Highly Selective Nitrogen-Doped Graphene Quantum Dots/Eriochrome Cyanine Composite Photocatalyst for NADH Regeneration and Coupling of Benzylamine in Aerobic Condition under Solar Light
Abstract
1. Introduction
2. Results and Discussion
2.1. The Enzymatically Active and Inactive 1,4-NADH Cofactor Regeneration
2.2. Mechanistic Pathway during the Regeneration of NADH Cofactors
2.3. Schematic Representation of Energy Level Diagram for Transfer of Photo-Excited Electron
2.4. Quantitative Analysis for Regeneration of NADH
2.5. Photo-Chemically Coupling of Chlorobenzyl Amine in Presence of Oxygen
2.6. Reaction Mechanism during the Photocatalytic Coupling Reaction
3. Experimental Details
3.1. Chemicals and Materials
3.2. Synthesis of Nitrogen-Doped Graphene Quantum Dot (NGQDs)
3.3. Synthesis of NGQDs@EC Photocatalyst
3.4. Photocatalytic Studies
3.5. Formation of Imine in the Presence of Oxygen
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yasuhiro, T.; Vayssieres, L.; Durrant, J. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511–518. [Google Scholar]
- Serena, B.; Drouet, S.; Francà, L.; Gimbert-Suriñach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Molecular artificial photosynthesis. Chem. Soc. Rev. 2014, 43, 7501–7519. [Google Scholar]
- Osterloh, F.E. Inorganic Materials as Catalysts for Photochemical Splitting of Water. Chem. Mater. 2008, 20, 35–54. [Google Scholar] [CrossRef]
- Wang, X.; Saba, T.; Yiu, H.H.P.; Howe, R.; Anderson, J.; Shi, J. Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem 2017, 2, 621–654. [Google Scholar] [CrossRef]
- Liu, J.; Antonietti, M. Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates. Energy Environ. Sci. 2013, 6, 1486–1493. [Google Scholar] [CrossRef]
- Huang, J.; Antonietti, M.; Liu, J. Bio-inspired carbon nitride mesoporous spheres for artificial photosynthesis: Photocatalytic cofactor regeneration for sustainable enzymatic synthesis. J. Mater. Chem. A 2014, 2, 7686–7693. [Google Scholar] [CrossRef]
- Gupta, S.K.; Yadav, R.; Gupta, A.; Yadav, B.; Singh, A.; Pande, B. Highly Efficient S-g-CN/Mo-368 Catalyst for Synergistically NADH Regeneration Under Solar Light. Photochem. Photobiol. 2021, 97, 1498–1506. [Google Scholar] [CrossRef]
- Yang, D.; Zou, H.; Wu, Y.; Shi, J.; Zhang, S.; Wang, X.; Han, P.; Tong, Z.; Jiang, Z. Constructing quantum dots@flake g-C3N4 isotype heterojunctions for enhanced visible-light-driven NADH regeneration and enzymatic hydrogenation. Ind. Eng. Chem. Res. 2017, 56, 6247–6255. [Google Scholar] [CrossRef]
- Wan, J.; Choi, W.; Kim, J.; Kuk, S.; Lee, S.; Park, C. Self-Assembled Peptide-Carbon Nitride Hydrogel as a Light-Responsive Scaffold Material. Biomacromolecules 2017, 18, 3551–3556. [Google Scholar]
- Shifa, T.A.; Wang, F.; Liu, Y.; He, J. Heterostructures Based on 2D Materials: A Versatile Platform for Efficient Catalysis. Adv. Mater. 2019, 31, 1804828. [Google Scholar] [CrossRef]
- Iyer, M.S.K.; Patil, S.; Singh, A. Flame Synthesis of Functional Carbon Nanoparticles. Trans. Indian Natl. Acad. Eng. 2022, 7, 787–807. [Google Scholar] [CrossRef]
- Kang, H.; Liu, H.; Li, C.; Sun, L.; Zhang, C.; Gao, H.; Yin, J.; Yang, B.; You, Y.; Jiang, K.; et al. Polyanthraquinone-Triazine—A Promising Anode Material for High-Energy Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 37023–37030. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, S.; Yadav, R.; Tripathi, S.K.; Yadav, B.; Singh, S.; Kim, T.W. Covalent Triazine Framework as an Efficient Photocatalyst for Regeneration of NAD(P)H and Selective Oxidation of Organic Sulfide. Photochem. Photobiol. 2022, 98, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Yadav, R.; Kim, T.; Singh, C.; Singh, P.; Singh, A.; Singh, A.; Singh, A.; Beag, J.; Gupta, S. Rational design of a graphitic carbon nitride catalytic–biocatalytic system as a photocatalytic platform for solar fine chemical production from CO2. React. Chem. Eng. 2022, 7, 1566–1572. [Google Scholar] [CrossRef]
- Singh, P.; Yadav, R.; Kim, T.; Yadav, T.; Gole, V.; Gupta, A.; Singh, K.; Kumar, K.; Yadav, B.; Dwivedi, D. Solar light active flexible activated carbon cloth-based photocatalyst for Markovnikov-selective radical-radical cross-coupling of S-nucleophiles to terminal alkyne and liquefied petroleum gas sensing. J. Chin. Chem. Soc. 2021, 68, 1435–1444. [Google Scholar] [CrossRef]
- Pan, D.; Zhang, J.; Li, Z.; Wu, M. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Adv. Mater. 2010, 22, 734–738. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.; Zhao, Y.; Shi, G.; Deng, L.; Hou, Y.; Qu, L. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 2011, 23, 776–780. [Google Scholar] [CrossRef]
- Chen, J.; Collier, C. Noncovalent Functionalization of Single-Walled Carbon Nanotubes with Water-Soluble Porphyrins. J. Phys. Chem. B 2005, 109, 7605–7609. [Google Scholar] [CrossRef]
- Li, B.; Cao, H.; Yin, G.; Lu, Y.; Yin, J. Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J. Mater. Chem. 2011, 21, 13765–13768. [Google Scholar] [CrossRef]
- Silva, S.P.; Moraes, D.; Samios, D. Iron Oxide Nanoparticles Coated with Polymer Derived from Epoxidized Oleic Acid and Cis-1,2-Cyclohexanedicarboxylic Anhydride: Synthesis and Characterization. J. Mater. Sci. Eng. 2016, 5, 1000247. [Google Scholar] [CrossRef]
- Wang, J.; Lu, C.; Chen, T.; Hu, L.; Du, Y.; Yao, Y.; Goh, M. Simply synthesized nitrogen-doped graphene quantum dot (NGQD)-modified electrode for the ultrasensitive photoelectrochemical detection of dopamine. Nanophotonics 2020, 9, 3831–3839. [Google Scholar] [CrossRef]
- Chaubey, S.; Singh, P.; Singh, C.; Singh, S.; Shreya, S.; Yadav, R.; Mishra, S.; Jeong, Y.-J.; Biswas, B.; Kim, T. Ultra-efficient synthesis of bamboo-shape porphyrin framework for photocatalytic CO2 reduction and consecutive C-S/C-N bonds formation. J. CO2 Util. 2022, 59, 101968. [Google Scholar] [CrossRef]
- Cimino, P.; Troiani, A.; Pepi, F.; Garzoli, S.; Salvitti, C.; Di Rienzo, B.; Barone, V.; Ricci, A. From ascorbic acid to furan derivatives: The gas phase acid catalyzed degradation of vitamin C. Phys. Chem. Chem. Phys. 2018, 20, 17132–17140. [Google Scholar] [CrossRef]
- Singh, C.; Yadav, R.; Kim, T.; Baeg, J.-O.; Singh, A. Greener One-step Synthesis of Novel In Situ Selenium-doped Framework Photocatalyst by Melem and Perylene Dianhydride for Enhanced Solar Fuel Production from CO2. Photochem. Photobiol. 2022, 98, 998–1007. [Google Scholar] [CrossRef]
- Yadav, R.K.; Oh, G.; Park, N.; Kumar, A.; Kong, K.; Baeg, J. Highly selective solar-driven methanol from CO2 by a photocatalyst/biocatalyst integrated system. J. Am. Chem. Soc. 2014, 136, 16728–16731. [Google Scholar] [CrossRef]
- Kumar, A.; Sadanandhana, A.M.; Jain, S.L. Silver doped reduced graphene oxide as promising plasmonic photocatalyst for oxidative coupling of benzylamines under visible light irradiation. New J. Chem. 2019, 43, 9116–9122. [Google Scholar] [CrossRef]
- Bajorowicz, B.; Reszczyńska, J.; Lisowski, W.; Klimczuk, T.; Winiarski, M.; Słoma, M.; Zaleska-Medynska, A. Perovskite-type KTaO3–reduced graphene oxide hybrid with improved visible light photocatalytic activity. RSC Adv. 2015, 5, 91315–91325. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, G.; Liao, J.; Li, W.; Chen, C.; Li, M.; Li, Z. Honeycomb-like ZnO Mesoporous Nanowall Arrays Modified with Ag Nanoparticles for Highly Efficient Photocatalytic Activity. Sc. Rep. 2017, 7, 11622. [Google Scholar] [CrossRef]
- Yadav, R.K.; Baeg, J.-O.; Kumar, A.; Kong, K.; Oh, G.; Park, N.-J. Graphene–BODIPY as a photocatalyst in the photocatalytic–biocatalytic coupled system for solar fuel production from CO2. J. Mater. Chem. 2014, 2, 5068–5076. [Google Scholar] [CrossRef]
- Yuan, A.; Lei, H.; Wang, Z.; Dong, X. Improved photocatalytic performance for selective oxidation of amines to imines on graphitic carbon nitride/bismuth tungstate heterojunctions. J. Colloid Interface Sci. 2020, 560, 40–49. [Google Scholar] [CrossRef]
- Yadav, R.K.; Baeg, J.-O.; Oh, G.; Park, N.-J.; Kong, K.; Kim, J.; Hwang, D.W.; Biswas, S.K. A Photocatalyst–Enzyme Coupled Artificial Photosynthesis System for Solar Energy in Production of Formic Acid from CO2. J. Am. Chem. Soc. 2012, 134, 11455–11461. [Google Scholar] [CrossRef]
- Liu, F.; Huang, K.; Ding, S.; Dai, S. One-step synthesis of nitrogen-doped graphene-like meso-macroporous carbons as highly efficient and selective adsorbents for CO2 capture. J. Mater. Chem. A 2016, 4, 14567–14571. [Google Scholar] [CrossRef]
- Zhang, K.; Li, H.; Shi, H.; Hong, W. Polyimide with enhanced π stacking for efficient visible-light-driven photocatalysis. Catal. Sci. Technol. 2021, 11, 4889–4897. [Google Scholar] [CrossRef]
- Mou, Z.; Dong, Y.; Li, S.; Du, Y.; Wang, X.; Yang, P.; Wang, S. Eosin Y functionalized graphene for photocatalytic hydrogen production from water. Int. J. Hydrogen Energy 2011, 36, 8885–8893. [Google Scholar] [CrossRef]
- Singh, S.; Yadav, R.; Kim, T.; Singh, C.; Singh, P.; Chaubey, S.; Singh, A.; Beag, J.; Gupta, S.; Tiwary, D. Generation and Regeneration of the C(sp3)–F Bond and 1,4-NADH/NADPH via Newly Designed S-gC3N4@Fe2O3/LC Photocatalysts under Solar Light. Energy Fuels 2022, 36, 8402–8412. [Google Scholar] [CrossRef]
- Kumar, A.; Hamdi, A.; Coffinier, Y.; Addad, A.; Roussel, P.; Boukherroub, R.; Jain, S. Visible light assisted oxidative coupling of benzylamines using heterostructured nanocomposite photocatalyst. Chemistry 2018, 356, 457–463. [Google Scholar] [CrossRef]
S. No. | Photocatalyst Solvent | Solar Light | Yield (%) |
---|---|---|---|
1. | NGQD@EC ACN | Yes | 98.5 |
2. | EC ACN | Yes | 34 |
3. | NGQDs ACN | Yes | 12 |
4. | Absence ACN | Yes | 0 |
5. | NGQD@EC ACN | No | 5 |
S.No. | Photocatalyst | NADH Regeneration (%) | Conversion of Amine (%) | References |
---|---|---|---|---|
1. | 5%Ag@rGO | --------------------------- | 98% | [26] |
2. | CCG-BIODPY | 54.02% | 95% | [29] |
3. | CN/BW | --------------------------- | 95% | [30] |
4. | CCGCMAQSP | 45.54% | ---------------------- | [31] |
5. | NGQDs@EC | 55% | 98.5% | Our work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.; Yadav, R.K.; Shukla, R.K.; Singh, S.; Singh, A.P.; Dwivedi, D.K.; Umar, A.; Gupta, N.K. Highly Selective Nitrogen-Doped Graphene Quantum Dots/Eriochrome Cyanine Composite Photocatalyst for NADH Regeneration and Coupling of Benzylamine in Aerobic Condition under Solar Light. Catalysts 2023, 13, 199. https://doi.org/10.3390/catal13010199
Singh R, Yadav RK, Shukla RK, Singh S, Singh AP, Dwivedi DK, Umar A, Gupta NK. Highly Selective Nitrogen-Doped Graphene Quantum Dots/Eriochrome Cyanine Composite Photocatalyst for NADH Regeneration and Coupling of Benzylamine in Aerobic Condition under Solar Light. Catalysts. 2023; 13(1):199. https://doi.org/10.3390/catal13010199
Chicago/Turabian StyleSingh, Ruchi, Rajesh K. Yadav, Ravindra K. Shukla, Satyam Singh, Atul P. Singh, Dilip K. Dwivedi, Ahmad Umar, and Navneet K. Gupta. 2023. "Highly Selective Nitrogen-Doped Graphene Quantum Dots/Eriochrome Cyanine Composite Photocatalyst for NADH Regeneration and Coupling of Benzylamine in Aerobic Condition under Solar Light" Catalysts 13, no. 1: 199. https://doi.org/10.3390/catal13010199
APA StyleSingh, R., Yadav, R. K., Shukla, R. K., Singh, S., Singh, A. P., Dwivedi, D. K., Umar, A., & Gupta, N. K. (2023). Highly Selective Nitrogen-Doped Graphene Quantum Dots/Eriochrome Cyanine Composite Photocatalyst for NADH Regeneration and Coupling of Benzylamine in Aerobic Condition under Solar Light. Catalysts, 13(1), 199. https://doi.org/10.3390/catal13010199