Assessment of Agricultural Residue to Produce Activated Carbon-Supported Nickel Catalysts and Hydrogen Rich Gas
Abstract
:1. Introduction
2. Results and Discussion
2.1. Textural Properties
2.2. XRD Analysis
2.3. Surface Chemistry
2.3.1. XPS Analysis
2.3.2. TPD Analysis
2.4. TEM Images
2.5. Catalytic Test
3. Materials and Methods
3.1. Materials
3.2. Catalyst Preparation
3.3. Characterization of the Catalysts
3.4. SCWG Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. Global Hydrogen Review 2022; IEA: Paris, France, 2022; License: CC BY 4.0, 2022; Available online: https://www.iea.org/reports/global-hydrogen-review-2022 (accessed on 17 April 2023).
- Fahmy, T.Y.; Fahmy, Y.; Mobarak, F.; El-Sakhawy, M.; Abou-Zeid, R.E. Biomass pyrolysis: Past, present, and future. J. Environ. Dev. Sustain. 2020, 22, 17–32. [Google Scholar] [CrossRef]
- Kiadehi, A.D.; Taghizadeh, M.; Azarhoosh, M.J.; Aghaeinejad-Meybodi, A. Hydrogen production using ethylene glycol steam reforming in a micro-reformer: Experimental analysis, multivariate polynomial regression and genetic programming modeling approaches. J. Taiwan Inst. Chem. Eng. 2020, 112, 20–33. [Google Scholar] [CrossRef]
- Yahya, H.S.M.; Amin, N.A.S. Catalytic steam reforming of toluene for hydrogen production over nickel-cobalt supported activated carbon. Int. J. Integr. Eng. 2019, 11, 209–218. [Google Scholar]
- Zhu, H.L.; Pastor-Pérez, L.; Millan, M. Catalytic steam reforming of toluene: Understanding the influence of the main reaction parameters over a reference catalyst. Energies 2020, 13, 813. [Google Scholar] [CrossRef]
- Hu, Y.; Qi, L.; Rao, K.T.V.; Zhao, B.; Li, H.; Zeng, Y.; Xu, C.C. Supercritical water gasification of biocrude oil from low-temperature liquefaction of algal lipid extraction residue. Fuel 2020, 276, 118017. [Google Scholar] [CrossRef]
- Tavasoli, A.; Barati, M.; Karimi, A. Sugarcane bagasse supercritical water gasification in presence of potassium promoted copper nano-catalysts supported on γ-Al2O3. Int. J. Hydrogen Energy 2016, 41, 174–180. [Google Scholar] [CrossRef]
- Veiga, S.; Bussi, J. Steam reforming of crude glycerol over nickel supported on activated carbon. Energy Convers. Manag. 2017, 141, 79–84. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Zhang, F.; Cai, Q.; Wang, Y.; Luo, Z. Bio-oil catalytic reforming without steam addition: Application to hydrogen production and studies on its mechanism. Int. J. Hydrogen Energy 2013, 38, 16038–16160. [Google Scholar] [CrossRef]
- Calles, J.A.; Carrero, A.; Vizcaíno, A.J.; García-Moreno, L.; Megía, P.J. Steam reforming of model bio-oil aqueous fraction using Ni-(Cu, Co, Cr)/SBA-15 catalysts. Int. J. Mol. Sci. 2019, 20, 512. [Google Scholar] [CrossRef]
- Bermúdez, J.M.; Arenillas, A.; Menéndez, J.A. Syngas from CO2 reforming of coke oven gas: Synergetic effect of activated carbon/Ni–γAl2O3 catalyst. Int. J. Hydrogen Energy 2011, 36, 13361–13368. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, Y.; Xu, Y.; Zhang, R. Catalytic performance of N-doped activated carbon supported cobalt catalyst for carbon dioxide reforming of methane to synthesis gas. J. Taiwan Inst. Chem. Eng. 2018, 93, 234–244. [Google Scholar] [CrossRef]
- Qian, K.; Kumar, A. Catalytic reforming of toluene and naphthalene (model tar) by char supported nickel catalyst. Fuel 2017, 187, 128–136. [Google Scholar] [CrossRef]
- Kupila, R.; Lappalainen, K.; Hu, T.; Romar, H.; Lassi, U. Lignin-based activated carbon-supported metal oxide catalysts in lactic acid production from glucose. Appl. Catal. A Gen. 2021, 612, 118011. [Google Scholar] [CrossRef]
- Yang, X.; Liu, X.; Guo, T.; Liu, C. Effects of Cu and Fe additives on low-temperature catalytic steam reforming of toluene over Ni/AC catalysts. Catal. Surv. Asia 2019, 23, 54–63. [Google Scholar] [CrossRef]
- Liu, X.; Yang, X.; Liu, C.; Chen, P.; Yue, X.; Zhang, S. Low-temperature catalytic steam reforming of toluene over activated carbon supported nickel catalysts. J. Taiwan Inst. Chem. Eng. 2016, 65, 233–241. [Google Scholar] [CrossRef]
- Girgis, B.S.; Ishak, M.F. Activated carbon from cotton stalks by impregnation with phosphoric acid. Mater. Lett. 1999, 39, 107–114. [Google Scholar] [CrossRef]
- Hayashi, J.I.; Horikawa, T.; Takeda, I.; Muroyama, K.; Ani, F.N. Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon 2002, 40, 2381–2386. [Google Scholar] [CrossRef]
- Rosas, J.M.; Bedia, J.; Rodríguez-Mirasol, J.; Cordero, T. On the preparation and characterization of chars and activated carbons from orange skin. Fuel Process. Technol. 2010, 91, 1345–1354. [Google Scholar] [CrossRef]
- Lee, I.G.; Ihm, S.K. Catalytic gasification of glucose over Ni/activated charcoal in supercritical water. Ind. Eng. Chem. Res. 2009, 48, 1435–1442. [Google Scholar] [CrossRef]
- Lee, I.G. Effect of metal addition to Ni/activated charcoal catalyst on gasification of glucose in supercritical water. Int. J. Hydrogen Energy 2011, 36, 8869–8877. [Google Scholar] [CrossRef]
- Che, Q.; Yang, M.; Wang, X.; Chen, X.; Chen, W.; Yang, Q.; Chen, H. Aromatics production with metal oxides and ZSM-5 as catalysts in catalytic pyrolysis of wood sawdust. Fuel Process. Technol. 2019, 188, 146–152. [Google Scholar] [CrossRef]
- Penninger, J.M.; Rep, M. Reforming of aqueous wood pyrolysis condensate in supercritical water. Int. J. Hydrogen Energy 2006, 31, 1597–1606. [Google Scholar] [CrossRef]
- Remón, J.; Arcelus-Arrillaga, P.; García, L.; Arauzo, J. Production of gaseous and liquid bio-fuels from the upgrading of lignocellulosic bio-oil in sub-and supercritical water: Effect of operating conditions on the process. Energy Convers. Manag. 2016, 119, 14–36. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Sun, L.; Liang, X.; Liu, H.; Cao, H.; Liu, X.; Jin, Y.; Wu, X. Activation of Co-O bond in (110) facet exposed Co3O4 by Cu doping for the boost of propane catalytic oxidation. J. Hazard. Mater. 2023, 452, 131319. [Google Scholar] [CrossRef]
- Xu, S.; Niu, M.; Zhao, G.; Ming, S.; Li, X.; Zhu, Q.; Yamauchi, Y. Size control and electronic manipulation of Ru catalyst over B, N co-doped carbon network for high-performance hydrogen evolution reaction. Nano Res. 2022, 1–8. [Google Scholar] [CrossRef]
- Rosas, J.M.; Bedia, J.; Rodríguez-Mirasol, J.; Cordero, T. HEMP-derived activated carbon fibers by chemical activation with phosphoric acid. Fuel 2009, 88, 19–26. [Google Scholar] [CrossRef]
- Jagtoyen, M.; Derbyshire, F. Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 1998, 36, 1085–1097. [Google Scholar] [CrossRef]
- Bedia, J.; Rosas, J.M.; Marquez, J.; Rodriguez-Mirasol, J.; Cordero, T. Preparation and characterization of carbon-based acid catalysts for the dehydration of 2-propanol. Carbon 2009, 47, 286–294. [Google Scholar] [CrossRef]
- Hosseinzaei, B.; Hadianfard, M.J.; Aghabarari, B.; García-Rollán, M.; Ruiz-Rosas, R.; Rosas, J.M.; Cordero, T. Pyrolysis of pistachio shell, orange peel and saffron petals for bioenergy production. Bioresour. Technol. Rep. 2022, 19, 101209. [Google Scholar] [CrossRef]
- Lozano-Castelló, D.; Cazorla-Amorós, D.; Linares-Solano, A. Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons. Carbon 2004, 42, 1233–1242. [Google Scholar] [CrossRef]
- Ibeh, P.O.; García-Mateos, F.J.; Rosas, J.M.; Rodríguez-Mirasol, J.; Cordero, T. Activated carbon monoliths from lignocellulosic biomass waste for electrochemical applications. J. Taiwan Inst. Chem. Eng. 2019, 97, 480–488. [Google Scholar] [CrossRef]
- Palomo, J.; Rodríguez-Cano, M.A.; Rodríguez-Mirasol, J.; Cordero, T. On the kinetics of methanol dehydration to dimethyl ether on Zr-loaded P-containing mesoporous activated carbon catalyst. Chem. Eng. J. 2019, 378, 122198. [Google Scholar] [CrossRef]
- Valero-Romero, M.J.; García-Mateos, F.J.; Rodríguez-Mirasol, J.; Cordero, T. Role of surface phosphorus complexes on the oxidation of porous carbons. Fuel Process. Technol. 2017, 157, 116–126. [Google Scholar] [CrossRef]
- Torres-Liñan, J.; Garcia-Rollan, M.; Rosas, J.M.; Rodriguez-Mirasol, J.; Cordero, T. Deactivation of a Biomass-Derived Zirconium-Doped Phosphorus-Containing Carbon Catalyst in the Production of Dimethyl Ether from Methanol Dehydration. Energy Fuels 2021, 35, 17225–17240. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Dufour, A.; Bettahar, M.E.M.; Medjahdi, G.; Ouederni, A.; Gadiou, R. Hydrogen production by methane decomposition over Ni-doped activated carbons: Effect of the activation method. Comptes Rendus. Chimie 2022, 25, 225–236. [Google Scholar] [CrossRef]
- Pham, L.K.H.; Kongparakul, S.; Reubroycharoen, P.; Ding, M.; Guan, G.; Vo, D.V.N.; Samart, C. High Catalytic Activity of a Nickel Phosphide Nanocatalyst Supported on Melamine-Doped Activated Carbon for Deoxygenation. Top. Catal. 2022, 66, 22–33. [Google Scholar] [CrossRef]
- Xin, H.; Guo, K.; Li, D.; Yang, H.; Hu, C. Production of high-grade diesel from palmitic acid over activated carbon-supported nickel phosphide catalysts. Appl. Catal. B Environ. 2016, 187, 375–385. [Google Scholar] [CrossRef]
- Sawhill, S.J.; Layman, K.A.; Van Wyk, D.R.; Engelhard, M.H.; Wang, C.; Bussell, M.E. Thiophene hydrodesulfurization over nickel phosphide catalysts: Effect of the precursor composition and support. J. Catal. 2005, 231, 300–313. [Google Scholar] [CrossRef]
- Sawhill, S.J.; Phillips, D.C.; Bussell, M.E. Thiophene hydrodesulfurization over supported nickel phosphide catalysts. J. Catal. 2003, 215, 208–219. [Google Scholar] [CrossRef]
- Figueiredo, J.L.; Pereira, M.F.R.; Freitas, M.M.A.; Orfao, J.J.M. Modification of the surface chemistry of activated carbons. Carbon 1999, 37, 1379–1389. [Google Scholar] [CrossRef]
- Palomo, J.; Rodríguez-Mirasol, J.; Cordero, T. Methanol dehydration to dimethyl ether on Zr-loaded P-containing mesoporous activated carbon catalysts. Materials 2019, 12, 2204. [Google Scholar] [CrossRef] [PubMed]
- Antal, M.J., Jr.; Allen, S.G.; Schulman, D.; Xu, X.; Divilio, R.J. Biomass gasification in supercritical water. Ind. Eng. Chem. Res. 2000, 39, 4040–4053. [Google Scholar] [CrossRef]
- Khorasani, R.; Khodaparasti, M.S.; Tavakoli, O. Hydrogen production from dairy wastewater using catalytic supercritical water gasification: Mechanism and reaction pathway. Int. J. Hydrogen Energy 2021, 46, 22368–22384. [Google Scholar] [CrossRef]
- Koike, N.; Hosokai, S.; Takagaki, A.; Nishimura, S.; Kikuchi, R.; Ebitani, K.; Oyama, S.T. Upgrading of pyrolysis bio-oil using nickel phosphide catalysts. J. Catal. 2016, 333, 115–126. [Google Scholar] [CrossRef]
- Nanda, S.; Reddy, S.N.; Dalai, A.K.; Kozinski, J.A. Subcritical and supercritical water gasification of lignocellulosic biomass impregnated with nickel nanocatalyst for hydrogen production. Int. J. Hydrogen Energy 2016, 41, 4907–4921. [Google Scholar] [CrossRef]
- Susanti, R.F.; Kim, J.; Yoo, K.-P. Supercritical water gasification for hydrogen production: Current status and prospective of high-temperature operation. In Supercritical Fluid Technology for Energy and Environmental Applications, 1st ed.; Anikeev, V., Fan, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 111–137. [Google Scholar]
- Trane, R.; Dahl, S.; Skjøth-Rasmussen, M.S.; Jensen, A.D. Catalytic steam reforming of bio-oil. Int. J. Hydrogen Energy 2012, 37, 6447–6472. [Google Scholar] [CrossRef]
- Duan, P.G.; Li, S.C.; Jiao, J.L.; Wang, F.; Xu, Y.P. Supercritical water gasification of microalgae over a two-component catalyst mixture. Sci. Total Environ. 2018, 630, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Osada, M.; Yamaguchi, A.; Hiyoshi, N.; Sato, O.; Shirai, M. Gasification of sugarcane bagasse over supported ruthenium catalysts in supercritical water. Energy Fuels 2012, 26, 3179–3186. [Google Scholar] [CrossRef]
- Hosseinzaei, B.; Hadianfard, M.J.; Ruiz-Rosas, R.; Rosas, J.M.; Rodríguez-Mirasol, J.; Cordero, T. Effect of heating rate and H3PO4 as catalyst on the pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis 2022, 168, 105724. [Google Scholar] [CrossRef]
Sample | N2 Isotherm | CO2 Isotherm | |||
---|---|---|---|---|---|
ABET (m2/g) | VDRN2 (cm3/g) | Vmeso (cm3/g) | V0.96 (cm3/g) | VDRCO2 (cm3/g) | |
AC(PS) | 1410 | 0.46 | 0.87 | 1.33 | 0.16 |
AC(OP) | 1085 | 0.34 | 1.20 | 1.54 | 0.15 |
AC(SP) | 900 | 0.30 | 0.71 | 1.01 | 0.13 |
Ni/AC(PS) | 985 | 0.32 | 0.85 | 1.17 | 0.14 |
Ni/AC(OP) | 710 | 0.25 | 0.31 | 0.56 | 0.14 |
Ni/AC(SP) | 595 | 0.21 | 0.20 | 0.41 | 0.13 |
Sample | Surface Concentración (w/w%), XPS | ||||
---|---|---|---|---|---|
C1s | O1s | P2p | Ni2p | Niat/Pat | |
AC(PS) | 90.9 | 7.7 | 1.4 | 0.0 | 0.00 |
AC(OP) | 87.6 | 10.2 | 2.2 | 0.0 | 0.00 |
AC(SP) | 81.1 | 15.6 | 3.2 | 0.0 | 0.00 |
Ni/AC(PS) | 93.1 | 4.4 | 0.6 | 1.9 | 1.56 |
Ni/AC(OP) | 86.9 | 8.5 | 2.1 | 2.5 | 0.65 |
Ni/AC(SP) | 83.0 | 12.4 | 2.2 | 2.5 | 0.59 |
Sample | CO (mmol/g) | CO2 (mmol/g) |
---|---|---|
AC (OP) | 2.14 | 0.033 |
Ni/AC(OP) | 2.38 | 0.009 |
AC(PS) | 1.54 | 0.002 |
Ni/AC(PS) | 1.74 | 0.010 |
AC(SP) | 1.93 | 0.030 |
Ni/AC(SP) | 2.01 | 0.000 |
Catalyst | Temp (°C) | Total Gas (mmol/gr Bio-Oil) | Volume Fraction (%) | LHV (MJ/m3, STP) | Gas Component (mmol/gr BIO-Oil) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
H2 | CO | CH4 | CO2 | H2 | CO | CH4 | CO2 | ||||
no catalyst | 500 | 0.41 | 8.6 | 22.3 | 41.0 | 28.1 | 10.4 | 0.0 | 0.1 | 0.2 | 0.1 |
Ni/AC(PS) | 400 | 1.08 | 15.9 | 25.4 | 54.7 | 4.0 | 17.7 | 0.1 | 0.2 | 0.5 | 0.0 |
Ni/AC(PS) | 500 | 6.11 | 29.0 | 27.9 | 38.6 | 3.8 | 18.0 | 1.5 | 1.4 | 2.0 | 0.2 |
Ni/AC(PS) | 550 | 7.87 | 37.2 | 33.4 | 30.0 | 2.5 | 19.7 | 2.4 | 2.2 | 2.0 | 0.2 |
Ni/AC(OP) | 400 | 0.57 | 12.7 | 12.2 | 48.0 | 27.1 | 11.8 | 0.0 | 0.0 | 0.2 | 0.1 |
Ni/AC(OP) | 500 | 4.65 | 32.2 | 30.3 | 24.1 | 13.3 | 17.4 | 0.9 | 0.9 | 0.7 | 0.4 |
Ni/AC(OP) | 550 | 5.85 | 41.7 | 33.4 | 14.3 | 18.7 | 18.2 | 1.5 | 1.2 | 0.5 | 0.7 |
Ni/AC(SP) | 400 | 0.33 | 11.5 | 11.5 | 49.4 | 28.0 | 11.6 | 0.0 | 0.0 | 0.1 | 0.1 |
Ni/AC(SP) | 500 | 2.74 | 27.0 | 24.8 | 32.7 | 16.2 | 15.9 | 0.5 | 0.5 | 0.6 | 0.3 |
Ni/AC(SP) | 550 | 4.89 | 33.3 | 30.2 | 22.5 | 10.0 | 17.2 | 1.0 | 0.9 | 0.7 | 0.3 |
Sample | AC(PS) | AC(OP) | AC(SP) | Ni/AC(PS) | Ni/AC(OP) | Ni/AC(SP) |
---|---|---|---|---|---|---|
Total yield (%) | 39 | 34 | 41 | 32.2 | 24.8 | 33.8 |
Ash (wt. %) | 3.7 | 9.1 | 13.4 | 22.6 | 18.2 | 18.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseinzaei, B.; Hadianfard, M.J.; Esmaeilzadeh, F.; Recio-Ruiz, M.d.C.; Ruiz-Rosas, R.; Rosas, J.M.; Rodríguez-Mirasol, J.; Cordero, T. Assessment of Agricultural Residue to Produce Activated Carbon-Supported Nickel Catalysts and Hydrogen Rich Gas. Catalysts 2023, 13, 854. https://doi.org/10.3390/catal13050854
Hosseinzaei B, Hadianfard MJ, Esmaeilzadeh F, Recio-Ruiz MdC, Ruiz-Rosas R, Rosas JM, Rodríguez-Mirasol J, Cordero T. Assessment of Agricultural Residue to Produce Activated Carbon-Supported Nickel Catalysts and Hydrogen Rich Gas. Catalysts. 2023; 13(5):854. https://doi.org/10.3390/catal13050854
Chicago/Turabian StyleHosseinzaei, Behnam, Mohammad Jafar Hadianfard, Feridun Esmaeilzadeh, María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana M. Rosas, José Rodríguez-Mirasol, and Tomás Cordero. 2023. "Assessment of Agricultural Residue to Produce Activated Carbon-Supported Nickel Catalysts and Hydrogen Rich Gas" Catalysts 13, no. 5: 854. https://doi.org/10.3390/catal13050854
APA StyleHosseinzaei, B., Hadianfard, M. J., Esmaeilzadeh, F., Recio-Ruiz, M. d. C., Ruiz-Rosas, R., Rosas, J. M., Rodríguez-Mirasol, J., & Cordero, T. (2023). Assessment of Agricultural Residue to Produce Activated Carbon-Supported Nickel Catalysts and Hydrogen Rich Gas. Catalysts, 13(5), 854. https://doi.org/10.3390/catal13050854