518 | 1.301 | |
0.4 | 28.61 | 0.438 | 0.783 | |
ZnO | 36.17 | 0.236 | 0.441 |
ZnO | CeO2 | CeZn0.1 | |
---|---|---|---|
SBET (m2·g−1) | 0.65 | 6.44 | 8.05 |
Vp (cm3·g−1) | 0.006 | 0.039 | 0.069 |
Dp (nm) | 70.25 | 29.62 | 40.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbadi, M.; Abega, A.V.; Dantio Nguela, C.B.; Laghzizil, A.; Robert, D. Enhanced Diclofenac Photomineralization under Solar Light Using Ce1−xZnxO2−x Solid Solution Catalysts: Synergistic Effect of Photoexcited Electrons and Oxygen Vacancies. Catalysts 2023, 13, 1181. https://doi.org/10.3390/catal13081181
Abbadi M, Abega AV, Dantio Nguela CB, Laghzizil A, Robert D. Enhanced Diclofenac Photomineralization under Solar Light Using Ce1−xZnxO2−x Solid Solution Catalysts: Synergistic Effect of Photoexcited Electrons and Oxygen Vacancies. Catalysts. 2023; 13(8):1181. https://doi.org/10.3390/catal13081181
Chicago/Turabian StyleAbbadi, Meryem, Aimé Victoire Abega, Christian Brice Dantio Nguela, Abdelaziz Laghzizil, and Didier Robert. 2023. "Enhanced Diclofenac Photomineralization under Solar Light Using Ce1−xZnxO2−x Solid Solution Catalysts: Synergistic Effect of Photoexcited Electrons and Oxygen Vacancies" Catalysts 13, no. 8: 1181. https://doi.org/10.3390/catal13081181
APA StyleAbbadi, M., Abega, A. V., Dantio Nguela, C. B., Laghzizil, A., & Robert, D. (2023). Enhanced Diclofenac Photomineralization under Solar Light Using Ce1−xZnxO2−x Solid Solution Catalysts: Synergistic Effect of Photoexcited Electrons and Oxygen Vacancies. Catalysts, 13(8), 1181. https://doi.org/10.3390/catal13081181