Computational Modelling of Pyrrolic MN4 Motifs Embedded in Graphene for Catalyst Design
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Structural Model Comparison
3.2. Binding of Metals in N
3.2.1. Binding Geometry
3.2.2. Binding Energy
3.2.3. Affinity towards Pyrrolic Motifs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
M-N-Cs | Metal- and nitrogen-doped carbons |
ORR | Oxygen reduction reaction |
CORR | CO reduction reaction |
DFT | Density functional theory |
GGA | Generalized gradient approximation |
RMM-DIIS | Residual minimization–direct inversion in the iterative subspace |
NBO | Natural bond orbital |
FMO | Frontier molecular orbitals |
References
- Gasteiger, H.A.; Kocha, S.S.; Sompalli, B.; Wagner, F.T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 2005, 56, 9–35. [Google Scholar] [CrossRef]
- Shao, M.; Chang, Q.; Dodelet, J.P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hori, Y. Electrochemical CO2 reduction on metal electrodes. Mod. Asp. Electrochem. 2008, 89–189. [Google Scholar] [CrossRef]
- Kortlever, R.; Shen, J.; Schouten, K.J.P.; Calle-Vallejo, F.; Koper, M.T. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082. [Google Scholar] [CrossRef]
- Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, X.; Peng, L.; Li, L.; Qiao, J.; Huang, H.; Shi, J. Metal–nitrogen–carbon catalysts of specifically coordinated configurations toward typical electrochemical redox reactions. Adv. Mater. 2021, 33, 2100997. [Google Scholar] [CrossRef]
- Jaouen, F.; Jones, D.; Coutard, N.; Artero, V.; Strasser, P.; Kucernak, A. Toward platinum group metal-free catalysts for hydrogen/air proton-exchange membrane fuel cells. Johns. Matthey Technol. Rev. 2018, 62, 231–255. [Google Scholar] [CrossRef]
- Menga, D.; Low, J.L.; Li, Y.S.; Arčon, I.; Koyutürk, B.; Wagner, F.; Ruiz-Zepeda, F.; Gaberšček, M.; Paulus, B.; Fellinger, T.P. Resolving the dilemma of Fe–N–C catalysts by the selective synthesis of tetrapyrrolic active sites via an imprinting strategy. J. Am. Chem. Soc. 2021, 143, 18010–18019. [Google Scholar] [CrossRef]
- Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M.T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942. [Google Scholar] [CrossRef]
- Ni, L.; Gallenkamp, C.; Wagner, S.; Bill, E.; Krewald, V.; Kramm, U.I. Identification of the catalytically dominant iron environment in iron-and nitrogen-doped carbon catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2022, 144, 16827–16840. [Google Scholar] [CrossRef]
- Hu, X.; Chen, S.; Chen, L.; Tian, Y.; Yao, S.; Lu, Z.; Zhang, X.; Zhou, Z. What is the Real Origin of the Activity of Fe–N–C Electrocatalysts in the O2 Reduction Reaction? Critical Roles of Coordinating Pyrrolic N and Axially Adsorbing Species. J. Am. Chem. Soc. 2022, 144, 18144–18152. [Google Scholar] [CrossRef]
- Koshy, D.M.; Chen, S.; Lee, D.U.; Stevens, M.B.; Abdellah, A.M.; Dull, S.M.; Chen, G.; Nordlund, D.; Gallo, A.; Hahn, C.; et al. Understanding the origin of highly selective CO2 electroreduction to CO on Ni, N-doped carbon catalysts. Angew. Chem. Int. Ed. 2020, 59, 4043–4050. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhou, T.; Chen, M.; Feng, H.; Yuan, R.; Yan, W.; Tian, Y.; Wu, X.; Chu, W.; Wu, C.; et al. High-purity pyrrole-type FeN 4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118. [Google Scholar] [CrossRef]
- Menga, D.; Ruiz-Zepeda, F.; Moriau, L.; Šala, M.; Wagner, F.; Koyutürk, B.; Bele, M.; Petek, U.; Hodnik, N.; Gaberšček, M.; et al. Active-site imprinting: Preparation of Fe–N–C catalysts from zinc ion–templated ionothermal nitrogen-doped carbons. Adv. Energy Mater. 2019, 9, 1902412. [Google Scholar] [CrossRef]
- Jiao, L.; Li, J.; Richard, L.L.; Sun, Q.; Stracensky, T.; Liu, E.; Sougrati, M.T.; Zhao, Z.; Yang, F.; Zhong, S.; et al. Chemical vapour deposition of Fe–N–C oxygen reduction catalysts with full utilization of dense Fe–N4 sites. Nat. Mater. 2021, 20, 1385–1391. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, A.; Gong, M.; Jaouen, F.; Roy, A.; Zitolo, A.; Khan, A.; Sougrati, M.T.; Primbs, M.; Bonastre, A.M.; Fongalland, D.; et al. High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells. Nat. Catal. 2022, 5, 311–323. [Google Scholar] [CrossRef]
- Mehmood, A.; Pampel, J.; Ali, G.; Ha, H.Y.; Ruiz-Zepeda, F.; Fellinger, T.P. Facile metal coordination of active site imprinted nitrogen doped carbons for the conservative preparation of non-noble metal oxygen reduction electrocatalysts. Adv. Energy Mater. 2018, 8, 1701771. [Google Scholar] [CrossRef]
- Fellinger, T.P.; Menga, D.; Buzanich, A.G.; Wagner, F. Evaluation of the Specific Activity of M-N-Cs and the Intrinsic Activity of Tetrapyrrolic Fe-N4 Sites for the Oxygen Reduction Reaction. Angew. Chem. 2022, e202207089. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985. [Google Scholar] [CrossRef]
- Ernzerhof, M.; Scuseria, G.E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036. [Google Scholar] [CrossRef] [Green Version]
- Tolba, S.A.; Gameel, K.M.; Ali, B.A.; Almossalami, H.A.; Allam, N.K. The DFT+U: Approaches, Accuracy, and Applications. In Density Functional Calculations; Yang, G., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 1. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 1989, 162, 165–169. [Google Scholar] [CrossRef]
- Khosravi, A.; Vessally, E.; Oftadeh, M.; Behjatmanesh-Ardakani, R. Ammonia capture by MN4 (M= Fe and Ni) clusters embedded in graphene. J. Coord. Chem. 2018, 71, 3476–3486. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Iwase, K.; Ebner, K.; Diercks, J.S.; Saveleva, V.A.; Unsal, S.; Krumeich, F.; Harada, T.; Honma, I.; Nakanishi, S.; Kamiya, K.; et al. Effect of cobalt speciation and the graphitization of the carbon matrix on the CO2 electroreduction activity of Co/N-doped carbon materials. ACS Appl. Mater. Interfaces 2021, 13, 15122–15131. [Google Scholar] [CrossRef] [PubMed]
- Yudasaka, M.; Kikuchi, R. Graphitization of carbonaceous materials by Ni, Co and Fe. In Supercarbon; Springer: Berlin/Heidelberg, Germany, 1998; pp. 99–105. [Google Scholar]
- Schaftenaar, G.; Noordik, J.H. Molden: A pre-and post-processing program for molecular and electronic structures. J. Comput. Aided Mol. Des. 2000, 14, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Schaftenaar, G.; Vlieg, E.; Vriend, G. Molden 2.0: Quantum chemistry meets proteins. J. Comput. Aided Mol. Des. 2017, 31, 789–800. [Google Scholar]
Species | Model | (eV) | (Å) |
---|---|---|---|
Fe | Pyrrolic-1 | −9.64 | 1.95 |
Pyrrolic-1L | −9.89 | 1.95 | |
Pyrrolic-UC1 | −9.87 | 1.95 | |
Pyrrolic-UC1b | −10.11 | 1.93, 1.96 | |
Pyrrolic-2 | −8.53 | 1.97 | |
Pyrrolic-2L | −9.45 | 2.00 | |
Pyridinic-1 | −7.86 | 1.90, 1.91 | |
Pyridinic-1L | −7.77 | 1.90, 1.91 | |
Pyridinic-UC | −7.74 | 1.89 | |
Pyridinic-2 | −7.57 | 1.90 | |
Pyridinic-2L | −7.36 | 1.90 | |
Zn | Pyrrolic-1 | −6.01 | 2.02 |
Pyrrolic-1L | −6.15 | 2.03 | |
Pyrrolic-UC1 | −5.94 | 2.02 | |
Pyrrolic-UC1b | −6.11 | 1.99, 2.03 | |
Pyrrolic-2 | −5.43 | 2.06 | |
Pyrrolic-2L | −6.34 | 2.06 | |
Pyridinic-1 | −4.14 | 1.96, 2.00 | |
Pyridinic-1L | −4.11 | 1.96, 1.99 | |
Pyridinic-UC | −3.79 | 1.96 | |
Pyridinic-2 | −3.92 | 1.97 | |
Pyridinic-2L | −3.62 | 1.97 |
Metal | (eV) | (Å) | (e) | ||||
---|---|---|---|---|---|---|---|
Pyrrolic | Pyridinic | Pyrrolic | Pyridinic | Pyrrolic | Pyridinic | (eV) | |
empty | - | - | 2.01 ** | 1.92 ** | - | - | 6.19 |
Li | −7.27 | −5.31 | 2.00 | 1.94 | +0.86 | +0.86 | 4.23 |
Na * | −5.66 | −3.49 | 2.25 | 2.27 | +0.91 | +0.93 | 4.03 |
K * | −5.14 | −3.16 | 2.63 | 2.66 | +0.95 | +0.97 | 4.21 |
Be | −10.31 | −8.35 | 1.91 | 1.84 | +1.67 | +1.67 | 4.24 |
Mg | −9.13 | −6.09 | 2.02 | 1.97 | +1.78 | +1.77 | 3.15 |
Ca * | −9.25 | −6.20 | 2.28 | 2.27 | +1.79 | +1.78 | 3.15 |
Sc * | −12.51 | −8.51 | 2.08 | 2.08 | +2.02 | +1.89 | 2.19 |
Ti * | −12.15 | −8.04 | 2.01 | 2.02 | +1.68 | +1.59 | 2.09 |
V * | −11.18 | −7.61 | 1.99 | 1.99 | +1.45 | +1.22 | 2.62 |
Cr | −10.02 | −6.84 | 2.00 | 1.96 | +1.20 | +1.14 | 3.02 |
Mn | −9.35 | −5.97 | 1.96 | 1.94 | +1.58 | +1.24 | 2.81 |
Fe | −9.12 | −7.05 | 1.96 | 1.91 | +1.18 | +1.09 | 4.12 |
Co | −9.61 | −7.33 | 1.95 | 1.90 | +1.08 | +1.07 | 3.92 |
Ni | −9.49 | −7.24 | 1.95 | 1.88 | +1.03 | +0.97 | 3.94 |
Cu | −7.95 | −5.47 | 1.98 | 1.93 | +1.35 | +1.31 | 3.71 |
Zn | −7.17 | −4.40 | 2.01 | 1.97 | +1.66 | +1.64 | 3.42 |
Al | −11.89 | −8.46 | 1.94 | 1.89 | +1.97 | +1.88 | 2.76 |
Ga | −9.45 | −6.03 | 1.97 | 1.93 | +1.88 | +1.79 | 2.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Low, J.L.; Paulus, B. Computational Modelling of Pyrrolic MN4 Motifs Embedded in Graphene for Catalyst Design. Catalysts 2023, 13, 566. https://doi.org/10.3390/catal13030566
Low JL, Paulus B. Computational Modelling of Pyrrolic MN4 Motifs Embedded in Graphene for Catalyst Design. Catalysts. 2023; 13(3):566. https://doi.org/10.3390/catal13030566
Chicago/Turabian StyleLow, Jian Liang, and Beate Paulus. 2023. "Computational Modelling of Pyrrolic MN4 Motifs Embedded in Graphene for Catalyst Design" Catalysts 13, no. 3: 566. https://doi.org/10.3390/catal13030566
APA StyleLow, J. L., & Paulus, B. (2023). Computational Modelling of Pyrrolic MN4 Motifs Embedded in Graphene for Catalyst Design. Catalysts, 13(3), 566. https://doi.org/10.3390/catal13030566