Hydrothermally Synthesized Ag@MoS2 Composite for Enhanced Photocatalytic Hydrogen Production
Abstract
1. Introduction
2. Results and Discussion
3. Photocatalytic Hydrogen Production Activity
Photocatalytic Mechanism Discussion
4. Experimental Details
4.1. Chemicals
4.2. Synthesis of the Ag@MoS2 Composite
4.3. Characterizations
4.4. Photocatalytic Hydrogen Production
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hunge, Y.M.; Yadav, A.A.; Kang, S.W.; Lim, S.J.; Kim, H. Visible Light Activated MoS2/ZnO Composites for Photocatalytic Degradation of Ciprofloxacin Antibiotic and Hydrogen Production. J. Photochem. Photobio. A Chem. 2023, 434, 11425. [Google Scholar] [CrossRef]
- Vyas, Y.; Chundawat, P.; Dharmendra, D.; Punjabi, P.B.; Ameta, C. Review on Hydrogen Production Photocatalytically Using Carbon Quantum Dots: Future Fuel. Int. J. Hydrogen Energy 2021, 46, 37208–37241. [Google Scholar] [CrossRef]
- Yadav, A.A.; Hunge, Y.M.; Kang, S.-W. Visible Light-Responsive CeO2/MoS2 Composite for Photocatalytic Hydrogen Production. Catalysts 2022, 12, 1185. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, J.; Zhou, S.; Yu, H.; Liang, J.; Chu, W.; Li, H.; Wang, H.; Wu, Z.; Yuan, X. Strategies to Extend Near-Infrared Light Harvest of Polymer Carbon Nitride Photocatalysts. Coord. Chem. Rev. 2021, 439, 213947. [Google Scholar] [CrossRef]
- Swain, G.; Sultana, S.; Naik, B.; Parida, K. Coupling of Crumpled-Type Novel MoS2 with CeO2 Nanoparticles: A Noble-Metal-Free p–n Heterojunction Composite for Visible Light Photocatalytic H2 Production. ACS Omega 2017, 7, 3745–3753. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Cheah, A.J.; Chiu, W.S.; Khiew, P.S.; Nakajima, H.; Saisopa, T.; Songsiriritthigul, P.; Radiman, S.; Hamid, M.A.A. Facile Synthesis of a Ag/Mos2 Nanocomposite Photocatalyst for Enhanced Visible-Light Driven Hydrogen Gas Evolution. Catal. Sci. Technol. 2015, 5, 4133–4143. [Google Scholar] [CrossRef]
- Yadav, A.; Hunge, Y.M.; Kang, S.W. Porous Nanoplate-Like Tungsten Trioxide/Reduced Graphene Oxide Catalyst for Sonocatalytic Degradation and Photocatalytic Hydrogen Production. Surf. Interf. 2021, 24, 101075. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.W.; Kim, H. Photocatalytic Degradation of Tetracycline Antibiotics Using Hydrothermally Synthesized Two-Dimensional Molybdenum Disulfide/Titanium Dioxide Composites. J. Colloid Inter. Sci. 2021, 606, 454–463. [Google Scholar] [CrossRef]
- Wei, R.; Tang, N.; Jiang, L.; Yang, J.; Guo, J.; Yuan, X.; Liang, J.; Zhu, Y.; Wu, Z.; Li, H. Bimetallic Nanoparticles Meet Polymeric Carbon Nitride: Fabrications, Catalytic Applications and Perspectives. Coord. Chem. Rev. 2022, 462, 214500. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.W.; Kim, H. Facile Synthesis of Multitasking Composite of Silver Nanoparticle with Zinc Oxide for 4-Nitrophenol Reduction, Photocatalytic Hydrogen Production, and 4-Chlorophenol Degradation. J. Alloy. Compd. 2022, 928, 167133. [Google Scholar] [CrossRef]
- Yang, J.; Wang, H.; Jiang, L.; Yu, H.; Zhao, Y.; Chen, H.; Yuan, X.; Liang, J.; Li, H.; Wu, Z. Defective Polymeric Carbon Nitride: Fabrications, Photocatalytic Applications and Perspectives. Chem. Eng. J. 2022, 427, 130991. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H. Two-Dimensional MoS2: Properties, Preparation, and Applications. J. Mater. 2015, 1, 33–44. [Google Scholar] [CrossRef]
- Samy, O.; Zeng, S.; Birowosuto, M.D.; El Moutaouakil, A. A Review on MoS2 Properties, Synthesis, Sensing Applications and Challenges. Crystals 2021, 11, 355. [Google Scholar] [CrossRef]
- Linic, S.; Christopher, P.; Ingram, D.B. Plasmonic-Metal Nanostructures for Efficient Conversion of Solar to Chemical Energy. Nat. Mater. 2011, 10, 911. [Google Scholar] [CrossRef]
- Yang, X.; Yua, H.; Guo, X.; Ding, Q.; Pullerits, T.; Wang, R.; Zhang, G.; Liang, W.; Sun, M. Plasmon-Exciton Coupling of Monolayer Mos2-Ag Nanoparticles Hybrids for Surface Catalytic Reaction. Mater. Today Energy 2017, 5, 72–78. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, G.; Liu, X.; Sun, L.; Li, H.; Cheng, Q.; Xi, K.; Xu, D. MoS2/Ag Nanohybrid: A Novel Matrix with Synergistic Effect for Small Molecule Drugs Analysis by Negative-Ion Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry. Anal. Chim. Acta 2016, 937, 87–95. [Google Scholar] [CrossRef]
- Liu, H.; Wu, R.; Tian, L.; Kong, Y.; Sun, Y. Synergetic Photocatalytic Effect Between 1T@2H-Mos2 and Plasmon Resonance Induced by Ag Quantum Dots. Nanotechnology 2018, 29, 285402–285413. [Google Scholar] [CrossRef]
- Krishnan, U.; Kaur, M.; Singh, K.; Kaur, G.; Singh, P.; Kumar, M.; Kumar, A. MoS2/Ag Nanocomposites for Electrochemical Sensing and Photocatalytic Degradation of Textile Pollutant. J. Mater. Sci. Mater. Electron. 2019, 30, 3711–3721. [Google Scholar] [CrossRef]
- Sun, K.; Jia, F.; Yang, B.; Lin, C.; Li, X.; Song, S. Synergistic Effect in the Reduction of Cr(VI) with Ag-MoS2 as Photocatalyst. Appl. Mater. Today 2020, 18, 100453. [Google Scholar] [CrossRef]
- Gao, B.; Zhang, X. Synthesis of MoS2 Inorganic Fullerene-Like Nanoparticles by a Chemical Vapour Deposition Method. J. Chem. 2014, 67, 6–11. [Google Scholar]
- Georgekutty, R.; Seery, M.K.; Pillai, S.C. A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanism. J. Phys. Chem. C 2008, 112, 13563–13570. [Google Scholar] [CrossRef]
- Cao, H.; Bai, Z.; Li, Y.; Xiao, Z.; Zhang, X.; Li, G. Solvothermal Synthesis of Defect-Rich Mixed 1T-2H MoS2 Nanoflowers for Enhanced Hydrodesulfurization. ACS Sustain. Chem. Eng. 2020, 819, 7343–7352. [Google Scholar] [CrossRef]
- Lai, C.H.; Wang, G.A.; Ling, T.K.; Wang, T.J.; Chiu, P.; Chau, Y.F.C.; Huang, C.C.; Chiang, H.P. Near Infrared Surface-Enhanced Raman Scattering Based on Star Shaped Gold/Silver Nanoparticles and Hyperbolic Metamaterial. Sci. Rep. 2017, 7, 5446. [Google Scholar] [CrossRef] [PubMed]
- Alammar, T.; Mudring, A.V. Facile Preparation of Ag/ZnO Nanoparticles via Photoreduction. J. Mater. Sci. 2009, 44, 3218–3222. [Google Scholar] [CrossRef]
- Fu, Y.; Ren, Z.; Wu, J.; Li, Y.; Liu, W.; Li, P.; Xing, L.; Ma, J.; Wang, H.; Xu, X. Direct Z-Scheme Heterojunction of ZnO/MoS2 Nanoarrays Realized by Flowing-Induced Piezoelectric Field for Enhanced Sunlight Photocatalytic Performances. Appl. Catal. B 2021, 285, 119785. [Google Scholar] [CrossRef]
- Jian, W.; Cheng, X.; Huang, Y.; You, Y.; Zhou, R.; Sun, T.; Xu, J. Arrays of ZnO/MoS2 Nanocables and MoS2 Nanotubes with Phase Engineering for Bifunctional Photoelectrochemical and Electrochemical Water Splitting. Chem. Eng. J. 2017, 328, 474–483. [Google Scholar] [CrossRef]
- Suber, L. Formation and Oriented Aggregation of Tabular Hexagonal Silver Particles. Condens. Matter 2018, 3, 13. [Google Scholar] [CrossRef]
- Yadav, A.A.; Kang, S.W.; Hunge, Y.M. Photocatalytic Degradation of Rhodamine B Using Graphitic Carbon Nitride Photocatalyst. J. Mater. Sci. Mater. Electron. 2021, 3211, 15577–15585. [Google Scholar] [CrossRef]
- Yadav, A.A.; Hunge, Y.M.; Kang, S.W. Spongy Ball-Like Copper Oxide Nanostructure Modified by Reduced Graphene Oxide for Enhanced Photocatalytic Hydrogen Production. Mater. Res. Bull. 2021, 133, 111026. [Google Scholar] [CrossRef]
- Sangpour, P.; Hashemi, F.; Moshfegh, A.Z. Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study. J. Phys. Chem. C 2010, 114, 13955. [Google Scholar] [CrossRef]
- Osterloh, F.E. Boosting the Efficiency of Suspended Photocatalysts for Overall Water Splitting. J. Phys. Chem. Lett. 2014, 5, 2510. [Google Scholar] [CrossRef]
- Spinelli, P.; Polman, A. Prospects of Near-Field Plasmonic Absorption Enhancement in Semiconductor Materials Using Embedded Ag Nanoparticles. Opt. Express 2012, 20, A641–A654. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Mathe, V.L. Photocatalytic Hydrogen Production Using TiO2 Nanogranules Prepared by Hydrothermal Route. Chem. Phys. Lett. 2019, 731, 136582. [Google Scholar] [CrossRef]
- Bhanu, U.; Islam, M.R.; Tetard, L.; Khondaker, S. Photoluminescence Quenching in Gold-MoS2 Hybrid Nanoflakes. Sci. Rep. 2014, 4, 5575. [Google Scholar] [CrossRef]
- Baia, L.; Baia, M.; Kiefer, W.; Popp, J.; Simon, S. Prohibitin 2: At a Communications Crossroads. Chem. Phys. 2006, 327, 63. [Google Scholar] [CrossRef]
- Poole, C., Jr. Encyclopedic Dictionary of Condensed Matter Physics; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Torimoto, T.; Horibe, H.; Kameyama, T.; Okazaki, K.-I.; Ikeda, S.; Matsumura, M.; Ishikawa, A.; Ishihara, H. Plasmon-Enhanced Photocatalytic Activity of Cadmium Sulfide Nanoparticle Immobilized on Silica-Coated Gold Particles. J. Phys. Chem. Lett. 2011, 2, 2057. [Google Scholar] [CrossRef]
- Bumajdad, A.; Madkour, M. Understanding the Superior Photocatalytic Activity of Noble Metals Modified Titania Under UV and Visible Light Irradiation. Phys. Chem. Chem. Phys. 2014, 1, 7146. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, J.; Zhang, Y.; Li, Q.; Gong, J.R. Visible Light Photocatalytic H2-Production Activity of CuS/ZnS Porous Nanosheets Based on Photoinduced Interfacial Charge Transfer. Nano Lett. 2011, 11, 4774. [Google Scholar] [CrossRef]
- Schneider, J.; Bahnemann, D.W. Undesired Role of Sacrificial Reagents in Photocatalysis. J. Phys. Chem. Lett. 2013, 4, 3479. [Google Scholar] [CrossRef]
- Li, N.; Liu, M.; Zhou, Z.; Zhou, J.; Sun, Y.; Guo, L. Charge Separation in Facet-Engineered Chalcogenide Photocatalyst: A Selective Photocorrosion Approach. Nanoscale 2014, 6, 9695. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Stepanov, P.; Gray, M.; Lau, C.N. Annealing and Transport Studies of Suspended Molybdenum Disulfide Devices. Nanotechnology 2015, 26, 105709. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Wang, H.; Zhao, X.; Kondamareddy, K.K.; Ding, J.; Li, C.; Fang, P. Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen. ACS Sustain. Chem. Eng. 2015, 5, 1436–1445. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, M.; Wang, X.; Kistanov, A.A.; Li, T.; Cao, W.; Huttula, M. Nickel nanoparticle-activated MoS2 for efficient visible light photocatalytic hydrogen evolution. Nanoscale 2022, 14, 8601–8610. [Google Scholar] [CrossRef]
- Gu, Q.; Sun, H.; Xie, Z.; Gao, Z.; Xue, C. MoS2-coated microspheres of self-sensitized carbon nitride for efficient photocatalytic hydrogen generation under visible light irradiation. Appl. Surf. Sci. 2017, 396, 1808–1815. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, A.A.; Hunge, Y.M.; Dhodamani, A.G.; Kang, S.-W. Hydrothermally Synthesized Ag@MoS2 Composite for Enhanced Photocatalytic Hydrogen Production. Catalysts 2023, 13, 716. https://doi.org/10.3390/catal13040716
Yadav AA, Hunge YM, Dhodamani AG, Kang S-W. Hydrothermally Synthesized Ag@MoS2 Composite for Enhanced Photocatalytic Hydrogen Production. Catalysts. 2023; 13(4):716. https://doi.org/10.3390/catal13040716
Chicago/Turabian StyleYadav, Anuja A., Yuvaraj M. Hunge, Ananta G. Dhodamani, and Seok-Won Kang. 2023. "Hydrothermally Synthesized Ag@MoS2 Composite for Enhanced Photocatalytic Hydrogen Production" Catalysts 13, no. 4: 716. https://doi.org/10.3390/catal13040716
APA StyleYadav, A. A., Hunge, Y. M., Dhodamani, A. G., & Kang, S.-W. (2023). Hydrothermally Synthesized Ag@MoS2 Composite for Enhanced Photocatalytic Hydrogen Production. Catalysts, 13(4), 716. https://doi.org/10.3390/catal13040716