Novel Copper(II) Complexes with BIAN Ligands: Synthesis, Structure and Catalytic Properties of the Oxidation of Isopropylbenzene
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernauer, J.; Pölker, J.; Jacobi von Wangelin, A. Redox-active BIAN-based Diimine Ligands in Metal-Catalyzed Small Molecule Syntheses. ChemCatChem 2022, 14, e202101182. [Google Scholar] [CrossRef] [PubMed]
- Kaim, W. Chelate Rings of Different Sizes with Non-Innocent Ligands. Dalton Trans. 2019, 48, 8521–8529. [Google Scholar] [CrossRef] [PubMed]
- Abakumov, G.A.; Piskunov, A.V.; Cherkasov, V.K.; Fedushkin, I.L.; Ananikov, V.P.; Eremin, D.B.; Gordeev, E.G.; Beletskaya, I.P.; Averin, A.D.; Bochkarev, M.N.; et al. Organoelement Chemistry: Promising Growth Areas and Challenges. Russ. Chem. Rev. 2018, 87, 393–507. [Google Scholar] [CrossRef]
- Hill, N.J.; Vargas-Baca, I.; Cowley, A.H. Recent Developments in the Coordination Chemistry of Bis(Imino)Acenaphthene (BIAN) Ligands with s- and p-Block Elements. Dalton Trans. 2009, 2, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Fedushkin, I.L.; Moskalev, M.V.; Lukoyanov, A.N.; Tishkina, A.N.; Baranov, E.V.; Abakumov, G.A. Dialane with a Redox-Active Bis-Amido Ligand: Unique Reactivity towards Alkynes. Chem. Eur. J. 2012, 18, 11264–11276. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Skatova, A.A.; Bazyakina, N.L.; Chudakova, V.A.; Khvoinova, N.M.; Nikipelov, A.S.; Eremenko, O.V.; Piskunov, A.V.; Fukin, G.K.; Lyssenko, K.A. Syntheses and Structures of Magnesium, Calcium, Europium, Gallium, and Zinc Complexes with Bis(Imino)Acenaphthene Ligands. Russ. Chem. Bull. 2013, 62, 1815–1828. [Google Scholar] [CrossRef]
- Arrowsmith, M.; Hill, M.S.; Kociok-Köhn, G. Dearomatized BIAN Alkaline-Earth Alkyl Catalysts for the Intramolecular Hydroamination of Hindered Aminoalkenes. Organometallics 2014, 33, 206–216. [Google Scholar] [CrossRef]
- Wang, J.; Ganguly, R.; Yongxin, L.; Díaz, J.; Soo, H.S.; García, F. Synthesis and the Optical and Electrochemical Properties of Indium(III) Bis(Arylimino)Acenaphthene Complexes. Inorg. Chem. 2017, 56, 7811–7820. [Google Scholar] [CrossRef]
- Johnson, L.K.; Killian, C.M.; Brookhart, M. New Pd(II)- and Ni(II)-Based Catalysts for Polymerization of Ethylene and .Alpha.-Olefins. J. Am. Chem. Soc. 1995, 117, 6414–6415. [Google Scholar] [CrossRef]
- Rosa, V.; Santos, C.I.M.; Welter, R.; Aullón, G.; Lodeiro, C.; Avilés, T. Comparison of the Structure and Stability of New α-Diimine Complexes of Copper(I) and Silver(I): Density Functional Theory versus Experimental. Inorg. Chem. 2010, 49, 8699–8708. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Makarov, V.M.; Sokolov, V.G.; Fukin, G.K.; Maslov, M.O.; Ketkov, S.Y. Compounds of Chromium, Titanium, and Zirconium with Different Reduced Forms of Acenaphthene-1,2-Diimine. Russ. Chem. Bull. 2014, 63, 870–882. [Google Scholar] [CrossRef]
- Villa, M.; Miesel, D.; Hildebrandt, A.; Ragaini, F.; Schaarschmidt, D.; Jacobi von Wangelin, A. Synthesis and Catalysis of Redox-Active Bis(Imino)Acenaphthene (BIAN) Iron Complexes. ChemCatChem 2017, 9, 3203–3209. [Google Scholar] [CrossRef]
- Quintal, S.; Pires da Silva, M.J.; Martins, S.R.M.; Sales, R.; Félix, V.; Drew, M.G.B.; Meireles, M.; Mourato, A.C.; Nunes, C.D.; Saraiva, M.S.; et al. Molybdenum(II) Complexes with p -Substituted BIAN Ligands: Synthesis, Characterization, Biological Activity and Computational Study. Dalton Trans. 2019, 48, 8449–8463. [Google Scholar] [CrossRef] [PubMed]
- Tanahashi, H.; Ikeda, H.; Tsurugi, H.; Mashima, K. Synthesis and Characterization of Paramagnetic Tungsten Imido Complexes Bearing α-Diimine Ligands. Inorg. Chem. 2016, 55, 1446–1452. [Google Scholar] [CrossRef]
- Romashev, N.F.; Gushchin, A.L.; Fomenko, I.S.; Abramov, P.A.; Mirzaeva, I.V.; Kompan’kov, N.B.; Kal’nyi, D.B.; Sokolov, M.N. A New Organometallic Rhodium(I) Complex with Dpp-Bian Ligand: Synthesis, Structure and Redox Behaviour. Polyhedron 2019, 173, 114110. [Google Scholar] [CrossRef]
- Gushchin, A.L.; Romashev, N.F.; Shmakova, A.A.; Abramov, P.A.; Ryzhikov, M.R.; Fomenko, I.S.; Sokolov, M.N. Novel Redox Active Rhodium(III) Complex with Bis(Arylimino)Acenaphthene Ligand: Synthesis, Structure and Electrochemical Studies. Mendeleev Commun. 2020, 30, 81–83. [Google Scholar] [CrossRef]
- Romashev, N.F.; Abramov, P.A.; Bakaev, I.V.; Fomenko, I.S.; Samsonenko, D.G.; Novikov, A.S.; Tong, K.K.H.; Ahn, D.; Dorovatovskii, P.V.; Zubavichus, Y.V.; et al. Heteroleptic Pd(II) and Pt(II) Complexes with Redox-Active Ligands: Synthesis, Structure, and Multimodal Anticancer Mechanism. Inorg. Chem. 2022, 61, 2105–2118. [Google Scholar] [CrossRef]
- Romashev, N.F.; Mirzaeva, I.V.; Bakaev, I.V.; Komlyagina, V.I.; Komarov, V.Y.; Fomenko, I.S.; Gushchin, A.L. Structure of a Binuclear Rhodium(I) Complex with the Acenaphthene-1,2-diimine Ligand. J. Struct. Chem. 2022, 63, 242–251. [Google Scholar] [CrossRef]
- Ng, Y.Y.; Tan, L.J.; Ng, S.M.; Chai, Y.T.; Ganguly, R.; Du, Y.; Yeow, E.K.L.; Soo, H. Sen Spectroscopic Characterization and Mechanistic Studies on Visible Light Photoredox Carbon–Carbon Bond Formation by Bis(Arylimino)Acenaphthene Copper Photosensitizers. ACS Catal. 2018, 8, 11277–11286. [Google Scholar] [CrossRef]
- Yambulatov, D.S.; Nikolaevskii, S.A.; Kiskin, M.A.; Kholin, K.V.; Khrizanforov, M.N.; Budnikova, Y.G.; Babeshkin, K.A.; Efimov, N.N.; Goloveshkin, A.S.; Imshennik, V.K.; et al. Generation of a Hetero Spin Complex from Iron(II) Iodide with Redox Active Acenaphthene-1,2-Diimine. Molecules 2021, 26, 2998. [Google Scholar] [CrossRef]
- Koptseva, T.S.; Moskalev, M.V.; Skatova, A.A.; Rumyantcev, R.V.; Fedushkin, I.L. Reduction of CO 2 with Aluminum Hydrides Supported with Ar-BIAN Radical-Anions (Ar-BIAN = 1,2-Bis(Arylimino)Acenaphthene). Inorg. Chem. 2022, 61, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Moskalev, M.V.; Razborov, D.A.; Skatova, A.A.; Bazanov, A.A.; Fedushkin, I.L. Alkali Metal Reduction of 1,2-Bis[(2,6-dibenzhydryl-4-methylphenyl)Imino]Acenaphthene (Ar BIG-bian) to Radical-Anion. Eur. J. Inorg. Chem. 2021, 2021, 458–463. [Google Scholar] [CrossRef]
- Romashev, N.F.; Bakaev, I.V.; Komlyagina, V.I.; Fomenko, I.S.; Laricheva, Y.A.; Petrov, P.A.; Gushchin, A.L. Synthesis and Structure of a Binuclear Pd(Ii) Chloranilate Complex. J. Struct. Chem. 2021, 62, 1573–1579. [Google Scholar] [CrossRef]
- Fomenko, I.S.; Nadolinnyi, V.A.; Efimov, N.N.; Kokovkin, V.V.; Gushchin, A.L. Binuclear Oxidovanadium(IV) Complex with the Bridging Chloranilate Ligand: Synthesis and Magnetic Properties. Russ. J. Coord. Chem. 2019, 45, 776–781. [Google Scholar] [CrossRef]
- Abramov, P.A.; Dmitriev, A.A.; Kholin, K.V.; Gritsan, N.P.; Kadirov, M.K.; Gushchin, A.L.; Sokolov, M.N. Mechanistic Study of the [(Dpp-Bian)Re(CO)3Br] Electrochemical Reduction Using in Situ EPR Spectroscopy and Computational Chemistry. Electrochim. Acta 2018, 270, 526–534. [Google Scholar] [CrossRef]
- Ittel, S.D.; Johnson, L.K.; Brookhart, M. Late-Metal Catalysts for Ethylene Homo- and Copolymerization. Chem. Rev. 2000, 100, 1169–1204. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, C. Accessing Multiple Catalytically Active States in Redox-Controlled Olefin Polymerization. ACS Catal. 2017, 7, 7490–7494. [Google Scholar] [CrossRef]
- Anderson, W.C.; Rhinehart, J.L.; Tennyson, A.G.; Long, B.K. Redox-Active Ligands: An Advanced Tool To Modulate Polyethylene Microstructure. J. Am. Chem. Soc. 2016, 138, 774–777. [Google Scholar] [CrossRef]
- Kaiser, J.M.; Anderson, W.C.; Long, B.K. Photochemical Regulation of a Redox-Active Olefin Polymerization Catalyst: Controlling Polyethylene Microstructure with Visible Light. Polym. Chem. 2018, 9, 1567–1570. [Google Scholar] [CrossRef]
- van Asselt, R.; Elsevier, C.J. Homogeneous Catalytic Hydrogenation of Alkenes by Zero-Valent Palladium Complexes of Cis-Fixed Dinitrogen Ligands. J. Mol. Catal. 1991, 65, L13–L19. [Google Scholar] [CrossRef]
- Handbook of Homogeneous Hydrogenation. Available online: https://dare.uva.nl/search?metis.record.id=275294 (accessed on 29 June 2022).
- van Laren, M.W.; Elsevier, C.J. Selektive Palladium(0)-Katalysierte Homogene Hydrierung von Alkinen Zu (Z)-Alkenen. Angew. Chem. 1999, 111, 3926–3929. [Google Scholar] [CrossRef]
- Dedieu, A.; Humbel, S.; Elsevier, C.; Grauffel, C. Theoretical Study of the Semihydrogenation of Alkynes Catalyzed by Pd(0) Complexes: Is a Zwitterionic Pathway Possible? Theor. Chem. Acc. 2004, 112, 305–312. [Google Scholar] [CrossRef]
- Kluwer, A.M.; Koblenz, T.S.; Jonischkeit, T.; Woelk, K.; Elsevier, C.J. Kinetic and Spectroscopic Studies of the [Palladium(Ar-Bian)]-Catalyzed Semi-Hydrogenation of 4-Octyne. J. Am. Chem. Soc. 2005, 127, 15470–15480. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zheng, Z.; Yu, F.; Ma, S.; Holuigue, A.; Tromp, D.S.; Elsevier, C.J.; Yu, Y. [Pd(Ar-BIAN)(Alkene)]-Catalyzed Highly Chemo-, Regio-, and Stereoselective Semihydrogenation of 1,2-Allenyl Phosphonates and Related Compounds. Angew. Chem. 2006, 118, 5119–5122. [Google Scholar] [CrossRef]
- Wekesa, F.S.; Arias-Ugarte, R.; Kong, L.; Sumner, Z.; McGovern, G.P.; Findlater, M. Iron-Catalyzed Hydrosilylation of Aldehydes and Ketones under Solvent-Free Conditions. Organometallics 2015, 34, 5051–5056. [Google Scholar] [CrossRef]
- Sandl, S.; Maier, T.M.; van Leest, N.P.; Kröncke, S.; Chakraborty, U.; Demeshko, S.; Koszinowski, K.; de Bruin, B.; Meyer, F.; Bodensteiner, M.; et al. Cobalt-Catalyzed Hydrogenations via Olefin Cobaltate and Hydride Intermediates. ACS Catal. 2019, 9, 7596–7606. [Google Scholar] [CrossRef]
- Maier, T.M.; Sandl, S.; Shenderovich, I.G.; Jacobi von Wangelin, A.; Weigand, J.J.; Wolf, R. Amine-Borane Dehydrogenation and Transfer Hydrogenation Catalyzed by A-Diimine Cobaltates. Chem. Eur. J. 2019, 25, 238–245. [Google Scholar] [CrossRef]
- Saini, A.; Smith, C.R.; Wekesa, F.S.; Helms, A.K.; Findlater, M. Conversion of Aldimines to Secondary Amines Using Iron-Catalysed Hydrosilylation. Org. Biomol. Chem. 2018, 16, 9368–9372. [Google Scholar] [CrossRef]
- Tamang, S.R.; Cozzolino, A.F.; Findlater, M. Iron Catalysed Selective Reduction of Esters to Alcohols. Org. Biomol. Chem. 2019, 17, 1834–1838. [Google Scholar] [CrossRef]
- Maier, T.M.; Gawron, M.; Coburger, P.; Bodensteiner, M.; Wolf, R.; van Leest, N.P.; de Bruin, B.; Demeshko, S.; Meyer, F. Low-Valence Anionic α-Diimine Iron Complexes: Synthesis, Characterization, and Catalytic Hydroboration Studies. Inorg. Chem. 2020, 59, 16035–16052. [Google Scholar] [CrossRef]
- Ferretti, F.; Formenti, D.; Ragaini, F. The Reduction of Organic Nitro Compounds by Carbon Monoxide as an Effective Strategy for the Synthesis of N-Heterocyclic Compounds: A Personal Account. Rend. Lincei. 2017, 28, 97–115. [Google Scholar] [CrossRef]
- Ferretti, F.; Ramadan, D.R.; Ragaini, F. Transition Metal Catalyzed Reductive Cyclization Reactions of Nitroarenes and Nitroalkenes. ChemCatChem 2019, 11, 4450–4488. [Google Scholar] [CrossRef]
- Ragaini, F.; Cenini, S.; Gallo, E.; Caselli, A.; Fantauzzi, S. Fine Chemicals by Reductive Carbonylation of Nitroarenes, Catalyzed by Transition Metal Complexes. Curr. Org. Chem. 2006, 10, 1479–1510. [Google Scholar] [CrossRef]
- Ragaini, F.; Cenini, S.; Gasperini, M. Reduction of Nitrobenzene to Aniline by CO/H2O, Catalysed by Ru3(CO)12/Chelating Diimines. J. Mol. Catal. A Chem. 2001, 174, 51–57. [Google Scholar] [CrossRef]
- Ragaini, F.; Cenini, S.; Tollari, S. Reduction of Nitrobenzene to Aniline by CO/H2O, Catalysed by Ru3 (CO)12. Strong Activating Ability of Rigid α-Diimine Ligands. J. Mol. Catal. 1993, 85, L1–L5. [Google Scholar] [CrossRef]
- Viganò, M.; Ragaini, F.; Buonomenna, M.G.; Lariccia, R.; Caselli, A.; Gallo, E.; Cenini, S.; Jansen, J.C.; Drioli, E. Catalytic Polymer Membranes under Forcing Conditions: Reduction of Nitrobenzene by CO/H2O Catalyzed by Ruthenium Bis(Arylimino)Acenaphthene Complexes. ChemCatChem 2010, 2, 1150–1164. [Google Scholar] [CrossRef]
- Cenini, S.; Ragaini, F.; Tollari, S.; Paone, D. Allylic Amination of Cyclohexene Catalyzed by Ruthenium Complexes. A New Reaction Involving an Inter Molecular C−H Functionalization. J. Am. Chem. Soc. 1996, 118, 11964–11965. [Google Scholar] [CrossRef]
- Ragaini, F.; Cenini, S.; Tollari, S.; Tummolillo, G.; Beltrami, R. Allylic Amination of Unactivated Olefins by Nitroarenes, Catalyzed by Ruthenium Complexes. A Reaction Involving an Intermolecular C−H Functionalization. Organometallics 1999, 18, 928–942. [Google Scholar] [CrossRef]
- Ragaini, F.; Cenini, S.; Borsani, E.; Dompé, M.; Gallo, E.; Moret, M. Synthesis of N-Arylpyrroles, Hetero-Diels−Alder Adducts, and Allylic Amines by Reaction of Unfunctionalized Dienes with Nitroarenes and Carbon Monoxide, Catalyzed by Ru(CO)3 (Ar-BIAN). Organometallics 2001, 20, 3390–3398. [Google Scholar] [CrossRef]
- Arrowsmith, M.; Hill, M.S.; Kociok-Köhn, G. Suppression of Schlenk Equilibration and Heavier Alkaline Earth Alkyl Catalysis: A Dearomatization Strategy. Organometallics 2011, 30, 1291–1294. [Google Scholar] [CrossRef]
- Yakub, A.M.; Moskalev, M.V.; Bazyakina, N.L.; Fedushkin, I.L. Carbon—Carbon and Carbon—Nitrogen Bond Formation Reactions Catalyzed by the Magnesium and Calcium Acenaphthene-1,2-Diimine Complexes. Russ. Chem. Bull. 2018, 67, 473–478. [Google Scholar] [CrossRef]
- Cimino, A.; Moscatelli, F.; Ferretti, F.; Ragaini, F.; Germain, S.; Hannedouche, J.; Schulz, E.; Luconi, L.; Rossin, A.; Giambastiani, G. Novel Yttrium and Zirconium Catalysts Featuring Reduced Ar-BIANH 2 Ligands for Olefin Hydroamination (Ar-BIANH 2 = Bis-Arylaminoacenaphthylene). New J. Chem. 2016, 40, 10285–10293. [Google Scholar] [CrossRef]
- Li, L.; Lopes, P.S.; Figueira, C.A.; Gomes, C.S.B.; Duarte, M.T.; Rosa, V.; Fliedel, C.; Avilés, T.; Gomes, P.T. Cationic and Neutral (Ar-BIAN)Copper(I) Complexes Containing Phosphane and Arsane Ancillary Ligands: Synthesis, Molecular Structure and Catalytic Behaviour in Cycloaddition Reactions of Azides and Alkynes. Eur. J. Inorg. Chem. 2013, 2013, 1404–1417. [Google Scholar] [CrossRef]
- Li, L.; Lopes, P.S.; Rosa, V.; Figueira, C.A.; Lemos, M.A.N.D.A.; Duarte, M.T.; Avilés, T.; Gomes, P.T. Synthesis and Structural Characterisation of (Aryl-BIAN)Copper(i) Complexes and Their Application as Catalysts for the Cycloaddition of Azides and Alkynes. Dalton Trans. 2012, 41, 5144–5154. [Google Scholar] [CrossRef]
- Nunes, C.D.; Vaz, P.D.; Félix, V.; Veiros, L.F.; Moniz, T.; Rangel, M.; Realista, S.; Mourato, A.C.; Calhorda, M.J. Vanadyl Cationic Complexes as Catalysts in Olefin Oxidation. Dalton Trans. 2015, 44, 5125–5138. [Google Scholar] [CrossRef]
- Fomenko, I.S.; Gushchin, A.L.; Shul’pina, L.S.; Ikonnikov, N.S.; Abramov, P.A.; Romashev, N.F.; Poryvaev, A.S.; Sheveleva, A.M.; Bogomyakov, A.S.; Shmelev, N.Y.; et al. New Oxidovanadium(Iv) Complex with a BIAN Ligand: Synthesis, Structure, Redox Properties and Catalytic Activity. New J. Chem. 2018, 42, 16200–16210. [Google Scholar] [CrossRef]
- Fomenko, I.S.; Gushchin, A.L. Mono- and Binuclear Complexes of Group 5 Metals with Diimine Ligands: Synthesis, Reactivity and Prospects for Application. Russ. Chem. Rev. 2020, 89, 966–998. [Google Scholar] [CrossRef]
- Lukoyanov, A.N.; Fomenko, I.S.; Gongola, M.I.; Shul’pina, L.S.; Ikonnikov, N.S.; Shul’pin, G.B.; Ketkov, S.Y.; Fukin, G.K.; Rumyantcev, R.V.; Novikov, A.S.; et al. Novel Oxidovanadium Complexes with Redox-Active R-Mian and R-Bian Ligands: Synthesis, Structure, Redox and Catalytic Properties. Molecules 2021, 26, 5706. [Google Scholar] [CrossRef]
- Fomenko, I.S.; Gongola, M.I.; Shul’pina, L.S.; Ikonnikov, N.S.; Komarovskikh, A.Y.; Nadolinny, V.A.; Kozlov, Y.N.; Gushchin, A.L.; Shul’pin, G.B. Mononuclear Oxidovanadium(IV) Complexes with BIAN Ligands: Synthesis and Catalytic Activity in the Oxidation of Hydrocarbons and Alcohols with Peroxides. Catalysts 2022, 12, 1168. [Google Scholar] [CrossRef]
- Shul’pin, G.B.; Shul’pina, L.S. Oxidation of Organic Compounds with Peroxides Catalyzed by Polynuclear Metal Compounds. Catalysts 2021, 11, 186. [Google Scholar] [CrossRef]
- Petrenko, Y.P.; Piasta, K.; Khomenko, D.M.; Doroshchuk, R.O.; Shova, S.; Novitchi, G.; Toporivska, Y.; Gumienna-Kontecka, E.; Martins, L.M.D.R.S.; Lampeka, R.D. An Investigation of Two Copper(II) Complexes with a Triazole Derivative as a Ligand: Magnetic and Catalytic Properties. RSC Adv. 2021, 11, 23442–23449. [Google Scholar] [CrossRef] [PubMed]
- Gurbanov, A.V.; Andrade, M.A.; Martins, L.M.D.R.S.; Mahmudov, K.T.; Pombeiro, A.J.L. Water-Soluble Al(III), Fe(III) and Cu(II) Formazanates: Synthesis, Structure, and Applications in Alkane and Alcohol Oxidations. New J. Chem. 2022, 46, 5002–5011. [Google Scholar] [CrossRef]
- Shen, H.-M.; Wang, X.; Huang, H.; Liu, Q.-P.; Lv, D.; She, Y.-B. Staged Oxidation of Hydrocarbons with Simultaneously Enhanced Conversion and Selectivity Employing O2 as Oxygen Source Catalyzed by 2D Metalloporphyrin-Based MOFs Possessing Bimetallic Active Centers. J. Chem. Eng. 2022, 443, 136126. [Google Scholar] [CrossRef]
- Shul’pina, L.S.; Vinogradov, M.M.; Kozlov, Y.N.; Nelyubina, Y.V.; Ikonnikov, N.S.; Shul’pin, G.B. Copper Complexes with 1,10-Phenanthrolines as Efficient Catalysts for Oxidation of Alkanes by Hydrogen Peroxide. Inorg. Chim. Acta 2020, 512, 119889. [Google Scholar] [CrossRef]
- Fomenko, I.; Gushchin, A.; Abramov, P.; Sokolov, M.; Shul’pina, L.; Ikonnikov, N.; Kuznetsov, M.; Pombeiro, A.; Kozlov, Y.; Shul’pin, G. New Oxidovanadium(IV) Complexes with 2,2′-Bipyridine and 1,10-Phenathroline Ligands: Synthesis, Structure and High Catalytic Activity in Oxidations of Alkanes and Alcohols with Peroxides. Catalysts 2019, 9, 217. [Google Scholar] [CrossRef]
- Artem’Ev, A.V.; Kashevskii, A.V.; Bogomyakov, A.S.; Safronov, A.Y.; Sutyrina, A.O.; Telezhkin, A.A.; Sterkhova, I.V. Variable Coordination of Tris(2-Pyridyl)Phosphine and Its Oxide toward M(Hfac)2: A Metal-Specifiable Switching between the Formation of Mono- and Bis-Scorpionate Complexes. Dalton Trans. 2017, 46, 5965–5975. [Google Scholar] [CrossRef]
- Fomenko, I.S.; Afewerki, M.; Gongola, M.I.; Vasilyev, E.S.; Shul’pina, L.S.; Ikonnikov, N.S.; Shul’pin, G.B.; Samsonenko, D.G.; Yanshole, V.V.; Nadolinny, V.A.; et al. Novel Copper(II) Complexes with Dipinodiazafluorene Ligands: Synthesis, Structure, Magnetic and Catalytic Properties. Molecules 2022, 27, 4072. [Google Scholar] [CrossRef]
- Fliedel, C.; Rosa, V.; Santos, C.I.M.; Gonzalez, P.J.; Almeida, R.M.; Gomes, C.S.B.; Gomes, P.T.; Lemos, M.A.N.D.A.; Aullón, G.; Welter, R.; et al. Copper(II) Complexes of Bis(Aryl-Imino)Acenaphthene Ligands: Synthesis, Structure, DFT Studies and Evaluation in Reverse ATRP of Styrene. Dalton Trans. 2014, 43, 13041. [Google Scholar] [CrossRef]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen Bond Strengths Revealed by Topological Analyses of Experimentally Observed Electron Densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Ivanov, D.M.; Kirina, Y.V.; Novikov, A.S.; Starova, G.L.; Kukushkin, V.Y. Efficient π-Stacking with Benzene Provides 2D Assembly of Trans-[PtCl2(p-CF3C6H4CN)2]. J. Mol. Struct. 2016, 1104, 19–23. [Google Scholar] [CrossRef]
- Rozhkov, A.V.; Novikov, A.S.; Ivanov, D.M.; Bolotin, D.S.; Bokach, N.A.; Kukushkin, V.Y. Structure-Directing Weak Interactions with 1,4-Diiodotetrafluorobenzene Convert One-Dimensional Arrays of [MII(Acac)2] Species into Three-Dimensional Networks. Cryst. Growth Des. 2018, 18, 3626–3636. [Google Scholar] [CrossRef]
- Katkova, S.A.; Mikherdov, A.S.; Kinzhalov, M.A.; Novikov, A.S.; Zolotarev, A.A.; Boyarskiy, V.P.; Kukushkin, V. (Isocyano Group π-Hole)⋅⋅⋅[D Z2 -M II] Interactions of (Isocyanide)[M II] Complexes, in Which Positively Charged Metal Centers (D 8-M = Pt, Pd) Act as Nucleophiles. Chem. Eur. J. 2019, 25, 8590–8598. [Google Scholar] [CrossRef]
- Baykov, S.V.; Filimonov, S.I.; Rozhkov, A.V.; Novikov, A.S.; Ananyev, I.V.; Ivanov, D.M.; Kukushkin, V.Y. Reverse Sandwich Structures from Interplay between Lone Pair−π-Hole Atom-Directed C···dz2[M] and Halogen Bond Interactions. Cryst. Growth Des. 2019, 20, 995–1008. [Google Scholar] [CrossRef]
- Usoltsev, A.N.; Adonin, S.A.; Novikov, A.S.; Samsonenko, D.G.; Sokolov, M.N.; Fedin, V.P. One-dimensional polymeric polybromotellurates(IV): Structural and theoretical insights into halogen⋯halogen contacts. CrystEngComm 2017, 19, 5934–5939. [Google Scholar] [CrossRef]
- Adonin, S.A.; Gorokh, I.D.; Novikov, A.S.; Abramov, P.A.; Sokolov, M.N.; Fedin, V.P. Halogen Contacts-Induced Unusual Coloring in Bi III Bromide Complex: Anion-to-Cation Charge Transfer via Br⋅⋅⋅Br Interactions. Chem. Eur. J. 2017, 23, 15612–15616. [Google Scholar] [CrossRef]
- Adonin, S.A.; Gorokh, I.D.; Novikov, A.S.; Samsonenko, D.G.; Plyusnin, P.E.; Sokolov, M.N.; Fedin, V.P. Bromine-Rich Complexes of Bismuth: Experimental and Theoretical Studies. Dalton Trans. 2018, 47, 2683–2689. [Google Scholar] [CrossRef]
- Rozhkov, A.V.; Krykova, M.A.; Ivanov, D.M.; Novikov, A.S.; Sinelshchikova, A.A.; Volostnykh, M.V.; Konovalov, M.A.; Grigoriev, M.S.; Gorbunova, Y.G.; Kukushkin, V.Y. Reverse Arene Sandwich Structures Based upon π-Hole⋅⋅⋅[MII] (D8 M=Pt, Pd) Interactions, Where Positively Charged Metal Centers Play the Role of a Nucleophile. Angew. Chem. Int. Ed. 2019, 58, 4164–4168. [Google Scholar] [CrossRef]
- Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. From Weak to Strong Interactions: A Comprehensive Analysis of the Topological and Energetic Properties of the Electron Density Distribution Involving X–H⋯F–Y Systems. J. Chem. Phys. 2002, 117, 5529–5542. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef]
- Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D.N.; Yang, W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef]
- Kern, T.; Monkowius, U.; Zabel, M.; Knör, G. Mononuclear Copper(I) Complexes Containing Redox-Active 1,2-Bis(Aryl-Imino)Acenaphthene Acceptor Ligands: Synthesis, Crystal Structures and Tuneable Electronic Properties. Eur. J. Inorg. Chem. 2010, 2010, 4148–4156. [Google Scholar] [CrossRef]
- Kern, T.; Monkowius, U.; Zabel, M.; Knör, G. Synthesis, Crystal Structure and Charge Transfer Spectra of Dinuclear Copper(I) Complexes Bearing 1,2-Bis(Arylimino)Acenaphthene Acceptor Ligands. Inorg. Chim. Acta 2011, 374, 632–636. [Google Scholar] [CrossRef]
- Papanikolaou, P.; Akrivos, P.D.; Czapik, A.; Wicher, B.; Gdaniec, M.; Tkachenko, N. Homoleptic Bis(Aryl)Acenaphthenequinonediimine–Cu I Complexes—Synthesis and Characterization of a Family of Compounds with Improved Light-Gathering Characteristics. Eur. J. Inorg. Chem. 2013, 2013, 2418–2431. [Google Scholar] [CrossRef]
- Green, O.; Gandhi, B.A.; Burstyn, J.N. Photophysical Characteristics and Reactivity of Bis(2.9-Di-Tert-Butyl-1,10-Phenanthroline) Copper(l). Inorg. Chem. 2009, 48, 5704–5714. [Google Scholar] [CrossRef]
- Kuznetsova, N.I.; Babushkin, D.E.; Zudin, V.N.; Koscheeva, O.S.; Kuznetsova, L.I. Low-Temperature Oxidation of Isopropylbenzene Mediated by the System of NHPI, Fe(Acac)3 and 1,10-Phenanthroline. Catal. Commun. 2021, 149, 106218. [Google Scholar] [CrossRef]
- Bhattacharya, A. Kinetic Modeling of Liquid Phase Autoxidation of Cumene. Chem. Eng. J. 2008, 137, 308–319. [Google Scholar] [CrossRef]
- Pella, B.J.; Niklas, J.; Poluektov, O.G.; Mukherjee, A. Effects of Denticity and Ligand Rigidity on Reactivity of Copper Complexes with Cumyl Hydroperoxide. Inorg. Chim. Acta 2018, 483, 71–78. [Google Scholar] [CrossRef]
- Tano, T.; Ertem, M.Z.; Yamaguchi, S.; Kunishita, A.; Sugimoto, H.; Fujieda, N.; Ogura, T.; Cramer, C.J.; Itoh, S. Reactivity of Copper(Ii)-Alkylperoxo Complexes. Dalton Trans. 2011, 40, 10326. [Google Scholar] [CrossRef]
- Shimizu, I.; Morimoto, Y.; Velmurugan, G.; Gupta, T.; Paria, S.; Ohta, T.; Sugimoto, H.; Ogura, T.; Comba, P.; Itoh, S. Characterization and Reactivity of a Tetrahedral Copper(II) Alkylperoxido Complex. Chem. Eur. J. 2019, 25, 11157–11165. [Google Scholar] [CrossRef]
- Tano, T.; Sugimoto, H.; Fujieda, N.; Itoh, S. Heterolytic Alkyl Hydroperoxide O–O Bond Cleavage by Copper(I) Complexes. Eur. J. Inorg. Chem. 2012, 2012, 4099–4103. [Google Scholar] [CrossRef]
- Chen, P.; Fujisawa, K.; Solomon, E.I. Spectroscopic and Theoretical Studies of Mononuclear Copper(II) Alkyl- and Hydroperoxo Complexes: Electronic Structure Contributions to Reactivity. J. Am. Chem. Soc. 2000, 122, 10177–10193. [Google Scholar] [CrossRef]
- Kim, B.; Jeong, D.; Cho, J. Nucleophilic Reactivity of Copper(II)–Alkylperoxo Complexes. Chem. Comm. 2017, 53, 9328–9331. [Google Scholar] [CrossRef]
- Ferretti, F.; Rota, L.; Ragaini, F. Unexpected Coordination Behavior of Ruthenium to a Polymeric α-Diimine Containing the Poly[Bis(Arylimino)Acenaphthene] Fragment. Inorg. Chim. Acta 2021, 518, 120257. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt Graphical User Interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01; Gaussian Inc: Wallingford, CT, USA, 2010. [Google Scholar]
- Barros, C.L.; de Oliveira, P.J.P.; Jorge, F.E.; Canal Neto, A.; Campos, M. Gaussian Basis Set of Double Zeta Quality for Atoms Rb through Xe: Application in Non-Relativistic and Relativistic Calculations of Atomic and Molecular Properties. Mol. Phys. 2010, 108, 1965–1972. [Google Scholar] [CrossRef]
- Jorge, F.E.; Canal Neto, A.; Camiletti, G.G.; Machado, S.F. Contracted Gaussian Basis Sets for Douglas–Kroll–Hess Calculations: Estimating Scalar Relativistic Effects of Some Atomic and Molecular Properties. J. Chem. Phys 2009, 130, 064108. [Google Scholar] [CrossRef]
- de Berrêdo, R.C.; Jorge, F.E. All-Electron Double Zeta Basis Sets for Platinum: Estimating Scalar Relativistic Effects on Platinum(II) Anticancer Drugs. J. Mol. Struct. 2010, 961, 107–112. [Google Scholar] [CrossRef]
- Canal Neto, A.; Jorge, F.E. All-Electron Double Zeta Basis Sets for the Most Fifth-Row Atoms: Application in DFT Spectroscopic Constant Calculations. Chem. Phys. Lett. 2013, 582, 158–162. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
Noncovalent Interaction | ρ(r) | ∇2ρ(r) | λ2 | Hb | V(r) | G(r) | ELF | Eint ≈ −V(r)/2 |
---|---|---|---|---|---|---|---|---|
2 | ||||||||
Cu···Br, 3.666 Å | 0.006 | 0.018 | −0.006 | 0.000 | −0.004 | 0.004 | 0.020 | 1.3 |
Complex | T °C | Products, mmol | TON, h−1 | Selectivity, % | ||
---|---|---|---|---|---|---|
IPBHP | PP + AMS (**) | AP | ||||
50 | 0.82 | 504 | 12.2 | 56.3 | 31.5 | |
1 | 40 | 0.5 | 307 | 16.7 | 58.8 | 24.5 |
30 | 0.31 | 190 | 19.5 | 57.1 | 23.4 | |
50 | 0.64 | 393 | 20.3 | 48.2 | 31.5 | |
2 | 40 | 0.41 | 252 | 22.6 | 53.1 | 24.3 |
30 | 0.32 | 197 | 23.2 | 57.1 | 19.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fomenko, I.S.; Koshcheeva, O.S.; Kuznetsova, N.I.; Larina, T.V.; Gongola, M.I.; Afewerki, M.; Abramov, P.A.; Novikov, A.S.; Gushchin, A.L. Novel Copper(II) Complexes with BIAN Ligands: Synthesis, Structure and Catalytic Properties of the Oxidation of Isopropylbenzene. Catalysts 2023, 13, 849. https://doi.org/10.3390/catal13050849
Fomenko IS, Koshcheeva OS, Kuznetsova NI, Larina TV, Gongola MI, Afewerki M, Abramov PA, Novikov AS, Gushchin AL. Novel Copper(II) Complexes with BIAN Ligands: Synthesis, Structure and Catalytic Properties of the Oxidation of Isopropylbenzene. Catalysts. 2023; 13(5):849. https://doi.org/10.3390/catal13050849
Chicago/Turabian StyleFomenko, Iakov S., Olga S. Koshcheeva, Nina I. Kuznetsova, Tatyana V. Larina, Marko I. Gongola, Medhanie Afewerki, Pavel A. Abramov, Alexander S. Novikov, and Artem L. Gushchin. 2023. "Novel Copper(II) Complexes with BIAN Ligands: Synthesis, Structure and Catalytic Properties of the Oxidation of Isopropylbenzene" Catalysts 13, no. 5: 849. https://doi.org/10.3390/catal13050849
APA StyleFomenko, I. S., Koshcheeva, O. S., Kuznetsova, N. I., Larina, T. V., Gongola, M. I., Afewerki, M., Abramov, P. A., Novikov, A. S., & Gushchin, A. L. (2023). Novel Copper(II) Complexes with BIAN Ligands: Synthesis, Structure and Catalytic Properties of the Oxidation of Isopropylbenzene. Catalysts, 13(5), 849. https://doi.org/10.3390/catal13050849