g-C3N4 as Photocatalyst for the Removal of Metronidazole Antibiotic from Aqueous Matrices under Lab and Pilot Scale Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Removal Kinetics and Degree of Mineralization (Lab Scale Conditions)
2.2. Investigation of the Hydroxy Radicals’ (HO•) Contribution to the Degradation Mechanism
2.3. Identification of Transformation Products (TPs) of MTZ and Possible Transformation Pathways
2.4. In Vitro and In Silico Toxicity Evaluation
2.5. Removal Kinetics of MTZ and Identification of TPs under Pilot Scale
3. Materials and Methods
3.1. Materials, Reagents and Solvents
3.2. Lab and Pilot Scale Photocatalytic Experiments
3.3. Extraction of Lab and Pilot Scale Samples
3.4. Analytical Methods
3.5. In Vitro and In Silico Assessment of Ecotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antonopoulou, M.; Kosma, C.; Albanis, T.; Konstantinou, I. An Overview of Homogeneous and Heterogeneous Photocatalysis Applications for the Removal of Pharmaceutical Compounds from Real or Synthetic Hospital Wastewaters under Lab or Pilot Scale. Sci. Total Environ. 2021, 765, 144163. [Google Scholar] [CrossRef]
- Quesada, H.B.; Baptista, A.T.A.; Cusioli, L.F.; Seibert, D.; de Oliveira Bezerra, C.; Bergamasco, R. Surface Water Pollution by Pharmaceuticals and an Alternative of Removal by Low-Cost Adsorbents: A Review. Chemosphere 2019, 222, 766–780. [Google Scholar] [CrossRef]
- Chander, V.; Sharma, B.; Negi, V.; Aswal, R.S.; Singh, P.; Singh, R.; Dobhal, R. Pharmaceutical Compounds in Drinking Water. J. Xenobiotics 2016, 6, 5774. [Google Scholar] [CrossRef]
- Fitzgerald, K.T. Chapter 61—Metronidazole. In Small Animal Toxicology, 3rd ed.; Peterson, M.E., Talcott, P.A., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2013; pp. 653–657. ISBN 9781455707171. [Google Scholar]
- Bendesky, A.; Menéndez, D.; Ostrosky-Wegman, P. Is Metronidazole Carcinogenic? Mutat. Res.-Rev. Mutat. Res. 2002, 511, 133–144. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Varela Della Giustina, S.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J.L.; et al. Antibiotic Residues in Final Effluents of European Wastewater Treatment Plants and Their Impact on the Aquatic Environment. Environ. Int. 2020, 140, 105733. [Google Scholar] [CrossRef]
- Fatta, D.; Achilleos, A.; Nikolaou, A.; Meriç, S. Analytical Methods for Tracing Pharmaceutical Residues in Water and Wastewater. TrAC-Trends Anal. Chem. 2007, 26, 515–533. [Google Scholar] [CrossRef]
- Malakootian, M.; Olama, N.; Malakootian, M.; Nasiri, A. Photocatalytic Degradation of Metronidazole from Aquatic Solution by TiO2-Doped Fe3+ Nano-Photocatalyst. Int. J. Environ. Sci. Technol. 2019, 16, 4275–4284. [Google Scholar] [CrossRef]
- Ré, J.L.; De Méo, M.P.; Laget, M.; Guiraud, H.; Castegnaro, M.; Vanelle, P.; Duménil, G. Evaluation of the Genotoxic Activity of Metronidazole and Dimetridazole in Human Lymphocytes by the Comet Assay. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 1997, 375, 147–155. [Google Scholar] [CrossRef]
- World Health Organization. IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Available online: https://monographs.iarc.who.int/list-of-classifications (accessed on 4 January 2023).
- NTP (National Toxicology Program). Report on Carcinogens, Fifteenth Edition. Available online: https://ntp.niehs.nih.gov/go/roc152021 (accessed on 4 January 2023).
- Velempini, T.; Prabakaran, E.; Pillay, K. Recent Developments in the Use of Metal Oxides for Photocatalytic Degradation of Pharmaceutical Pollutants in Water—A Review. Mater. Today Chem. 2021, 19, 100380. [Google Scholar] [CrossRef]
- Bisognin, R.P.; Wolff, D.B.; Carissimi, E.; Prestes, O.D.; Zanella, R. Occurrence and Fate of Pharmaceuticals in Effluent and Sludge from a Wastewater Treatment Plant in Brazil. Environ. Technol. 2021, 42, 2292–2303. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. Photocatalytic Transformation of Pesticides in Aqueous Titanium Dioxide Suspensions Using Artificial and Solar Light: Intermediates and Degradation Pathways. Appl. Catal. B Environ. 2003, 42, 319–335. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations: A Review. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Liu, J.; Guo, S.; Wu, H.; Zhang, X.; Li, J.; Zhou, K. Synergetic Effects of Bi5+ and Oxygen Vacancies in Bismuth(V)-Rich Bi4O7 Nanosheets for Enhanced Near-Infrared Light Driven Photocatalysis. J. Mater. Sci. Technol. 2021, 85, 1–10. [Google Scholar] [CrossRef]
- Djurišić, A.B.; He, Y.; Ng, A.M.C. Visible-Light Photocatalysts: Prospects and Challenges. APL Mater. 2020, 8, 030903. [Google Scholar] [CrossRef] [Green Version]
- Tran, M.L.; Fu, C.C.; Juang, R.S. Removal of Metronidazole by TiO2 and ZnO Photocatalysis: A Comprehensive Comparison of Process Optimization and Transformation Products. Environ. Sci. Pollut. Res. 2018, 25, 28285–28295. [Google Scholar] [CrossRef]
- Kong, L.; Wang, J.; Mu, X.; Li, R.; Li, X.; Fan, X.; Song, P.; Ma, F.; Sun, M. Porous Size Dependent g-C3N4 for Efficient Photocatalysts: Regulation Synthesizes and Physical Mechanism. Mater. Today Energy 2019, 13, 11–21. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Bairamis, F.; Konstantinou, I.; Petrakis, D.; Vaimakis, T. Enhanced Performance of Electrospun Nanofibrous TiO2/g-C3N4 Photocatalyst in Photocatalytic Degradation of Methylene Blue. Catalysts 2019, 9, 880. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Xie, J.; Chen, X.; Li, X. A Review on g-C3N4-Based Photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [Google Scholar] [CrossRef]
- Liu, J.; Wei, X.; Sun, W.; Guan, X.; Zheng, X.; Li, J. Fabrication of S-Scheme CdS-g-C3N4-Graphene Aerogel Heterojunction for Enhanced Visible Light Driven Photocatalysis. Environ. Res. 2021, 197, 111136. [Google Scholar] [CrossRef]
- Liu, D.; Li, C.; Zhao, C.; Zhao, Q.; Niu, T.; Pan, L.; Xu, P.; Zhang, F.; Wu, W.; Ni, T. Facile Synthesis of Three-Dimensional Hollow Porous Carbon Doped Polymeric Carbon Nitride with Highly Efficient Photocatalytic Performance. Chem. Eng. J. 2022, 438, 135623. [Google Scholar] [CrossRef]
- Liu, D.; Li, C.; Ge, J.; Zhao, C.; Zhao, Q.; Zhang, F.; Ni, T.; Wu, W. 3D Interconnected g-C3N4 Hybridized with 2D Ti3C2 MXene Nanosheets for Enhancing Visible Light Photocatalytic Hydrogen Evolution and Dye Contaminant Elimination. Appl. Surf. Sci. 2022, 579, 152180. [Google Scholar] [CrossRef]
- Leelavathi, H.; Muralidharan, R.; Abirami, N.; Tamizharasan, S.; Sankeetha, S.; Kumarasamy, A.; Arulmozhi, R. Construction of Step-Scheme g-C3N4/Co/ZnO Heterojunction Photocatalyst for Aerobic Photocatalytic Degradation of Synthetic Wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130449. [Google Scholar] [CrossRef]
- Bairamis, F.; Konstantinou, I. Wo3 Fibers/g-C3N4 Z-Scheme Heterostructure Photocatalysts for Simultaneous Oxidation/Reduction of Phenol/Cr (Vi) in Aquatic Media. Catalysts 2021, 11, 792. [Google Scholar] [CrossRef]
- Liu, D.; Li, C.; Ni, T.; Gao, R.; Ge, J.; Zhang, F.; Wu, W.; Li, J.; Zhao, Q. 3D Interconnected Porous g-C3N4 Hybridized with Fe2O3 Quantum Dots for Enhanced Photo-Fenton Performance. Appl. Surf. Sci. 2021, 555, 149677. [Google Scholar] [CrossRef]
- Pei, X.; An, W.; Zhao, H.; He, H.; Fu, Y.; Shen, X. Enhancing Visible-Light Degradation Performance of g-C3N4 on Organic Pollutants by Constructing Heterojunctions via Combining Tubular g-C3N4 with Bi2O3 Nanosheets. J. Alloys Compd. 2023, 934, 167928. [Google Scholar] [CrossRef]
- John, A.; Rajan, M.S.; Thomas, J. Carbon Nitride-Based Photocatalysts for the Mitigation of Water Pollution Engendered by Pharmaceutical Compounds. Environ. Sci. Pollut. Res. 2021, 28, 24992–25013. [Google Scholar] [CrossRef]
- Kane, A.; Chafiq, L.; Dalhatou, S.; Bonnet, P.; Nasr, M.; Gaillard, N.; Dikdim, J.M.D.; Monier, G.; Assadie, A.A.; Zeghioud, H. g-C3N4/TiO2 S-Scheme Heterojunction Photocatalyst with Enhanced Photocatalytic Carbamazepine Degradation and Mineralization. J. Photochem. Photobiol. A Chem. 2022, 430, 113971. [Google Scholar] [CrossRef]
- Du, X.; Bai, X.; Xu, L.; Yang, L.; Jin, P. Visible-Light Activation of Persulfate by TiO2/g-C3N4 Photocatalyst toward Efficient Degradation of Micropollutants. Chem. Eng. J. 2020, 384, 123245. [Google Scholar] [CrossRef]
- John, P.; Johari, K.; Gnanasundaram, N.; Appusamy, A.; Thanabalan, M. Enhanced Photocatalytic Performance of Visible Light Driven TiO2/g-C3N4 for Degradation of Diclofenac in Aqueous Solution. Environ. Technol. Innov. 2021, 22, 101412. [Google Scholar] [CrossRef]
- You, Q.; Zhang, Q.; Gu, M.; Du, R.; Chen, P.; Huang, J.; Wang, Y.; Deng, S.; Yu, G. Self-Assembled Graphitic Carbon Nitride Regulated by Carbon Quantum Dots with Optimized Electronic Band Structure for Enhanced Photocatalytic Degradation of Diclofenac. Chem. Eng. J. 2022, 431, 133927. [Google Scholar] [CrossRef]
- Van Thuan, D.; Nguyen, T.B.H.; Pham, T.H.; Kim, J.; Hien Chu, T.T.; Nguyen, M.V.; Nguyen, K.D.; Al-onazi, W.A.; Elshikh, M.S. Photodegradation of Ciprofloxacin Antibiotic in Water by Using ZnO-Doped g-C3N4 Photocatalyst. Chemosphere 2022, 308, 136408. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, X.; Zhong, Q.; Li, J.; Wu, H.; Zhang, B.; Jin, L.; Tao, H.B.; Liu, B. Electrostatic Self-Assembly of a AgI/Bi2Ga4O9 p-n Junction Photocatalyst for Boosting Superoxide Radical Generation. J. Mater. Chem. A 2020, 8, 4083–4090. [Google Scholar] [CrossRef]
- Boxi, S.S.; Paria, S. Effect of Silver Doping on TiO2, CdS, and ZnS Nanoparticles for the Photocatalytic Degradation of Metronidazole under Visible Light. RSC Adv. 2014, 4, 37752–37760. [Google Scholar] [CrossRef]
- Farzadkia, M.; Esrafili, A.; Baghapour, M.A.; Shahamat, Y.D.; Okhovat, N. Degradation of Metronidazole in Aqueous Solution by Nano-ZnO/UV Photocatalytic Process. Desalin. Water Treat. 2014, 52, 4947–4952. [Google Scholar] [CrossRef]
- Lim, J.; Kim, H.; Park, J.; Moon, G.H.; Vequizo, J.J.M.; Yamakata, A.; Lee, J.; Choi, W. How g-C3N4 Works and Is Different from TiO2 as an Environmental Photocatalyst: Mechanistic View. Environ. Sci. Technol. 2020, 54, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huang, R.; Sun, R.; Yang, J.; Sillanpää, M. A Review on Persulfates Activation by Functional Biochar for Organic Contaminants Removal: Synthesis, Characterizations, Radical Determination, and Mechanism. J. Environ. Chem. Eng. 2021, 9, 106267. [Google Scholar] [CrossRef]
- Tong, L.; Pérez, S.; Gonçalves, C.; Alpendurada, F.; Wang, Y.; Barceló, D. Kinetic and Mechanistic Studies of the Photolysis of Metronidazole in Simulated Aqueous Environmental Matrices Using a Mass Spectrometric Approach. Anal. Bioanal. Chem. 2011, 399, 421–428. [Google Scholar] [CrossRef]
- Wilkins, B.J.; Moore, D.E. Common Products from Gamma-Radiolysis and Ultraviolet Photolysis of Metronidazole. Int. J. Radiat. Applic. Instrum. Part C Radiat. Phys. Chem. 1990, 36, 547–550. [Google Scholar] [CrossRef]
- Felis, E.; Buta-Hubeny, M.; Zieliński, W.; Hubeny, J.; Harnisz, M.; Bajkacz, S.; Korzeniewska, E. Solar-Light Driven Photodegradation of Antimicrobials, Their Transformation by-Products and Antibiotic Resistance Determinants in Treated Wastewater. Sci. Total Environ. 2022, 836, 155447. [Google Scholar] [CrossRef]
- Piesiak, A.; Schuchmann, M.N.; Zegota, H.; von Sonntag, C. β-Hydroxyethylperoxyl Radicals: A Study of the y-Radiolysis and Pulse Radiolysis of Ethylene in Oxygenated Aqueous Solutions. Zeitschrift fur Naturforsch.-Sect. B J. Chem. Sci. 1984, 39, 1262–1267. [Google Scholar] [CrossRef]
- Pang, X.; Chen, C.; Ji, H.; Che, Y.; Ma, W.; Zhao, J. Unraveling the Photocatalytic Mechanisms on TiO2 Surfaces Using the Oxygen-18 Isotopic Label Technique. Molecules 2014, 19, 16291–16311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations. Globbaly Harmonized System of Classification and Labeling of Chemicals, 9th ed.; United Nations: New York, NY, USA; Geneva, Switzerland, 2021; ISBN 9789211172522. [Google Scholar]
- Sousa, M.A.; Gonçalves, C.; Vilar, V.J.P.; Boaventura, R.A.R.; Alpendurada, M.F. Suspended TiO2-Assisted Photocatalytic Degradation of Emerging Contaminants in a Municipal WWTP Effluent Using a Solar Pilot Plant with CPCs. Chem. Eng. J. 2012, 198–199, 301–309. [Google Scholar] [CrossRef]
- Reche, I.; Pace, M.L.; Cole, J.J. Modeled Effects of Dissolved Organic Carbon and Solar Spectra on Photobleaching in Lake Ecosystems. Ecosystems 2000, 3, 419–432. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Kosma, C.; Lambropoulou, D. Seasonal Occurrence, Removal, Mass Loading and Environmental Risk Assessment of 55 Pharmaceuticals and Personal Care Products in a Municipal Wastewater Treatment Plant in Central Greece. Sci. Total Environ. 2016, 543, 547–569. [Google Scholar] [CrossRef]
k (min−1) | R2 | Δk% | |
---|---|---|---|
No Scavenger | 0.00618 | 0.9936 | - |
TBA | 0.00615 | 0.9982 | 0.48% |
NaN3 | 0.00614 | 0.9961 | 0.65% |
Photolysis | 0.00618 | 0.9940 | 0% |
Compound (Chemical Category) | Acute Toxicity (LC50/EC50) | Chronic Toxicity (ChV) | ||||
---|---|---|---|---|---|---|
Fish LC50 (mg L−1) | Daphnid LC50 (mg L−1) | Green Algae EC50 (mg L−1) | Fish ChV (mg L−1) | Daphnid ChV (mg L−1) | Green Algae ChV (mg L−1) | |
MTZ (PY/DZ) | 878.3 | 179.7 | 6.92 | 0.95 | 3.08 | 2.70 |
TP1 (AM) | 8016 | 12001 | 344.2 | 29.96 | 696.2 | 62.38 |
TP2a (PY/DZ) | 1627 | 271.1 | 9.67 | 1.32 | 4.64 | 3.69 |
TP2b (PY/DZ) | 3611 | 440.7 | 14.01 | 1.89 | 7.54 | 5.18 |
TP3a (AM) | 13296 | 20618 | 524.6 | 44.89 | 1098 | 85.82 |
TP3b (AM) | 67002 | 119050 | 1.904 | 152.4 | 4554 | 209.3 |
TP4 (PY/DZ) | 20825 | 1277 | 31.48 | 4.14 | 21.81 | 10.85 |
TP5a (AM) | 57560 | 83256 | 2686 | 237.8 | 5252 | 538.3 |
TP5b (IM) | 158.4 | 882.8 | 17.58 | 718.2 | 978.2 | 0.34 |
TP6 (AM) | 1148 | 1484 | 70.36 | 6.58 | 123.2 | 19.61 |
ΤΡ7 (AΜ) | 2390 | 3313 | 123.5 | 11.16 | 231.7 | 28.01 |
ΤΡ8 (AΜ) | 42211 | 75097 | 1195 | 95.65 | 2863 | 130.9 |
PY/DZ: Pyrroles/Diazoles AM: Amides IM: Imides | Very Toxic | Toxic | Harmful | Not Harmful |
Catalyst Dose | k (min−1) | t1/2 (min) | R2 |
---|---|---|---|
100 mg L−1 | 0.00827 | 83.51 | 0.9888 |
200 mg L−1 | 0.00942 | 73.74 | 0.9960 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lykos, C.; Sioulas, S.; Konstantinou, I. g-C3N4 as Photocatalyst for the Removal of Metronidazole Antibiotic from Aqueous Matrices under Lab and Pilot Scale Conditions. Catalysts 2023, 13, 254. https://doi.org/10.3390/catal13020254
Lykos C, Sioulas S, Konstantinou I. g-C3N4 as Photocatalyst for the Removal of Metronidazole Antibiotic from Aqueous Matrices under Lab and Pilot Scale Conditions. Catalysts. 2023; 13(2):254. https://doi.org/10.3390/catal13020254
Chicago/Turabian StyleLykos, Christos, Sotirios Sioulas, and Ioannis Konstantinou. 2023. "g-C3N4 as Photocatalyst for the Removal of Metronidazole Antibiotic from Aqueous Matrices under Lab and Pilot Scale Conditions" Catalysts 13, no. 2: 254. https://doi.org/10.3390/catal13020254
APA StyleLykos, C., Sioulas, S., & Konstantinou, I. (2023). g-C3N4 as Photocatalyst for the Removal of Metronidazole Antibiotic from Aqueous Matrices under Lab and Pilot Scale Conditions. Catalysts, 13(2), 254. https://doi.org/10.3390/catal13020254