Rapeseed Oil Transesterification Using 1-Butanol and Eggshell as a Catalyst
Abstract
:1. Introduction
2. Results and Discussions
2.1. Eggshell Preparation
2.2. Modeling and Determination of Optimal Reaction Conditions
- EY—the butyl ester yield (%);
- A—the 1-butanol-to-oil molar ratio;
- B—the catalyst content (wt%);
- C—the reaction duration (h).
2.3. Optimization of Fatty Acid Butyl Ester Synthesis Process
2.4. Quality Parameters of Rapeseed Oil Butyl Esters
3. Materials and Methods
3.1. Catalyst Preparation
3.2. CaO Content Determination in Eggshell
3.3. Transesterification of Rapeseed Oil
3.4. Ester Yield Analysis
- EY—ester yield, %;
- MG, DG, and TG—the concentrations of monoglyceride, diglyceride, triglycerides, respectively, %;
- 0.2411, 0.1426, and 0.1012—the respective conversion indicators for the glycerides;
- 10.441—the amount of glycerol which obtained from 1 kg of rapeseed oil.
3.5. Response Surface Analysis
- Y—predicted response;
- β0—the offset term;
- βi—the linear coefficients;
- βii and βij—the interaction coefficients;
- xi and xj—the independent variables [45].
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pillot, B.; Muselli, M.; Poggi, P.; Dias, J.B. Historical trends in global energy policy and renewable power sys-tem issues in Sub-Saharan Africa: The case of solar PV. Energy Policy 2019, 127, 113–124. [Google Scholar] [CrossRef]
- Bastida-Molina, P.; Hurtado-Pérez, E.; Moros Gómez, M.C.; Cárcel-Carrasco, J.; Pérez-Navarro, Á. Energy sustainability evolution in the Mediterranean countries and synergies a global energy scenario for the area. Energy 2022, 252, 124067. [Google Scholar] [CrossRef]
- Nęcka, K.; Knaga, J. Environmental impact assessment for electric vehicles. J. Phys. 2021, 1782, 12023. [Google Scholar] [CrossRef]
- Rajak, U.; Verma, T.N. Effect of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine. Energy Convers. Manag. 2018, 166, 704–718. [Google Scholar] [CrossRef]
- Sendzikiene, E.; Makareviciene, V.; Janulis, P. Influence of composition of fatty acid methyl esters on smoke opacity and amount of polycyclic aromatic hydrocarbons in engine emissions. Pol. J. Environ. Stud. 2007, 16, 259–265. [Google Scholar]
- Nabi, M.N.; Akhter, M.S.; Shahadat, M.M.Z. Improvement of engine emissions with conventional diesel fuel and diesel–biodiesel blends. Bioresour. Technol. 2006, 97, 372–378. [Google Scholar] [CrossRef]
- Gonca, G.; Dobrucali, E. Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends. Renew. Energy 2016, 93, 658–666. [Google Scholar] [CrossRef]
- Moraes, P.S.; Engelmann, J.I.; Igansi, A.V.; Sant Anna Cadaval, T.R., Jr.; De Almeida Pinto, L.A. Nile tilapia industrialization waste: Evaluation of the yield, quality and cost of the biodiesel production process. J. Clean. Prod. 2021, 287, 125041. [Google Scholar] [CrossRef]
- Sajjad, N.; Orfali, R.; Perveen, S.; Rehman, S.; Sultan, A.; Akhtar, T.; Iqbal, M. Biodiesel Production from Alkali-Catalyzed Transesterification of Tamarindus indica Seed Oil and Optimization of Process Conditions. Molecules 2022, 27, 3230. [Google Scholar] [CrossRef] [PubMed]
- Makareviciene, V.; Gumbyte, M.; Skorupskaite, V.; Sendzikiene, E. Biodiesel fuel production by enzymatic microalgae oil transesterification with ethanol. J. Renew. Sustain. Energy 2017, 9, 023101. [Google Scholar] [CrossRef]
- Faruque, M.O.; Razzak, S.A.; Hossain, M.M. Application of heterogeneous catalysts for biodiesel production from microalgal oil—A review. Catalysts 2020, 10, 1025. [Google Scholar] [CrossRef]
- Makareviciene, V.; Sendzikiene, E.; Gaide, I. Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil. Front. Environ. Sci. Eng. 2021, 15, 97. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Ma, X.; Wu, Z.; Cui, P.; Lu, W.; Wang, Y. A novel magnetic CaO-based catalyst synthesis and characterization: Enhancing the catalytic activity and stability of CaO for biodiesel production. Chem. Eng. J. 2020, 391, 123549. [Google Scholar] [CrossRef]
- Harsha Hebbar, H.R.; Math, M.C.; Yatish, K.V. Optimization and kinetic study of CaO nano-particles catalyzed biodiesel production from Bombax ceiba oil. Energy 2018, 143, 25–34. [Google Scholar] [CrossRef]
- Gaide, I.; Makareviciene, V.; Sendzikiene, E.; Kazancev, K. Natural rocks–heterogeneous catalysts for oil transesterification in biodiesel synthesis. Catalysts 2021, 11, 384. [Google Scholar] [CrossRef]
- Gaide, I.; Makareviciene, V.; Sendzikiene, E.; Gumbyte, M. Application of dolomite as solid base catalyst for transesterification of rapeseed oil with butanol. Sustain. Energy Technol. Assess. 2022, 52, 102278. [Google Scholar] [CrossRef]
- Shobana, R.; Vijayalakshmi, S.; Deepanraj, B.; Ranjitha, J. Biodiesel production from Capparis spinosa L seed oil using calcium oxide as a heterogeneous catalyst derived from oyster shell. Mater. Today Proc. 2021, in press. [Google Scholar] [CrossRef]
- Takeno, M.L.; Mendonça, I.M.; Barros, S.D.S.; de Sousa Maia, P.J.; Pessoa, W.A.; Souza, M.P.; Soares, E.R.; Bindá, R.D.S.; Calderaro, F.L.; Sá, I.S. S.; et al. A novel CaO-based catalyst obtained from silver croaker (Plagioscion squamosissimus) stone for biodiesel synthesis: Waste valorization and process optimization. Renew. Energy 2021, 172, 1035–1045. [Google Scholar] [CrossRef]
- Shahbandeh Leading Egg Producing Countries Worldwide in 2020 Statista. 2022. Available online: https://www.statista.com/statistics/263971/top-10-countries-worldwide-in-egg-production/ (accessed on 1 October 2022).
- Laca, A.; Laca, A.; Díaz, M. Eggshell waste as catalyst: A review. J. Environ. Manag. 2017, 197, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Gaide, I.; Makareviciene, V.; Sendzikiene, E. Effectiveness of Eggshells as Natural Heterogeneous Catalysts for Transesterification of Rapeseed Oil with Methanol. Catalysts 2022, 12, 246. [Google Scholar] [CrossRef]
- Wei, Z.; Xu, C.; Li, B. Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresour. Technol. 2009, 100, 2883–2885. [Google Scholar] [CrossRef] [PubMed]
- Goli, J.; Sahu, O. Development of heterogeneous alkali catalyst from waste chicken eggshell for biodiesel production. Renew. Energy 2018, 128, 142–154. [Google Scholar] [CrossRef]
- Khemthong, P.; Luadthong, C.; Nualpaeng, W.; Changsuwan, P.; Tongprem, P.; Viriya-Empikul, N.; Faungnawakij, K. Industrial eggshell wastes as the heterogeneous catalysts for microwave-assisted biodiesel production. Catal. Today 2012, 190, 112–116. [Google Scholar] [CrossRef]
- Nath, D.; Jangid, K.; Susaniya, A.; Kumar, R.; Vaish, R. Eggshell derived CaO-Portland cement antibacterial composites. Compos. Part C Open Access 2021, 5, 100123. [Google Scholar] [CrossRef]
- Roschat, W.; Siritanon, T.; Yoosuk, B.; Promarak, V. Biodiesel production from palm oil using hydrated lime-derived CaO as a low-cost basic heterogeneous catalyst. Energy Convers. Manag. 2016, 108, 459–467. [Google Scholar] [CrossRef]
- Ramesh, S.; Natasha, A.N.; Tan, C.Y.; Bang, L.T.; Ramesh, S.; Ching, C.Y.; Thambinayagam, C.H. Direct conversion of eggshell to hydroxyapatite ceramic by a sintering method. Ceram. Int. 2016, 42, 7824–7829. [Google Scholar] [CrossRef]
- Graziottin, P.L.; Rosset, M.; Lima, D.S.; Perez-Lopez, O.W. Transesterification of different vegetable oils using eggshells from various sources as catalyst. Vib. Spectrosc. 2020, 109, 103087. [Google Scholar] [CrossRef]
- Gupta, J.; Agarwal, M. Preparation and characterization of CaO nanoparticle for biodiesel production. AIP Conf. Proc. 2016, 1724, 020066. [Google Scholar]
- Buasri, A.; Chaiyut, N.; Loryuenyoung, V.; Wongweang, C.; Khamsrisuk, S. Application of eggshell wastes as a heterogeneous catalyst for biodiesel production: A review. Sustain. Energy 2013, 1, 7–13. [Google Scholar]
- Proenca, B.S.G.; Fioroto, P.O.; Heck, S.C.; Duarte, V.A.; Filho, L.C.; Feihrmann, A.C.; Beneti, S.C. Obtention of methyl esters from macauba oil using egg shell catalyst. Chem. Eng. Res. Des. 2021, 169, 288–296. [Google Scholar] [CrossRef]
- Jha, M.K.; Gupta, A.K.; Kumar, V. Kinetics of Transesterification on Jatropha Curcas Oil to Biodiesel Fuel. In Proceedings of the World Congress on Engineering and Computer Science, London, UK, 2–4 July 2007; pp. 99–102. [Google Scholar]
- Urasaki, K.; Takagi, S.; Mukoyama, T.; Christopher, J.; Urasaki, K.; Kato, S.; Yamasaki, A.; Kojima, T.; Satokawa, S. Effect of the kinds of alcohols on the structure and stability of calcium oxide catalyst in triolein transesterification reaction. Appl. Catal. A. Gen. 2012, 411–412, 44–50. [Google Scholar] [CrossRef]
- Avhad, M.R.; Sanchez, M.; Pena, E.; Bouaid, A.; Martínez, M.; Aracil, J.; Marchetti, J.M. Renewable production of value-added jojobyl alcohols and biodiesel using a naturally-derived heterogeneous green catalyst. Fuel 2016, 179, 332–338. [Google Scholar] [CrossRef]
- Correia, L.M.; Cecilia, J.A.; Rodríguez-Castellón, E.; Cavalcante, C.L.; Vieira, R.S. Relevance of the Physicochemical Properties of Calcined Quail Eggshell (CaO) as a Catalyst for Biodiesel Production. J. Chem. 2017, 5679512. [Google Scholar]
- Correia, L.M.; Saboya, R.M.A.; de Susa Campelo, N.; Cecilia, J.A.; Rodrguez-Castelln, E.; Cavalcante, C.L.; Vieira, M.R.S. Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresour. Technol. 2014, 151, 207–213. [Google Scholar] [CrossRef]
- Niju, S.; Begum, M.S.; Anantharaman, N. Modification of egg shell and its application in biodiesel production. J. Saudi Chem. Soc. 2014, 18, 702–706. [Google Scholar] [CrossRef] [Green Version]
- Piker, A.; Tabah, B.; Perkas, N.; Gedanken, A. A green and low-cost room temperature biodiesel production method from waste oil using egg shells as catalyst. Fuel 2016, 182, 34–41. [Google Scholar] [CrossRef]
- Navas, M.B.; Lick, I.D.; Bolla, P.A.; Casella, M.L.; Ruggera, J.F. Transesterification of soybean and castor oil with methanol and butanol using heterogeneous basic catalysts to obtain biodiesel. Chem. Eng. Sci. 2018, 187, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Jazie, A.A.; Pramanik, H.; Sinha, A.S.K.; Jazie, A.A. Egg shell as eco-friendly catalysts for transesterification of rapeseed oil: Optimization for biodiesel production. Int. J. Sustain. Dev. 2013, 2315–4721, 27–32. [Google Scholar]
- Yasar, F. Biodiesel production via waste eggshell as a low-cost heterogeneous catalyst: Its effects on some critical fuel properties and comparison with CaO. Fuel 2019, 255, 115828. [Google Scholar] [CrossRef]
- Farooq, M.; Ramli, A.; Naeem, A.; Mahmood, T.; Ahmad, S.; Humayun, M.; Islam, M.G.U. Biodiesel Production from Date Seed Oil (Phoenix Dactylifera L.) via Egg Shell Derived Heterogeneous Catalyst. Chem. Eng. Res. Des. 2018, 132, 644–651. [Google Scholar] [CrossRef]
- Kirubakaran, M.; Selva, A.M. Eggshell as heterogeneous catalyst for synthesis of biodiesel from high free fatty acid chicken fat and its working characteristics on a CI engine. J. Environ. Chem. Eng. 2018, 6, 4490–4503. [Google Scholar]
- Bailer, J.; Hödl, P.; de Hueber, K.; Mitelbach, M.; Plank, C.; Schindlbauer, H. Handbook of Analytical Methods for Fatty Acid Methyl Esters Used as Biodiesel Fuel Substitutes; Fichte, Research Institute for Chemistry and Technology of Petroleum Products, University of Technology: Vienna, Austria, 1994; pp. 36–38. [Google Scholar]
- Montgomery, D. Design and Analysis of Experiments; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
1-Butanol-to-Oil Molar Ratio, mol/mol | Catalyst Amount, wt% | Duration, h | Predicted Butyl Ester Yield, wt% | Experimental Butyl Ester Yield, wt% | |
---|---|---|---|---|---|
1 | 8.00 | 4.00 | 6.00 | 37.23 | 37.65 ± 0.69 |
2 | 16.00 | 4.00 | 6.00 | 33.32 | 33.51 ± 0.68 |
3 | 8.00 | 8.00 | 6.00 | 51.93 | 51.88 ± 0.49 |
4 | 16.00 | 8.00 | 6.00 | 46.00 | 46.00 ± 0.14 |
5 | 8.00 | 4.00 | 12.00 | 78.61 | 78.90 ± 0.46 |
6 | 16.00 | 4.00 | 12.00 | 73.26 | 73.61 ± 0.39 |
7 | 8.00 | 8.00 | 12.00 | 91.34 | 91.45± 0.63 |
8 | 16.00 | 8.00 | 12.00 | 83.97 | 83.85 ± 0.46 |
9 | 7.20 | 6.00 | 9.00 | 72.06 | 71.50 ± 0.58 |
10 | 16.80 | 6.00 | 9.00 | 65.30 | 65.03 ± 0.93 |
11 | 16.80 | 3.60 | 9.00 | 68.12 | 67.16 ± 0.87 |
12 | 12.00 | 8.40 | 9.00 | 83.36 | 83.49 ± 0.32 |
13 | 12.00 | 6.00 | 5.40 | 51.38 | 51.03 ± 0.71 |
14 | 12.00 | 6.00 | 12.60 | 98.99 | 98.55 ± 0.85 |
15 | 12.00 | 6.00 | 9.00 | 83.58 | 83.21 ± 0.79 |
16 | 12.00 | 6.00 | 9.00 | 83.58 | 83.45 ± 0.49 |
17 | 12.00 | 6.00 | 9.00 | 83.58 | 84.12 ± 0.47 |
18 | 12.00 | 6.00 | 9.00 | 83.58 | 84.46 ± 0.64 |
19 | 12.00 | 6.00 | 9.00 | 83.58 | 83.43 ± 0.45 |
20 | 12.00 | 6.00 | 9.00 | 83.58 | 84.45 ± 0.39 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 6493.48 | 9 | 721.50 | 1722.79 | <0.0001 | Significant |
A-1-butanol-to-oil molar ratio | 86.48 | 1 | 86.48 | 206.49 | <0.0001 | |
B-catalyst | 438.94 | 1 | 438.94 | 1048.09 | <0.0001 | |
C-duration | 4281.49 | 1 | 4281.49 | 10223.31 | <0.0001 | |
AB | 2.05 | 1 | 2.05 | 4.90 | 0.0438 | |
AC | 1.03 | 1 | 1.03 | 2.46 | 0.1480 | |
BC | 1.93 | 1 | 1.93 | 4.61 | 0.0493 | |
A2 | 555.51 | 1 | 555.51 | 1326.44 | <0.0001 | |
B2 | 153.87 | 1 | 153.87 | 367.40 | <0.0001 | |
C2 | 176.20 | 1 | 176.20 | 420.73 | <0.0001 | |
Residual | 4.19 | 10 | 0.42 | |||
Lack of Fit | 2.39 | 5 | 0.48 | 1.33 | 0.3810 | Not significant |
Pure Error | 1.80 | 5 | 0.36 | |||
Cor Total | 6497.67 | 19 |
Variable | Value | Variable | Value |
---|---|---|---|
Std. Dev. | 10.60 | R-Squared | 0.9994 |
Mean | 71.82 | Adj R-Squared | 0.9988 |
C.V. % | 0.9 | Pred R-Squared | 0.9973 |
PRESS | 17.72 | Adeq Precision | 143.512 |
1-butanol-to Oil Molar Ratio, mol/mol | Eggshell Amount, wt% (from Oil Mass) | Reaction Duration, h | Modelled Butyl Ester Yield, wt% | Experimental Butyl Ester Yield, wt% |
---|---|---|---|---|
11.3:1 | 7.41 | 11.81 | 98.82 | 98.78 ± 0.41 |
Parameter | Units | EN 14214 Requirements | Rapeseed Oil Butyl Esters |
---|---|---|---|
Ester content | % | min 96.5 | 98.78 ± 0.41 |
Density at 15 °C | kg m−3 | min 860 max 900 | 865 ± 0.90 |
Viscosity at 40 °C | mm2 s−1 | min 3.50 max 5.00 | 4.72 ± 0.02 |
Acid value | mg KOH g−1 | max 0.5 | 0.33 ± 0.001 |
Sulfur content | mg kg−1 | max 10 | 8.8 ± 0.05 |
Moisture content | mg kg−1 | max 500 | 222 ± 1.75 |
Iodine value | g J2 100−1 g−1 | max 120 | 118 ± 0.60 |
Linolenic acid esters content | % | max 12.0 | 10.1 ± 0.10 |
Monoglyceride content | % | max 0.8 | 0.76 ± 0.18 |
Diglyceride content | % | max 0.2 | 0.17 ± 0.01 |
Triglyceride content | % | max 0.2 | 0.18 ± 0.01 |
Free glycerol content | % | max 0.2 | 0.12 ± 0.04 |
Total glycerol content | % | max 0.25 | 0.23 ± 0.06 |
Oxidation stability 110 °C | h | min 8 | 8.6 ± 0.11 |
Cold filter plugging point | °C | −5 °C (in summer) −32 °C (in winter) | -12 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaide, I.; Makareviciene, V.; Sendzikiene, E.; Gumbytė, M. Rapeseed Oil Transesterification Using 1-Butanol and Eggshell as a Catalyst. Catalysts 2023, 13, 302. https://doi.org/10.3390/catal13020302
Gaide I, Makareviciene V, Sendzikiene E, Gumbytė M. Rapeseed Oil Transesterification Using 1-Butanol and Eggshell as a Catalyst. Catalysts. 2023; 13(2):302. https://doi.org/10.3390/catal13020302
Chicago/Turabian StyleGaide, Ieva, Violeta Makareviciene, Egle Sendzikiene, and Milda Gumbytė. 2023. "Rapeseed Oil Transesterification Using 1-Butanol and Eggshell as a Catalyst" Catalysts 13, no. 2: 302. https://doi.org/10.3390/catal13020302