ZnO-ZnFe2O4 Catalyst for Hydrogen Production from Methanol Steam Reforming
Abstract
:1. Introduction
2. Results and Analysis
2.1. XRD Analysis
2.2. SEM and TEM Studies
2.3. STEM-EDX Spectrum
2.4. BET Analysis
2.5. H2-TPR Analysis
2.6. H2 Production by the Steam Reforming of Methanol (SRM)
2.7. Stability and Selectivity Studies
3. Materials and Methods
3.1. Preparation of ZnFe2O4 and ZnO-ZnFe2O4 Catalysts
3.2. Characterization Studies
3.3. Catalyst Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Armaroli, N.; Balzani, V. The Future of Energy Supply: Challenges and Opportunities. Angew. Chem. Int. Ed. 2007, 46, 52–66. [Google Scholar] [CrossRef]
- Bistline, J.; Bragg-Sitton, S.; Cole, W.; Dixon, B.; Eschmann, E.; Ho, J.; Kwon, A.; Martin, L.; Murphy, C.; Namovicz, C.; et al. Modeling Nuclear Energy’s Future Role in Decarbonized Energy Systems. iScience 2023, 26, 105952. [Google Scholar] [CrossRef]
- Basile, A.; Parmaliana, A.; Tosti, S.; Iulianelli, A.; Gallucci, F.; Espro, C.; Spooren, J. Hydrogen Production by Methanol Steam Reforming Carried Out in Membrane Reactor on Cu/Zn/Mg-Based Catalyst. Catal. Today 2008, 137, 17–22. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, C.; Zong, L.; Lu, K.; Wang, X.; Cai, J. Hydrogen Production from Methanol Steam Reforming over TiO2 and CeO2 Pillared Clay Supported Au Catalysts. Appl. Sci. 2018, 8, 176. [Google Scholar] [CrossRef]
- Kannan, N.; Vakeesan, D. Solar Energy for Future World: A Review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [Google Scholar] [CrossRef]
- Joselin Herbert, G.M.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S. A Review of Wind Energy Technologies. Renew. Sustain. Energy Rev. 2007, 11, 1117–1145. [Google Scholar] [CrossRef]
- Shanmugam, V.; Neuberg, S.; Zapf, R.; Pennemann, H.; Kolb, G. Hydrogen Production over Highly Active Pt Based Catalyst Coatings by Steam Reforming of Methanol: Effect of Support and Co-Support. Int. J. Hydrogen Energy 2019, 45, 1658–1670. [Google Scholar] [CrossRef]
- Palo, D.R.; Dagle, R.A.; Holladay, J.D. Methanol Steam Reforming for Hydrogen Production. Chem. Rev. 2007, 107, 3992–4021. [Google Scholar] [CrossRef] [PubMed]
- Velu, S.; Suzuki, K.; Kapoor, M.P.; Ohashi, F.; Osaki, T. Selective Production of Hydrogen for Fuel Cells via Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts. Appl. Catal. Gen. 2001, 213, 47–63. [Google Scholar] [CrossRef]
- Hwang, B.Y.; Sakthinathan, S.; Chiu, T.W. Production of Hydrogen from Steam Reforming of Methanol Carried out by Self-Combusted CuCr1-xFexO2 (x = 0–1) Nanopowders Catalyst. Int. J. Hydrogen Energy 2019, 44, 2848–2856. [Google Scholar] [CrossRef]
- Chiu, T.W.; Hong, R.T.; Yu, B.S.; Huang, Y.H.; Kameoka, S.; Tsai, A.P. Improving Steam-Reforming Performance by Nanopowdering CuCrO2. Int. J. Hydrogen Energy 2014, 39, 14222–14226. [Google Scholar] [CrossRef]
- Wang, S.F.; Lu, C.M.; Wu, Y.C.; Yang, Y.C.; Chiu, T.W. La2O3-Al2O3-B2O3-SiO2 Glasses for Solid Oxide Fuel Cell Applications. Int. J. Hydrogen Energy 2011, 36, 3666–3672. [Google Scholar] [CrossRef]
- Hsu, K.C.; Yu, C.L.; Lei, H.J.; Sakthinathan, S.; Chen, P.C.; Lin, C.C.; Chiu, T.W.; Nagaraj, K.; Fan, L.; Lee, Y.H. Modification of Electrospun CeO2 Nanofibers with CuCrO2 Particles Applied to Hydrogen Harvest from Steam Reforming of Methanol. Materials 2022, 15, 8770. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.C.; Keyan, A.K.; Hung, C.W.; Sakthinathan, S.; Yu, C.L.; Chiu, T.W.; Nagaraj, K.; Fan, F.Y.; Shan, Y.K.; Chen, P.C. Fabrication of CuYO2 Nanofibers by Electrospinning and Applied to Hydrogen Harvest. Materials 2022, 15, 8957. [Google Scholar] [CrossRef]
- Kameoka, S.; Tanabe, T.; Tsai, A.P. Self-Assembled Porous Nano-Composite with High Catalytic Performance by Reduction of Tetragonal Spinel CuFe2O4. Appl. Catal. Gen. 2010, 375, 163–171. [Google Scholar] [CrossRef]
- Asprey, S.P.; Wojciechowski, B.W.; Peppley, B.A. Kinetic Studies Using Temperature-Ccanning: The Steam-Reforming of Methanol. Appl. Catal. Gen. 1999, 179, 51–70. [Google Scholar] [CrossRef]
- Mastalir, A.; Frank, B.; Szizybalski, A.; Soerijanto, H.; Deshpande, A.; Niederberger, M.; Schomäcker, R.; Schlögl, R.; Ressler, T. Steam Reforming of Methanol over Cu/ZrO2/CeO2 Catalysts: A Kinetic Study. J. Catal. 2005, 230, 464–475. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, X.; Li, H.; Liu, T.; Sang, S.; Chen, S.; Duan, L.; Zeng, L.; Xiang, W.; Gong, J. Chemical Looping Oxidative Steam Reforming of Methanol: A New Pathway for Auto-Thermal Conversion. Appl. Catal. Environ. 2020, 269, 118758. [Google Scholar] [CrossRef]
- Li, H.; Tian, H.; Chen, S.; Sun, Z.; Liu, T.; Liu, R.; Assabumrungrat, S.; Saupsor, J.; Mu, R.; Pei, C.; et al. Sorption Enhanced Steam Reforming of Methanol for High-Purity Hydrogen Production over Cu-MgO/Al2O3 Bifunctional Catalysts. Appl. Catal. Environ. 2020, 276, 119052. [Google Scholar] [CrossRef]
- Khani, Y.; Bahadoran, F.; Safari, N.; Soltanali, S.; Taheri, S.A. Hydrogen Production from Steam Reforming of Methanol over Cu-Based Catalysts: The Behavior of ZnxLaxAl1-xO4 and ZnO/La2O3/Al2O3 Lined on Cordierite Monolith Reactors. Int. J. Hydrogen Energy 2019, 44, 11824–11837. [Google Scholar] [CrossRef]
- Garbarino, G.; Pugliese, F.; Cavattoni, T.; Busca, G.; Costamagna, P. A Study on CO2 Methanation and Steam Methane Reforming over Commercial Ni/Calcium Aluminate Catalysts. Energies 2020, 13, 2792. [Google Scholar] [CrossRef]
- Perry, R.H.; Green, D.W. Perrys Chemical Engineers Handbook, 8th ed.; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Shen, J.P.; Song, C. Influence of Preparation Method on Performance of Cu/Zn-Based Catalysts for Low-Temperature Steam Reforming and Oxidative Steam Reforming of Methanol for H2 Production for Fuel Cells. Catal. Today 2002, 77, 89–98. [Google Scholar] [CrossRef]
- Agrell, J.; Birgersson, H.; Boutonnet, M. Steam Reforming of Methanol over a Cu/ZnO/Al2O3 Catalyst: A Kinetic Analysis and Strategies for Suppression of CO Formation. J. Power Source 2002, 106, 249–257. [Google Scholar] [CrossRef]
- Shishido, T.; Yamamoto, Y.; Morioka, H.; Takaki, K.; Takehira, K. Active Cu/ZnO and Cu/ZnO/Al2O3 Catalysts Prepared by Homogeneous Precipitation Method in Steam Reforming of Methanol. Appl. Catal. Gen. 2004, 263, 249–253. [Google Scholar] [CrossRef]
- Szizybalski, A.; Girgsdies, F.; Rabis, A.; Wang, Y.; Niederberger, M.; Ressler, T. In Situ Investigations of Structure-Activity Relationships of a Cu/ZrO2 Catalyst for The Steam Reforming of Methanol. J. Catal. 2005, 233, 297–307. [Google Scholar] [CrossRef]
- Huang, G.; Liaw, B.J.; Jhang, C.J.; Chen, Y.Z. Steam Reforming of Methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 Catalysts. Appl. Catal. A Gen. 2009, 358, 7–12. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, L.; Bao, Y.; Zhang, Y.; Wang, J.; Fu, M.; Wu, J.; Ye, D. The Applications of Morphology Controlled ZnO in Catalysis. Catalysts 2016, 6, 188. [Google Scholar] [CrossRef]
- Pipitone, G.; Zoppi, G.; Pirone, R.; Bensaid, S. A critical Review on Catalyst Design for Aqueous Phase Reforming. Int. J. Hydrogen Energy 2022, 47, 151–180. [Google Scholar] [CrossRef]
- Zoppi, G.; Pipitone, G.; Pirone, R.; Bensaid, S. Aqueous Phase Reforming Process for The Valorization of Wastewater Streams: Application to Different Industrial Scenarios. Catal. Today 2022, 387, 224–236. [Google Scholar] [CrossRef]
- Huang, R.J.; Sakthinathan, S.; Chiu, T.W.; Dong, C. Hydrothermal Synthesis of High Surface Area CuCrO2 for H2 Production by Methanol Steam Reforming. RSC Adv. 2021, 11, 12607–12613. [Google Scholar] [CrossRef]
- Yu, C.L.; Sakthinathan, S.; Hwang, B.Y.; Lin, S.Y.; Chiu, T.W.; Yu, B.S.; Fan, Y.J.; Chuang, C. CuFeO2–CeO2 Nanopowder Catalyst Prepared by Self-Combustion Glycine Nitrate Process and Applied for Hydrogen Production from Methanol Steam Reforming. Int. J. Hydrogen Energy 2020, 45, 15752–15762. [Google Scholar] [CrossRef]
- Yang, M.; Li, S.; Chen, G. High-Temperature Steam Reforming of Methanol over ZnO-Al2O3 Catalysts. Appl. Catal. Environ. 2011, 101, 409–416. [Google Scholar] [CrossRef]
- Mao, N. Investigating the Heteronjunction between ZnO/Fe2O3 and g-C3N4 for An Enhanced Photocatalytic H2 Production under Visible-Light Irradiation. Sci. Rep. 2019, 9, 12383. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zeng, S.; Dong, Y.; Fu, Y.; Sun, H.; Yin, S.; Guo, X.; Qin, W. Hydrogen Production from Methanol Aqueous Solution by ZnO/Zn(OH)2 Macrostructure Photocatalysts. RSC Adv. 2018, 8, 11395–11402. [Google Scholar] [CrossRef]
- Perez, Y.P.; Martinez, O.A.; Pena, P.A.; Vargas, C.E.S.; Ruiz, S.O.; Hernandez, F.G.; Gomez, R.; Tzompantzi, F. Novel ZnS-ZnO Composite Synthesized by The Solvothermal Method through The Partial Sulfidation of ZnO for H2 Production without Sacrificial Agent. Appl. Catal. Environ. 2018, 230, 125–134. [Google Scholar] [CrossRef]
- Dhanalakshmi, A.; Natarajan, B.; Ramadas, V.; Palanimurugan, A. Thanikaikarasan, Structural, Morphological, Optical and Antibacterial Activity of Rod-Shaped Zinc Oxide and Manganese-Doped Zinc Oxide Nanoparticles. Pramana J. Phys. 2016, 87, 57. [Google Scholar] [CrossRef]
- Sahoo, G.P.; Samanta, S.; Bhui, D.K.; Pyne, S.; Maity, A.; Misra, A. Hydrothermal Synthesis of Hexagonal ZnO Microstructures in HPMC Polymer Matrix and Their Catalytic Activities. J. Mol. Liq. 2015, 212, 665–670. [Google Scholar] [CrossRef]
- Kiran, S.; Saibaba, K.; Ramesh, T.; Ashok, K.; Polu, A.R. Preparation and Characterization of ZnO-ZnFe2O4 Nanocomposites. Macromol. Symp. 2023, 407, 2200027. [Google Scholar] [CrossRef]
- AlSalhi, M.S.; Devanesan, S.; Asemi, N.; Ahamed, A. Concurrent Fabrication of ZnO-ZnFe2O4 Hybrid Nanocomposite for Enhancing Photocatalytic Degradation of Organic Pollutants and Its Bacterial Inactivation. Chemosphere 2023, 318, 137928. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, S.; Li, X.; Huang, Y.; Wang, Z.; Han, Y.; Wu, J.; Meng, H.; Zhang, X. Synthesis, Characterization, and Photocatalytic Degradation Properties of ZnO/ZnFe2O4 Magnetic Heterostructures. New J. Chem. 2017, 41, 15433–15438. [Google Scholar] [CrossRef]
- Liu, T.; Xu, D.; Wu, D.; Liu, G.; Hong, X. Spinel ZnFe2O4 Regulates Copper Sites for CO2 Hydrogenation to Methanol. ACS Sustain. Chem. Eng. 2021, 9, 4033–4041. [Google Scholar] [CrossRef]
- Wang, L.; Gao, X.; Bai, Y.; Tan, M.; Sun, K.; Zhang, T.; Wu, Y.; Pan, J.; Xie, H.; Tan, Y. The Synergistic Effect Between ZnO and ZnCr2O4 on The Catalytic Performance for Isobutanol Synthesis from Syngas. Fuel 2019, 253, 1570–1577. [Google Scholar] [CrossRef]
- Wen, J.; Guo, H.; Ma, X.; Wei, Z.; He, X.; Zhang, L.; Li, B.; Wang, T.; Cheng, Y. Mesoporous Ce-Doped ZnO Hollow Microspheres for Oxidation of 1,2-dichlorobenzene. Catal. Sci. Technol. 2020, 10, 3739–3747. [Google Scholar] [CrossRef]
- Liang, M.; Kang, W.; Xie, K. Comparison of Reduction Behavior of Fe2O3, ZnO and ZnFe2O4 by TPR Technique. J. Nat. Gas Chem. 2009, 18, 110–113. [Google Scholar] [CrossRef]
- Papa, F.; Patron, L.; Carp, O.; Paraschiv, C.; Balint, I. Catalytic Behavoir of Neodymium Substituted Zinc Ferrites in Oxidative Co Upling O F Methane. Rev. Roum. Chim. 2010, 55, 33–38. [Google Scholar]
- Munteanu, G.; Ilieva, L.; Andreeva, D. Kinetic Parameters Obtained from TPR Data for α-Fe203 and Au/α~Fe2O3 Systems. Thermochim. Acta 1997, 291, 171–177. [Google Scholar] [CrossRef]
- Yu, C.L.; Sakthinathan, S.; Chen, S.Y.; Yu, B.S.; Chiu, T.W.; Dong, C. Hydrogen Generation by Methanol Steam Reforming Process by Delafossite-Type CuYO2 Nanopowder Catalyst. Micropor. Mesopor. Mat. 2021, 324, 111305. [Google Scholar] [CrossRef]
- Yu, C.L.; Lai, G.T.; Sakthinathan, S.; Lin, C.C.; Chiu, T.W.; Liu, M.C. Hydrogen Generation from Methanol Steam Reforming Process of CuCrO2-CeO2 Nanopowders Catalyst. Mater. Sci. Eng. 2022, 286, 115989. [Google Scholar] [CrossRef]
- Yu, C.L.; Sakthinathan, S.; Lai, G.T.; Lin, C.C.; Chiu, T.W.; Liu, M.C. ZnO-ZnCr2O4 Composite Prepared by A Glycine Nitrate Process Method and Applied for Hydrogen Production by Steam Reforming of Methanol. RSC Adv. 2022, 12, 22097–22107. [Google Scholar] [CrossRef]
- Bepari, S.; Kuila, D. Steam Reforming of Methanol, Ethanol, and Glycerol over Nickel-Based Catalysts-A Review. Int. J. Hydrogen Energy 2019, 45, 18090–18113. [Google Scholar] [CrossRef]
- Tahay, P.; Khani, Y.; Jabari, M. Synthesis of Cubic and Hexagonal ZnTiO3 as Catalyst Support in Steam Reforming of Methanol: Study of Physical and Chemical Properties of Copper Catalysts on The H2 and CO Selectivity and Coke Formation. Int. J. Hydrogen Energy 2020, 45, 9484–9495. [Google Scholar] [CrossRef]
Sample | Specific Surface Area (m2/g) |
---|---|
ZnFe2O4 (G/N 1.5) | 5.66 |
ZnFe2O4 (G/N 1.7) | 6.03 |
ZnO-ZnFe2O4 (G/N 1.5) | 8.20 |
ZnO-ZnFe2O4 (G/N 1.7) | 11.67 |
Composition | Rate of H2 Production (mL STP min−1 g-cat−1) | |||
---|---|---|---|---|
350 °C | 400 °C | 450 °C | 500 °C | |
ZnFe2O4 (G/N 1.5) | 1944 | 3881 | 6104 | 7023 |
ZnFe2O4 (G/N 1.7) | 2004 | 4342 | 6332 | 7260 |
ZnO-ZnFe2O4 (G/N 1.5) | 2174 | 4174 | 6484 | 7341 |
ZnO-ZnFe2O4 (G/N 1.7) | 2979 | 4391 | 6773 | 7745 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, B.-Z.; Yu, C.-L.; Sakthinathan, S.; Chiu, T.-W.; Yu, B.-S.; Lin, C.-C.; Fan, L.; Lee, Y.-H. ZnO-ZnFe2O4 Catalyst for Hydrogen Production from Methanol Steam Reforming. Catalysts 2023, 13, 762. https://doi.org/10.3390/catal13040762
Hsu B-Z, Yu C-L, Sakthinathan S, Chiu T-W, Yu B-S, Lin C-C, Fan L, Lee Y-H. ZnO-ZnFe2O4 Catalyst for Hydrogen Production from Methanol Steam Reforming. Catalysts. 2023; 13(4):762. https://doi.org/10.3390/catal13040762
Chicago/Turabian StyleHsu, Bing-Zhen, Chung-Lun Yu, Subramanian Sakthinathan, Te-Wei Chiu, Bing-Sheng Yu, Chia-Cheng Lin, Liangdong Fan, and Yi-Hsuan Lee. 2023. "ZnO-ZnFe2O4 Catalyst for Hydrogen Production from Methanol Steam Reforming" Catalysts 13, no. 4: 762. https://doi.org/10.3390/catal13040762
APA StyleHsu, B.-Z., Yu, C.-L., Sakthinathan, S., Chiu, T.-W., Yu, B.-S., Lin, C.-C., Fan, L., & Lee, Y.-H. (2023). ZnO-ZnFe2O4 Catalyst for Hydrogen Production from Methanol Steam Reforming. Catalysts, 13(4), 762. https://doi.org/10.3390/catal13040762