Synthesis of Novel Zn3V2O8/Ag Nanocomposite for Efficient Photocatalytic Hydrogen Production
Abstract
1. Introduction
2. Results and Discussion
2.1. Materials Characterization
2.2. Photocatalytic H2 Production Activities
2.3. Mechanism of H2 Production
3. Experimental Section
3.1. Chemicals and Reagents
3.2. Synthesis of Zn3V2O8/Ag NPs
3.3. H2 Production Assembly
3.4. Apparatus
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ishaq, H.; Dincer, I.; Crawford, C. A review on hydrogen production and utilization: Challenges and opportunities. Int. J. Hydrogen Energy 2022, 47, 26238–26264. [Google Scholar] [CrossRef]
- Ahmad, K.; Mobin, S.M. Recent Progress and Challenges in A3Sb2X9-Based Perovskite Solar Cells. ACS Omega 2020, 5, 28404–28412. [Google Scholar] [CrossRef]
- Alam, M.W.; Al Qahtani, H.S.; Souayeh, B.; Ahmed, W.; Albalawi, H.; Farhan, M.; Abuzir, A.; Naeem, S. Novel Copper-Zinc-Manganese Ternary Metal Oxide Nanocomposite as Heterogeneous Catalyst for Glucose Sensor and Antibacterial Activity. Antioxidants 2022, 11, 1064. [Google Scholar] [CrossRef]
- Ahmad, K.; Shinde, M.A.; Song, G.; Kim, H. Design and fabrication of MoSe2/WO3 thin films for the construction of electrochromic devices on indium tin oxide based glass and flexible substrates. Ceram. Int. 2021, 47, 34297–34306. [Google Scholar] [CrossRef]
- Alam, M.W.; Azam, H.; Khalid, N.R.; Naeem, S.; Hussain, M.K.; BaQais, A.; Farhan, M.; Souayeh, B.; Zaidi, N.; Khan, K. Enhanced Photocatalytic Performance of Ag3PO4/Mn-ZnO Nanocomposite for the Degradation of Tetracycline Hydrochloride. Crystals 2022, 12, 1156. [Google Scholar] [CrossRef]
- Suresh Philip, C.; Nivetha, A.; Sakthivel, C.; Veena, C.G.; Prabha, I. Novel fabrication of cellulose sprinkled crystalline nanocomposites using economical fibrous sources: High performance, compatible catalytic and electrochemical properties. Microporous Mesoporous Mater. 2021, 318, 111021. [Google Scholar] [CrossRef]
- Ahmad, K.; Shinde, M.A.; Kim, H. Molybdenum disulfide/reduced graphene oxide: Progress in synthesis and electro-catalytic properties for electrochemical sensing and dye sensitized solar cells. Microchem. J. 2021, 169, 106583. [Google Scholar] [CrossRef]
- Low, W.H.; Khiew, P.S.; Lim, S.S.; Siong, C.W.; Chia, C.H.; Ezeigwe, E.R. Facile synthesis of graphene-Zn3V2O8 nanocomposite as a high performance electrode material for symmetric supercapacitor. J. Alloys Compd. 2019, 784, 847–858. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Yu, H.; Yu, J. Direct Photoinduced Synthesis of Amorphous CoMoSx Cocatalyst and Its Improved Photocatalytic H2-Evolution Activity of CdS. ACS Sustain. Chem. Eng. 2018, 6, 12436–12445. [Google Scholar] [CrossRef]
- Sharma, R.; Almáši, M.; Nehra, S.P.; Rao, V.S.; Panchal, P.; Paul, D.R.; Jain, I.P.; Sharma, A. Photocatalytic hydrogen production using graphitic carbon nitride (GCN): A precise review. Renew. Sustain. Energy Rev. 2022, 168, 112776. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Shanmugaratnam, S.; Velauthapillai, D.; Ravirajan, P.; Christy, A.A.; Shivatharsiny, Y. CoS2/TiO2 Nanocomposites for Hydrogen Production under UV Irradiation. Materials 2019, 12, 3882. [Google Scholar] [CrossRef] [PubMed]
- Sekar, K.; Kassam, A.; Bai, Y.; Coulson, B.; Li, W.; Douthwaite, R.E.; Sasaki, K.; Lee, A.F. Hierarchical bismuth vanadate/reduced graphene oxide composite photocatalyst for hydrogen evolution and bisphenol A degradation. Appl. Mater. Today 2021, 22, 100963. [Google Scholar] [CrossRef]
- Dhabarde, N.; Carrillo-Ceja, O.; Tian, S.; Xiong, G.; Raja, K.; Subramanian, V.R. Bismuth Vanadate Encapsulated with Reduced Graphene Oxide: A Nanocomposite for Optimized Photocatalytic Hydrogen Peroxide Generation. J. Phys. Chem. C 2021, 125, 23669–23679. [Google Scholar] [CrossRef]
- Marberger, A.; Ferri, D.; Elsener, M.; Sagar, A.; Artner, C.; Schermanz, K.; Kröcher, O. Relationship between structures and activities of supported metal vanadates for the selective catalytic reduction of NO by NH3. Appl. Catal. B Environ. 2017, 218, 731–742. [Google Scholar] [CrossRef]
- Lashari, N.R.; Zhao, M.; Zheng, Q.; Gong, H.; Duan, W.; Xu, T.; Wang, F.; Song, X. Excellent cycling stability and capability of novel mixed-metal vanadate coated with V2O5 materials in an aqueous solution. Electrochim. Acta 2019, 314, 115–123. [Google Scholar] [CrossRef]
- Vignesh, K.; Hariharan, R.; Rajarajan, M.; Suganthi, A. Visible light assisted photocatalytic activity of TiO2–metal vanadate (M = Sr, Ag and Cd) nanocomposites. Mater. Sci. Semicond. Process. 2013, 16, 1521–1530. [Google Scholar] [CrossRef]
- Muthurasu, A.; Tiwari, A.P.; Chhetri, K.; Dahal, B.; Kim, H.Y. Construction of iron doped cobalt-vanadate-cobalt oxide with metal-organic framework oriented nanoflakes for portable rechargeable zinc-air batteries powered total water splitting. Nano Energy 2021, 88, 106238. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Yuan, H.; Li, J.; Ding, L.; Chu, S.; Wang, L.; Zhai, W.; Jiao, Z. Carbon hollow matrix anchored by isolated transition metal atoms serving as a single atom cocatalyst to facilitate the water oxidation kinetics of bismuth vanadate. J. Colloid Interface Sci. 2022, 616, 631–640. [Google Scholar] [CrossRef]
- Yao, X.; Zhao, X.; Hu, J.; Xie, H.; Wang, D.; Cao, X.; Zhang, Z.; Huang, Y.; Chen, Z.; Sritharan, T. The Self-Passivation Mechanism in Degradation of BiVO4 Photoanode. IScience 2019, 19, 976–985. [Google Scholar] [CrossRef]
- Su, J.; Bai, Z.; Huang, B.; Quan, X.; Chen, G. Unique three dimensional architecture using a metal-free semiconductor cross-linked bismuth vanadate for efficient photoelectrochemical water oxidation. Nano Energy 2016, 24, 148–157. [Google Scholar] [CrossRef]
- Rajaji, U.; Govindasamy, M.; Sha, R.; Alshgari, R.A.; Juang, R.-S.; Liu, T.-Y. Surface engineering of 3D spinel Zn3V2O8 wrapped on sulfur doped graphitic nitride composites: Investigation on the dual role of electrocatalyst for simultaneous detection of antibiotic drugs in biological fluids. Compos. Part B Eng. 2022, 242, 110017. [Google Scholar] [CrossRef]
- Yin, Z.; Qin, J.; Wang, W.; Cao, M. Rationally designed hollow precursor-derived Zn3V2O8 nanocages as a high-performance anode material for lithium-ion batteries. Nano Energy 2017, 31, 367–376. [Google Scholar] [CrossRef]
- Rajkumar, S.; Elanthamilan, E.; Princy Merlin, J. Facile synthesis of Zn3V2O8 nanostructured material and its enhanced supercapacitive performance. J. Alloys Compd. 2021, 861, 157939. [Google Scholar] [CrossRef]
- Gan, L.; Deng, D.; Zhang, Y.; Li, G.; Wang, X.; Jiang, L.; Wang, C. Zn3V2O8 hexagon nanosheets: A high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 2013, 2, 2461–2466. [Google Scholar] [CrossRef]
- Mirsadeghi, S.; Ghoreishian, S.M.; Zandavar, H.; Behjatmanesh-Ardakani, R.; Naghian, E.; Ghoreishian, M.; Mehrani, A.; Abdolhoseinpoor, N.; Ganjali, M.R.; Huh, Y.S.; et al. In-depth insight into the photocatalytic and electrocatalytic mechanisms of Mg3V2O8@Zn3V2O8@ZnO ternary heterostructure toward linezolid: Experimental and DFT studies. J. Environ. Chem. Eng. 2023, 11, 109106. [Google Scholar] [CrossRef]
- Khan, F.U.; Chen, Y.; Khan, Z.U.H.; Khan, A.U.; Ahmad, A.; Tahir, K.; Wang, L.; Khan, M.R.; Wan, P. Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent. J. Photochem. Photobiol. B Biol. 2016, 164, 344–351. [Google Scholar] [CrossRef]
- Liu, P.; Yi, J.; Bao, R.; Fang, D. A flower-like Zn3V2O8/Ag composite with enhanced visible light driven photocatalytic activity: The triple-functional roles of Ag nanoparticles. New J. Chem. 2019, 43, 7482–7490. [Google Scholar] [CrossRef]
- Scherrer, P. Estimation of the Size and Internal Structure of Colloidal Particles by Means of Rontgen Rays. Nachr. Von Der Ges. Der Wiss. Zu Göttingen 1918, 26, 98–100. [Google Scholar]
- Luo, J.; Ning, X.; Zhan, L.; Zhou, X. Facile construction of a fascinating Z-scheme AgI/Zn3V2O8 photocatalyst for the photocatalytic degradation of tetracycline under visible light irradiation. Sep. Purif. Technol. 2021, 255, 117691. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Liu, P.P.; Tian, S.J.; Liu, Y.; Peng, Z.Y.; Li, F.; Ni, L.; Liu, Z.C. Sustainable visible-light-driven Z-scheme porous Zn3(VO4)2/g-C3N4 heterostructure toward highly photoredox pollutant and mechanism insight. J. Taiwan Inst. Chem. Eng. 2017, 78, 517–529. [Google Scholar] [CrossRef]
- Pei, L.Z.; Lin, N.; Wei, T.; Liu, H.D.; Yu, H.Y. Zinc Vanadate Nanorods and Their Visible Light Photocatalytic Activity. J. Alloys Compd. 2015, 631, 90–98. [Google Scholar] [CrossRef]
- Ahmed, N.; Mukhtar, S.; Gao, W.; Zafar Ilyas, S. Ab-Initio Calculations of Structural, Electronic, and Optical Properties of Zn3(VO4)2. Chin. Phys. B 2018, 27, 033101. [Google Scholar] [CrossRef]
- Du, M.; Xiong, S.; Wu, T.; Zhao, D.; Zhang, Q.; Fan, Z.; Zeng, Y.; Ji, F.; He, Q.; Xu, X. Preparation of a Microspherical Silver-Reduced Graphene Oxide-Bismuth Vanadate Composite and Evaluation of Its Photocatalytic Activity. Materials 2016, 9, 160. [Google Scholar] [CrossRef]
- Ijaz, M. Plasmonic Hot Electrons: Potential Candidates for Improved Photocatalytic Hydrogen Production. Int J. Hydrogen Energy 2022. [Google Scholar] [CrossRef]
- Arif Sher Shah, M.S.; Zhang, K.; Park, A.R.; Kim, K.S.; Park, N.G.; Park, J.H.; Yoo, P.J. Single-Step Solvothermal Synthesis of Mesoporous Ag–TiO2–Reduced Graphene Oxide Ternary Composites with Enhanced Photocatalytic Activity. Nanoscale 2013, 5, 5093–5101. [Google Scholar] [CrossRef] [PubMed]
- Kubelka, P. Ein Beitrag Zur Optik Der Farbanstriche (Contribution to the Optic of Paint). Z. Fur Tech. Phys. 1931, 12, 593–601. [Google Scholar]
- Kondarides, D.I.; Daskalaki, V.M.; Patsoura, A.; Verykios, X.E. Hydrogen Production by Photo-Induced Reforming of Biomass Components and Derivatives at Ambient Conditions. Catal. Lett. 2008, 122, 26–32. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; Tian, W.; Zhang, Y.; Shan, P.; Chen, Y.; Wei, W.; Yuan, H.; Cui, H. Mechanism for Hydrogen Evolution from Water Splitting Based on a MoS2/WSe2 Heterojunction Photocatalyst: A First-Principle Study. RSC Adv. 2020, 10, 41127–41136. [Google Scholar] [CrossRef]
Material | Crystallite Size (nm) | Lattice Parameters | Unit Volume | Energy Band Gap |
---|---|---|---|---|
ZnV | 27.50 | a = 6.18 Å, b = 11.76 Å, c = 8.38 Å | 609.03 Å3 | 2.33 eV |
ZnV@Ag | 24.60 | a = 5.88 Å, b = 11.38 Å, c = 8.18 Å | 547.97 Å3 | 2.19 eV |
Photocatalyst Materials | H2 Production Efficiency | Light Source |
---|---|---|
ZnV@Ag NC | 37.52 µmolg−1h−1 | Xenon lamp (λ = 420 nm) |
ZnV | 16.44 µmolg−1h−1 | Xenon lamp (λ = 420 nm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharthi, F.A.; Ababtain, A.S.; Aldubeikl, H.K.; Alanazi, H.S.; Hasan, I. Synthesis of Novel Zn3V2O8/Ag Nanocomposite for Efficient Photocatalytic Hydrogen Production. Catalysts 2023, 13, 455. https://doi.org/10.3390/catal13030455
Alharthi FA, Ababtain AS, Aldubeikl HK, Alanazi HS, Hasan I. Synthesis of Novel Zn3V2O8/Ag Nanocomposite for Efficient Photocatalytic Hydrogen Production. Catalysts. 2023; 13(3):455. https://doi.org/10.3390/catal13030455
Chicago/Turabian StyleAlharthi, Fahad A., Alanood Sulaiman Ababtain, Hend Khalid Aldubeikl, Hamdah S. Alanazi, and Imran Hasan. 2023. "Synthesis of Novel Zn3V2O8/Ag Nanocomposite for Efficient Photocatalytic Hydrogen Production" Catalysts 13, no. 3: 455. https://doi.org/10.3390/catal13030455
APA StyleAlharthi, F. A., Ababtain, A. S., Aldubeikl, H. K., Alanazi, H. S., & Hasan, I. (2023). Synthesis of Novel Zn3V2O8/Ag Nanocomposite for Efficient Photocatalytic Hydrogen Production. Catalysts, 13(3), 455. https://doi.org/10.3390/catal13030455