Synthesis of N-Substituted Pyrroles Catalyzed by Low-Cost and Commercially Available Aluminas
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Catalyst Characterization
3.3. X-ray Diffraction
3.4. Synthesis of Pyrrole Derivatives
3.4.1. 2,5-Dimethyl-1-phenyl-1H-pyrrole 3a
3.4.2. 2,5-Dimethyl-1-(p-tolyl)-1H-pyrrole 3b
3.4.3. 1-(3-Methoxy-5-(trifluoromethyl)phenyl)-2,5-dimethyl-1H-pyrrole 3c
3.4.4. 1-(4-Chlorophenyl)-2,5-dimethyl-1H-pyrrole 3d
3.4.5. 2,5-Dimethyl-1-(4-nitrophenyl)-1H-pyrrole 3e
3.4.6. 1-Benzyl-2,5-dimethyl-1H-pyrrole 3f
3.4.7. 1-(4-Chlorobenzyl)-2,5-dimethyl-1H-pyrrole 3g
3.4.8. 1-(3,5-bis(Trifluoromethyl)benzyl)-2,5-dimethyl-1H-pyrrole 3h
3.4.9. 2,5-Dimethyl-1-(naphthalen-1-yl)-1H-pyrrole 3i
3.4.10. 1-Butyl-2,5-dimethyl-1H-pyrrole 3j
3.4.11. 2-(2,5-Dimethyl-1H-pyrrol-1-yl)aniline 3k
3.4.12. 2-(2,5-Dimethyl-1H-pyrrol-1-yl)benzo[d]thiazole 3l
3.4.13. 6-Chloro-2-(2,5-dimethyl-1H-pyrrol-1-yl)benzo[d]thiazole 3m
3.4.14. 2-(2,5-Dimethyl-1H-pyrrol-1-yl)-6-nitrobenzo[d]thiazole 3n
3.4.15. 5-(2,5-Dimethyl-1H-pyrrol-1-yl)-3-methyl-1-phenyl-1H-pyrazole 3o
3.4.16. 2-((2,5-Dimethyl-1H-pyrrol-1-yl)methyl)-1H-benzo[d]imidazole 3p
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. Pyrrole: A resourceful small molecule in key medicinal hetero-aromatics. RSC Adv. 2015, 5, 15233–15266. [Google Scholar] [CrossRef]
- Petri, G.L.; Spanò, V.; Spatola, R.; Holl, R.; Raimondi, M.V.; Barraja, P.; Montalbano, A. Bioactive pyrrole-based compounds with target selectivity. Eur. J. Med. Chem. 2020, 208, 112783. [Google Scholar] [CrossRef] [PubMed]
- Dias Bianco, M.C.A.; Firmino Marinho, D.I.L.; Hoelz, L.V.; Macedo Bastos, M.; Boechat, N. Pyrroles as privileged scaffolds in the search for new potential HIV inhibitors. Pharmaceuticals 2021, 14, 893. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Rasheed, H.; Awan, R.J.; Awan, R.J.; Mukhtar, A.; Moloney, M.G. Recent advances in the synthesis of pyrroles. Curr. Org. Chem. 2020, 24, 1196–1229. [Google Scholar] [CrossRef]
- Buckley, M.M.; Brogden, R.N. Ketorolac—A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs 1990, 39, 86–109. [Google Scholar] [CrossRef]
- Moran, M.; Nickens, D.; Adcock, K.; Bennetts, M.; Desscan, A.; Charnley, N.; Fife, K. Sunitinib for metastatic renal cell carcinoma: A systematic review and meta-analysis of real-world and clinical trials data. Target Oncol. 2019, 14, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Lea, A.P.; McTavish, D. Atorvastatin—A review of its pharmacology and therapeutic potential in the management of hyperlipidaemias. Drugs 1997, 53, 828–847. [Google Scholar] [CrossRef]
- Eastman, R.T.; Roth, J.S.; Brimacombe, K.R.; Simeonov, A.; Shen, M.; Patnaik, S.; Hall, M.D. Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent. Sci. 2020, 6, 672–683. [Google Scholar] [CrossRef]
- Insuasty, D.; Castillo, J.; Becerra, D.; Rojas, H.; Abonia, R. Synthesis of biologically active molecules through multicomponent reactions. Molecules 2020, 25, 505. [Google Scholar] [CrossRef] [Green Version]
- Estévez, V.; Villacampa, M.; Menéndez, J.C. Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem. Soc. Rev. 2014, 43, 4633–4657. [Google Scholar] [CrossRef]
- Motati, D.R.; Uredi, D.; Watkins, E.B. The discovery and development of oxalamide and pyrrole small molecule inhibitors of gp120 and HIV entry—A review. Curr. Top. Med. Chem. 2019, 19, 1650–1675. [Google Scholar] [CrossRef] [PubMed]
- Philkhana, S.C.; Badmus, F.O.; Dos Reis, I.C.; Kartika, R. Recent advancements in pyrrole synthesis. Synthesis 2021, 53, 1531–1555. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, M.; Estévez, V.; Villacampa, M.; Menéndez, J.C. The Hantzsch pyrrole synthesis: Non-conventional variations and applications of a neglected classical reaction. Synthesis 2019, 51, 816–828. [Google Scholar] [CrossRef]
- Magnus, N.A.; Staszak, M.A.; Udodong, U.E.; Wepsiec, J.P. Synthesis of 4-cyano pyrroles via mild Knorr reactions with β-ketonitriles. Org. Process Res. Dev. 2006, 10, 899–904. [Google Scholar] [CrossRef]
- Balakrishna, A.; Aguiar, A.; Sobral, P.J.M.; Wani, M.Y.; Silva, J.A.; Sobral, A.J.F.N. Paal-Knorr synthesis of pyrroles: From conventional to green synthesis. Catal. Rev. 2019, 61, 84–110. [Google Scholar] [CrossRef]
- Cheng, P.; Shao, W.; Clive, D.L.J. A general route to 1,3′-bipyrroles. J. Org. Chem. 2013, 78, 11860–11873. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Ma, J.; Cheng, D.-J.; Tan, B. Highly atroposelective synthesis of arylpyrroles by catalytic asymmetric Paal-Knorr Reaction. J. Am. Chem. Soc. 2017, 139, 1714–1717. [Google Scholar] [CrossRef]
- Luo, H.; Kang, Y.; Li, Q.; Yang, L. Sulfamic acid as efficient and reusable catalytic system for the synthesis of pyrrole, furan, and thiophene derivatives. Heteroat. Chem. 2008, 19, 144–148. [Google Scholar] [CrossRef]
- Bharadwaj, A.R.; Scheidt, K.A. Catalytic multicomponent synthesis of highly substituted pyrroles utilizing a one-pot Sila-stetter/Paal-Knorr Strategy. Org. Lett. 2004, 6, 2465–2468. [Google Scholar] [CrossRef]
- Török, B.; Schäfer, C.; Kokel, A. Chapter 3.8. Ring transformations by heterogeneous catalysis. In Heterogeneous Catalysis in Sustainable Synthesis, 1st ed.; Török, B., Schäfer, C., Kokel, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 491–542. [Google Scholar] [CrossRef]
- Azizi, N.; Khajeh-Amiri, A.; Ghafuri, H. Iron-catalyzed inexpensive and practical synthesis of N-substituted pyrroles in water. Synlett 2009, 20, 2245–2248. [Google Scholar] [CrossRef]
- Aghapoor, K.; Mohsenzadeh, F.; Darabi, H.R.; Rastgar, S. Microwave-induced calcium(II) chloride-catalyzed Paal-Knorr pyrrole synthesis: A safe, expeditious, and sustainable protocol. Res. Chem. Intermed. 2018, 44, 4063–4072. [Google Scholar] [CrossRef]
- De, S.K. Ruthenium (III) chloride as a novel and efficient catalyst for the synthesis of substituted pyrroles under solvent-free conditions. Catal. Lett. 2008, 124, 174–177. [Google Scholar] [CrossRef]
- De, S.K. Cobalt(II) chloride as a novel and efficient catalyst for the synthesis of 1,2,5-trisubstituted pyrroles under solvent-free conditions. Heteroat. Chem. 2008, 19, 592–595. [Google Scholar] [CrossRef]
- Chen, J.-X.; Liu, M.-C.; Yang, X.-L.; Ding, J.-C.; Wu, H.-Y. Indium(III)-catalyzed synthesis of N-substituted pyrroles under solvent-free conditions. J. Braz. Chem. Soc. 2008, 19, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-H.; Li, J.-J.; Li, T.-S. Ultrasound-assisted synthesis of pyrroles catalyzed by zirconium chloride under solvent-free conditions. Ultrason. Sonochem. 2008, 15, 673–676. [Google Scholar] [CrossRef]
- Rahmatpour, A. ZrOCl2·8H2O as a highly efficient, eco-friendly and recyclable Lewis acid catalyst for one-pot synthesis of N-substituted pyrroles under solvent-free conditions at room temperature. Appl. Organometal. Chem. 2011, 25, 585–590. [Google Scholar] [CrossRef]
- Srinivas, R.; Thirupathi, B.; Kumar, J.K.P.; Prasad, A.N.; Reddy, B.M. One-step synthesis of 1,2,5-trisubstituted pyrroles by copper catalyzed condensation of 1,4-diones with primary amines. Curr. Org. Chem. 2012, 16, 2482–2489. [Google Scholar] [CrossRef]
- Li, P.; Weng, G.; Zhang, Y.; Zhang, X. A highly efficient Paal-Knorr synthesis of chiral pyrrole derivatives catalyzed by MgI2. Chin. J. Org. Chem. 2016, 36, 364–369. [Google Scholar] [CrossRef]
- Rahmatpour, A.; Aalaie, J. One-pot synthesis of N-substituted pyrroles catalyzed by polystyrene-supported aluminum chloride as a reusable heterogeneous Lewis acid catalyst. Heteroat. Chem. 2011, 22, 85–90. [Google Scholar] [CrossRef]
- Rahmatpour, A. Polystyrene-supported GaCl3 as a highly efficient and recyclable heterogeneous Lewis acid catalyst for one-pot synthesis of N-substituted pyrroles. J. Organomet. Chem. 2012, 712, 15–19. [Google Scholar] [CrossRef]
- Aghapoor, K.; Ebadi-Nia, L.; Mohsenzadeh, F.; Morad, M.M.; Balavar, Y.; Darabi, H.R. Silica-supported bismuth(III) chloride as a new recyclable heterogeneous catalyst for the Paal-Knorr pyrrole synthesis. J. Organomet. Chem. 2012, 708, 25–30. [Google Scholar] [CrossRef]
- Darabi, H.R.; Poorheravi, M.R.; Aghapoor, K.; Mirzaee, A.; Mohsenzadeh, F.; Asadollahnejad, N.; Taherzadeh, H.; Balavar, Y. Silica-supported antimony(III) chloride as a mild and reusable catalyst for the Paal-Knorr pyrrole synthesis. Environ. Chem. Lett. 2012, 10, 5–12. [Google Scholar] [CrossRef]
- Aghapoor, K.; Amini, M.M.; Jadidi, K.; Mohsenzadeh, F.; Darabi, H.R. Catalytic activity of the nanoporous MCM-41 surface for the Paal-Knorr pyrrole cyclocondensation. Z. Naturforsch. 2015, 70, 475–481. [Google Scholar] [CrossRef]
- Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trueba, M.; Trasatti, S.P. γ-Alumina as a support for catalysts: A review of fundamental aspects. Eur. J. Inorg. Chem. 2005, 2005, 3393–3403. [Google Scholar] [CrossRef]
- Clark, P.D.; Dowling, N.I.; Huang, M.; Okemona, O.; Butlin, G.D.; Hou, R.; Kijlstra, W.S. Studies on sulfate formation during the conversion of H2S and SO2 to sulfur over activated alumina. Appl. Catal. A Gen. 2002, 235, 61–69. [Google Scholar] [CrossRef]
- Phung, T.K.; Herrera, C.; Larrubia, M.A.; García-Diéguez, M.; Finocchio, E.; Alemany, L.J.; Busca, G. Surface and catalytic properties of some γ-Al2O3 powders. Appl. Catal. A Gen. 2014, 483, 41–51. [Google Scholar] [CrossRef]
- Portilla-Zúñiga, O.; Sathicq, Á.; Martínez, J.; Rojas, H.; De Geronimo, E.; Luque, R.; Romanelli, G.P. Novel bifunctional mesoporous catalysts based on Preyssler heteropolyacids for green pyrrole derivative synthesis. Catalysts 2018, 8, 419. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, J.P.; Guo, J. Intramolecular aldol condensations: Rate and equilibrium constants. J. Am. Chem. Soc. 1996, 118, 11472–11487. [Google Scholar] [CrossRef]
- Pittman, C.U.; Liang, Y.F. Sequential catalytic condensation-hydrogenation of ketones. J. Org. Chem. 1980, 45, 5048–5052. [Google Scholar] [CrossRef]
- Qian, K.; Tomczak, D.C.; Rakiewicz, E.F.; Harding, R.H.; Yaluris, G.; Cheng; Zhao, X.; Peters, A.W. Coke formation in the fluid catalytic cracking process by combined analytical techniques. Energ. Fuels 1997, 11, 596–601. [Google Scholar] [CrossRef]
- Feng, R.; Bai, P.; Liu, S.; Zhang, P.; Liu, X.; Yan, Z.; Zhang, Z.; Gao, X. The application of mesoporous alumina with rich Brønsted acidic sites in FCC catalysts. Appl. Petrochem. Res. 2014, 4, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Cant, N.; Little, L. Lewis and Brønsted acid sites on silica-alumina. Nature 1966, 211, 69–70. [Google Scholar] [CrossRef]
- Coster, D.; Blumenfeld, A.L.; Fripiat, J.J. Lewis acid sites and surface aluminum in aluminas and zeolites: A high-resolution NMR study. J. Phys. Chem. 1994, 98, 6201–6211. [Google Scholar] [CrossRef]
- Abbat, S.; Dhaked, D.; Arfeen, M.; Bharatam, P.V. Mechanism of the Paal-Knorr reaction: The importance of water mediated hemialcohol pathway. RSC Adv. 2015, 5, 88353–88366. [Google Scholar] [CrossRef]
- Castillo, J.C.; Martínez, J.J.; Becerra, D.; Rojas, H.; Macías, M.A. Obtaining (5-formylfuran-2-yl)methyl 4-chlorobenzoate through an esterification of 5-hydroxymethylfurfural: Interesting achiral molecule crystallizing in a Sohncke P212121 space group. J. Mol. Struct. 2022, 1268, 133713. [Google Scholar] [CrossRef]
- Salinas-Torres, A.; Jiménez, E.; Becerra, D.; Martínez, J.J.; Rojas, H.; Castillo, J.-C.; Macías, M.A. Synthesis, anticancer evaluation, thermal and X-ray crystallographic analysis of 2-oxo-2H-chromen-7-yl 4-chlorobenzoate using a conductively heated sealed-vessel reactor. J. Mol. Struct. 2022, 1274, 134414. [Google Scholar] [CrossRef]
- Desiraju, G.R.; Parthasarathy, R. The nature of halogen-halogen interactions: Are short halogen contacts due to specific attractive forces or due to close packing of nonspherical atoms? J. Am. Chem. Soc. 1989, 111, 8725–8726. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Platts, J.A.; Howard, S.T.; Woźniak, K. Quantum chemical evidence for C–H⋯C hydrogen bonding. Chem. Commun. 1996, 63–64. [Google Scholar] [CrossRef]
- Chandra, A.K.; Zeegers-Huyskens, T. Theoretical study of (CH···C)-hydrogen bonds in CH4-nXn(X = F, Cl; n = 0, 1, 2) systems complexed with their homoconjugate and heteroconjugate carbanions. J. Phys. Chem. A 2005, 109, 12006–12013. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT–integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walia, A.; Kang, S.; Silverman, R.B. Microwave-assisted protection of primary amines as 2,5-dimethylpyrroles and their orthogonal deprotection. J. Org. Chem. 2013, 78, 10931–10937. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, Y.A.; Li, J.; Ai, L.; Li, B. A convenient approach for the synthesis of substituted pyrroles by using phosphoric acid as a catalyst and their photophysical properties. J. Mol. Struct. 2022, 1252, 132123. [Google Scholar] [CrossRef]
- Chen, X.; Yang, M.; Zhou, M. Efficient synthesis of substituted pyrroles through Pd(OCOCF3)2-catalyzed reaction of 5-hexen-2-one with primary amines. Tetrahedron Lett. 2016, 57, 5215–5218. [Google Scholar] [CrossRef]
- Fu, W.; Zhu, L.; Tan, S.; Zhao, Z.; Yu, X.; Wang, L. Copper/nitroxyl-catalyzed synthesis of pyrroles by oxidative coupling of diols and primary amines at room temperature. J. Org. Chem. 2022, 87, 13389–13395. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Y.L. Novel and highly efficient preparation of pyrroles using supported ionic liquid ILCF3SO3@SiO2 as a heterogeneous catalyst. J. Iran. Chem. Soc. 2018, 15, 1033–1040. [Google Scholar] [CrossRef]
- Joshi, S.D.; Dixit, S.R.; Kirankumar, M.N.; Aminabhavi, T.M.; Raju, K.V.S.N.; Narayan, R.; Lherbet, C.; Yang, K.S. Synthesis, antimycobacterial screening and ligand-based molecular docking studies on novel pyrrole derivatives bearing pyrazoline, isoxazole and phenyl thiourea moieties. Eur. J. Med. Chem. 2016, 107, 133–152. [Google Scholar] [CrossRef]
Entry | Catalyst | Yield 3b (%) | IEP b (mV) | L (%) c | B–L (%) c | SBET (m2g−1) | PD (nm) d | PV (cm3g−1) e |
---|---|---|---|---|---|---|---|---|
1 | -- f | 47 | -- | -- | -- | -- | -- | -- |
2 | CATAPAL 200 | 96 | 23.7 | 77 | 23 | 47 | 37.8 | 0.44 |
3 | CATAPAL C-1 | 58 | −5.6 | 80 | 20 | 239 | 6.3 | 0.37 |
4 | CATALOX SBA-90 | 64 | 58.0 | 88 | 12 | 107 | 14.6 | 0.39 |
5 | CATALOX SBA-200 | 46 | 45.3 | 92 | 8 | 199 | 8.4 | 0.42 |
Entry | Catalyst Mass (mg) | Yield 3b (%) a |
---|---|---|
1 | 0 | 47 |
2 | 4 | 55 |
3 | 10 | 58 |
4 | 20 | 80 |
5 | 40 | 96 |
6 | 80 | 90 |
Entry | Temperature (°C) | Yield 3b (%) a |
---|---|---|
1 | 20 | 10 |
2 | 40 | 40 |
3 | 60 | 96 |
4 | 80 | 80 |
5 | 100 | 67 |
Entry | Time (min) | Yield 3b (%) a |
---|---|---|
1 | 30 | 52 |
2 | 45 | 96 |
3 | 60 | 96 |
4 | 120 | 80 |
Entry | Reuse Cycle | Yield 3b (%) a |
---|---|---|
1 | 1 | 96 |
2 | 2 | 94 |
3 | 3 | 90 |
4 | 4 | 90 |
5 | 5 | 88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portilla-Zúñiga, O.; Bautista-Aguilera, Ó.M.; Martínez, J.J.; Rojas, H.; Macías, M.A.; Iriepa, I.; Pérez-Redondo, A.; Sathicq, Á.; Castillo, J.-C.; Romanelli, G.P. Synthesis of N-Substituted Pyrroles Catalyzed by Low-Cost and Commercially Available Aluminas. Catalysts 2023, 13, 603. https://doi.org/10.3390/catal13030603
Portilla-Zúñiga O, Bautista-Aguilera ÓM, Martínez JJ, Rojas H, Macías MA, Iriepa I, Pérez-Redondo A, Sathicq Á, Castillo J-C, Romanelli GP. Synthesis of N-Substituted Pyrroles Catalyzed by Low-Cost and Commercially Available Aluminas. Catalysts. 2023; 13(3):603. https://doi.org/10.3390/catal13030603
Chicago/Turabian StylePortilla-Zúñiga, Omar, Óscar M. Bautista-Aguilera, José J. Martínez, Hugo Rojas, Mario A. Macías, Isabel Iriepa, Adrián Pérez-Redondo, Ángel Sathicq, Juan-Carlos Castillo, and Gustavo P. Romanelli. 2023. "Synthesis of N-Substituted Pyrroles Catalyzed by Low-Cost and Commercially Available Aluminas" Catalysts 13, no. 3: 603. https://doi.org/10.3390/catal13030603