Highly Selective Nitrogen-Doped Graphene Quantum Dots/Eriochrome Cyanine Composite Photocatalyst for NADH Regeneration and Coupling of Benzylamine in Aerobic Condition under Solar Light
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Enzymatically Active and Inactive 1,4-NADH Cofactor Regeneration
2.2. Mechanistic Pathway during the Regeneration of NADH Cofactors
2.3. Schematic Representation of Energy Level Diagram for Transfer of Photo-Excited Electron
2.4. Quantitative Analysis for Regeneration of NADH
2.5. Photo-Chemically Coupling of Chlorobenzyl Amine in Presence of Oxygen
2.6. Reaction Mechanism during the Photocatalytic Coupling Reaction
3. Experimental Details
3.1. Chemicals and Materials
3.2. Synthesis of Nitrogen-Doped Graphene Quantum Dot (NGQDs)
3.3. Synthesis of NGQDs@EC Photocatalyst
3.4. Photocatalytic Studies
3.5. Formation of Imine in the Presence of Oxygen
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yasuhiro, T.; Vayssieres, L.; Durrant, J. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511–518. [Google Scholar]
- Serena, B.; Drouet, S.; Francà, L.; Gimbert-Suriñach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Molecular artificial photosynthesis. Chem. Soc. Rev. 2014, 43, 7501–7519. [Google Scholar]
- Osterloh, F.E. Inorganic Materials as Catalysts for Photochemical Splitting of Water. Chem. Mater. 2008, 20, 35–54. [Google Scholar] [CrossRef]
- Wang, X.; Saba, T.; Yiu, H.H.P.; Howe, R.; Anderson, J.; Shi, J. Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem 2017, 2, 621–654. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Antonietti, M. Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates. Energy Environ. Sci. 2013, 6, 1486–1493. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Antonietti, M.; Liu, J. Bio-inspired carbon nitride mesoporous spheres for artificial photosynthesis: Photocatalytic cofactor regeneration for sustainable enzymatic synthesis. J. Mater. Chem. A 2014, 2, 7686–7693. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Yadav, R.; Gupta, A.; Yadav, B.; Singh, A.; Pande, B. Highly Efficient S-g-CN/Mo-368 Catalyst for Synergistically NADH Regeneration Under Solar Light. Photochem. Photobiol. 2021, 97, 1498–1506. [Google Scholar] [CrossRef]
- Yang, D.; Zou, H.; Wu, Y.; Shi, J.; Zhang, S.; Wang, X.; Han, P.; Tong, Z.; Jiang, Z. Constructing quantum dots@flake g-C3N4 isotype heterojunctions for enhanced visible-light-driven NADH regeneration and enzymatic hydrogenation. Ind. Eng. Chem. Res. 2017, 56, 6247–6255. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Choi, W.; Kim, J.; Kuk, S.; Lee, S.; Park, C. Self-Assembled Peptide-Carbon Nitride Hydrogel as a Light-Responsive Scaffold Material. Biomacromolecules 2017, 18, 3551–3556. [Google Scholar]
- Shifa, T.A.; Wang, F.; Liu, Y.; He, J. Heterostructures Based on 2D Materials: A Versatile Platform for Efficient Catalysis. Adv. Mater. 2019, 31, 1804828. [Google Scholar] [CrossRef]
- Iyer, M.S.K.; Patil, S.; Singh, A. Flame Synthesis of Functional Carbon Nanoparticles. Trans. Indian Natl. Acad. Eng. 2022, 7, 787–807. [Google Scholar] [CrossRef]
- Kang, H.; Liu, H.; Li, C.; Sun, L.; Zhang, C.; Gao, H.; Yin, J.; Yang, B.; You, Y.; Jiang, K.; et al. Polyanthraquinone-Triazine—A Promising Anode Material for High-Energy Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 37023–37030. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, S.; Yadav, R.; Tripathi, S.K.; Yadav, B.; Singh, S.; Kim, T.W. Covalent Triazine Framework as an Efficient Photocatalyst for Regeneration of NAD(P)H and Selective Oxidation of Organic Sulfide. Photochem. Photobiol. 2022, 98, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Yadav, R.; Kim, T.; Singh, C.; Singh, P.; Singh, A.; Singh, A.; Singh, A.; Beag, J.; Gupta, S. Rational design of a graphitic carbon nitride catalytic–biocatalytic system as a photocatalytic platform for solar fine chemical production from CO2. React. Chem. Eng. 2022, 7, 1566–1572. [Google Scholar] [CrossRef]
- Singh, P.; Yadav, R.; Kim, T.; Yadav, T.; Gole, V.; Gupta, A.; Singh, K.; Kumar, K.; Yadav, B.; Dwivedi, D. Solar light active flexible activated carbon cloth-based photocatalyst for Markovnikov-selective radical-radical cross-coupling of S-nucleophiles to terminal alkyne and liquefied petroleum gas sensing. J. Chin. Chem. Soc. 2021, 68, 1435–1444. [Google Scholar] [CrossRef]
- Pan, D.; Zhang, J.; Li, Z.; Wu, M. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Adv. Mater. 2010, 22, 734–738. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.; Zhao, Y.; Shi, G.; Deng, L.; Hou, Y.; Qu, L. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 2011, 23, 776–780. [Google Scholar] [CrossRef]
- Chen, J.; Collier, C. Noncovalent Functionalization of Single-Walled Carbon Nanotubes with Water-Soluble Porphyrins. J. Phys. Chem. B 2005, 109, 7605–7609. [Google Scholar] [CrossRef]
- Li, B.; Cao, H.; Yin, G.; Lu, Y.; Yin, J. Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J. Mater. Chem. 2011, 21, 13765–13768. [Google Scholar] [CrossRef]
- Silva, S.P.; Moraes, D.; Samios, D. Iron Oxide Nanoparticles Coated with Polymer Derived from Epoxidized Oleic Acid and Cis-1,2-Cyclohexanedicarboxylic Anhydride: Synthesis and Characterization. J. Mater. Sci. Eng. 2016, 5, 1000247. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lu, C.; Chen, T.; Hu, L.; Du, Y.; Yao, Y.; Goh, M. Simply synthesized nitrogen-doped graphene quantum dot (NGQD)-modified electrode for the ultrasensitive photoelectrochemical detection of dopamine. Nanophotonics 2020, 9, 3831–3839. [Google Scholar] [CrossRef]
- Chaubey, S.; Singh, P.; Singh, C.; Singh, S.; Shreya, S.; Yadav, R.; Mishra, S.; Jeong, Y.-J.; Biswas, B.; Kim, T. Ultra-efficient synthesis of bamboo-shape porphyrin framework for photocatalytic CO2 reduction and consecutive C-S/C-N bonds formation. J. CO2 Util. 2022, 59, 101968. [Google Scholar] [CrossRef]
- Cimino, P.; Troiani, A.; Pepi, F.; Garzoli, S.; Salvitti, C.; Di Rienzo, B.; Barone, V.; Ricci, A. From ascorbic acid to furan derivatives: The gas phase acid catalyzed degradation of vitamin C. Phys. Chem. Chem. Phys. 2018, 20, 17132–17140. [Google Scholar] [CrossRef]
- Singh, C.; Yadav, R.; Kim, T.; Baeg, J.-O.; Singh, A. Greener One-step Synthesis of Novel In Situ Selenium-doped Framework Photocatalyst by Melem and Perylene Dianhydride for Enhanced Solar Fuel Production from CO2. Photochem. Photobiol. 2022, 98, 998–1007. [Google Scholar] [CrossRef]
- Yadav, R.K.; Oh, G.; Park, N.; Kumar, A.; Kong, K.; Baeg, J. Highly selective solar-driven methanol from CO2 by a photocatalyst/biocatalyst integrated system. J. Am. Chem. Soc. 2014, 136, 16728–16731. [Google Scholar] [CrossRef]
- Kumar, A.; Sadanandhana, A.M.; Jain, S.L. Silver doped reduced graphene oxide as promising plasmonic photocatalyst for oxidative coupling of benzylamines under visible light irradiation. New J. Chem. 2019, 43, 9116–9122. [Google Scholar] [CrossRef]
- Bajorowicz, B.; Reszczyńska, J.; Lisowski, W.; Klimczuk, T.; Winiarski, M.; Słoma, M.; Zaleska-Medynska, A. Perovskite-type KTaO3–reduced graphene oxide hybrid with improved visible light photocatalytic activity. RSC Adv. 2015, 5, 91315–91325. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, G.; Liao, J.; Li, W.; Chen, C.; Li, M.; Li, Z. Honeycomb-like ZnO Mesoporous Nanowall Arrays Modified with Ag Nanoparticles for Highly Efficient Photocatalytic Activity. Sc. Rep. 2017, 7, 11622. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.K.; Baeg, J.-O.; Kumar, A.; Kong, K.; Oh, G.; Park, N.-J. Graphene–BODIPY as a photocatalyst in the photocatalytic–biocatalytic coupled system for solar fuel production from CO2. J. Mater. Chem. 2014, 2, 5068–5076. [Google Scholar] [CrossRef]
- Yuan, A.; Lei, H.; Wang, Z.; Dong, X. Improved photocatalytic performance for selective oxidation of amines to imines on graphitic carbon nitride/bismuth tungstate heterojunctions. J. Colloid Interface Sci. 2020, 560, 40–49. [Google Scholar] [CrossRef]
- Yadav, R.K.; Baeg, J.-O.; Oh, G.; Park, N.-J.; Kong, K.; Kim, J.; Hwang, D.W.; Biswas, S.K. A Photocatalyst–Enzyme Coupled Artificial Photosynthesis System for Solar Energy in Production of Formic Acid from CO2. J. Am. Chem. Soc. 2012, 134, 11455–11461. [Google Scholar] [CrossRef]
- Liu, F.; Huang, K.; Ding, S.; Dai, S. One-step synthesis of nitrogen-doped graphene-like meso-macroporous carbons as highly efficient and selective adsorbents for CO2 capture. J. Mater. Chem. A 2016, 4, 14567–14571. [Google Scholar] [CrossRef]
- Zhang, K.; Li, H.; Shi, H.; Hong, W. Polyimide with enhanced π stacking for efficient visible-light-driven photocatalysis. Catal. Sci. Technol. 2021, 11, 4889–4897. [Google Scholar] [CrossRef]
- Mou, Z.; Dong, Y.; Li, S.; Du, Y.; Wang, X.; Yang, P.; Wang, S. Eosin Y functionalized graphene for photocatalytic hydrogen production from water. Int. J. Hydrogen Energy 2011, 36, 8885–8893. [Google Scholar] [CrossRef]
- Singh, S.; Yadav, R.; Kim, T.; Singh, C.; Singh, P.; Chaubey, S.; Singh, A.; Beag, J.; Gupta, S.; Tiwary, D. Generation and Regeneration of the C(sp3)–F Bond and 1,4-NADH/NADPH via Newly Designed S-gC3N4@Fe2O3/LC Photocatalysts under Solar Light. Energy Fuels 2022, 36, 8402–8412. [Google Scholar] [CrossRef]
- Kumar, A.; Hamdi, A.; Coffinier, Y.; Addad, A.; Roussel, P.; Boukherroub, R.; Jain, S. Visible light assisted oxidative coupling of benzylamines using heterostructured nanocomposite photocatalyst. Chemistry 2018, 356, 457–463. [Google Scholar] [CrossRef]
S. No. | Photocatalyst Solvent | Solar Light | Yield (%) |
---|---|---|---|
1. | NGQD@EC ACN | Yes | 98.5 |
2. | EC ACN | Yes | 34 |
3. | NGQDs ACN | Yes | 12 |
4. | Absence ACN | Yes | 0 |
5. | NGQD@EC ACN | No | 5 |
S.No. | Photocatalyst | NADH Regeneration (%) | Conversion of Amine (%) | References |
---|---|---|---|---|
1. | 5%Ag@rGO | --------------------------- | 98% | [26] |
2. | CCG-BIODPY | 54.02% | 95% | [29] |
3. | CN/BW | --------------------------- | 95% | [30] |
4. | CCGCMAQSP | 45.54% | ---------------------- | [31] |
5. | NGQDs@EC | 55% | 98.5% | Our work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.; Yadav, R.K.; Shukla, R.K.; Singh, S.; Singh, A.P.; Dwivedi, D.K.; Umar, A.; Gupta, N.K. Highly Selective Nitrogen-Doped Graphene Quantum Dots/Eriochrome Cyanine Composite Photocatalyst for NADH Regeneration and Coupling of Benzylamine in Aerobic Condition under Solar Light. Catalysts 2023, 13, 199. https://doi.org/10.3390/catal13010199
Singh R, Yadav RK, Shukla RK, Singh S, Singh AP, Dwivedi DK, Umar A, Gupta NK. Highly Selective Nitrogen-Doped Graphene Quantum Dots/Eriochrome Cyanine Composite Photocatalyst for NADH Regeneration and Coupling of Benzylamine in Aerobic Condition under Solar Light. Catalysts. 2023; 13(1):199. https://doi.org/10.3390/catal13010199
Chicago/Turabian StyleSingh, Ruchi, Rajesh K. Yadav, Ravindra K. Shukla, Satyam Singh, Atul P. Singh, Dilip K. Dwivedi, Ahmad Umar, and Navneet K. Gupta. 2023. "Highly Selective Nitrogen-Doped Graphene Quantum Dots/Eriochrome Cyanine Composite Photocatalyst for NADH Regeneration and Coupling of Benzylamine in Aerobic Condition under Solar Light" Catalysts 13, no. 1: 199. https://doi.org/10.3390/catal13010199
APA StyleSingh, R., Yadav, R. K., Shukla, R. K., Singh, S., Singh, A. P., Dwivedi, D. K., Umar, A., & Gupta, N. K. (2023). Highly Selective Nitrogen-Doped Graphene Quantum Dots/Eriochrome Cyanine Composite Photocatalyst for NADH Regeneration and Coupling of Benzylamine in Aerobic Condition under Solar Light. Catalysts, 13(1), 199. https://doi.org/10.3390/catal13010199