The Influence of Cerium to Manganese Ratio and Preparation Method on the Activity of Ceria-Manganese Mixed Metal Oxide Catalysts for VOC Total Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Performance of Sodium Carbonate Coprecipitated Catalysts
2.2. Characterisation of Sodium Carbonate Coprecipitated Catalysts
2.3. Influence of Preparation Method
3. Experimental
3.1. Catalyst Preparation
3.2. Catalyst Testing
3.3. Catalyst Characterisation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem. Rev. 2019, 119, 4471–4568. [Google Scholar] [CrossRef] [PubMed]
- Evuti, A. International Journal of Engineering Sciences A Synopsis on Biogenic and Anthropogenic Volatile Organic Compounds Emissions: Hazards and Control. TI Int. J. Eng. Sci. 2013, 2, 145–153. [Google Scholar]
- Duan, J.; Tan, J.; Yang, L.; Wu, S.; Hao, J. Concentration, Sources and Ozone Formation Potential of Volatile Organic Compounds (VOCs) during Ozone Episode in Beijing. Atmos. Res. 2008, 88, 25–35. [Google Scholar] [CrossRef]
- Ryerson, T.B.; Trainer, M.; Holloway, J.S.; Parrish, D.D.; Huey, L.G.; Sueper, D.T.; Frost, G.J.; Donnelly, S.G.; Schauffler, S.; Atlas, E.L.; et al. Observations of Ozone Formation in Power Plant Plumes and Implications for Ozone Control Strategies. Science 2001, 292, 719–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on Pollution and Health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [Green Version]
- Scirè, S.; Liotta, L.F. Supported Gold Catalysts for the Total Oxidation of Volatile Organic Compounds. Appl. Catal. B Environ. 2012, 125, 222–246. [Google Scholar] [CrossRef]
- Guo, Y.; Wen, M.; Li, G.; An, T. Recent Advances in VOC Elimination by Catalytic Oxidation Technology onto Various Nanoparticles Catalysts: A Critical Review. Appl. Catal. B Environ. 2021, 281, 119447. [Google Scholar] [CrossRef]
- Krishnamurthy, A.; Adebayo, B.; Gelles, T.; Rownaghi, A.; Rezaei, F. Abatement of Gaseous Volatile Organic Compounds: A Process Perspective. Catal. Today 2020, 350, 100–119. [Google Scholar] [CrossRef]
- Yang, C.; Miao, G.; Pi, Y.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Abatement of Various Types of VOCs by Adsorption/Catalytic Oxidation: A Review. Chem. Eng. J. 2019, 370, 1128–1153. [Google Scholar] [CrossRef]
- Taylor, M.N.; Zhou, W.; Garcia, T.; Solsona, B.; Carley, A.F.; Kiely, C.J.; Taylor, S.H. Synergy between Tungsten and Palladium Supported on Titania for the Catalytic Total Oxidation of Propane. J. Catal. 2012, 285, 103–114. [Google Scholar] [CrossRef]
- Tichenor, B.A.; Palazzolo, M.A. Destruction of Volatile Organic Compounds via Catalytic Incineration. Environ. Prog. 1987, 6, 172–176. [Google Scholar] [CrossRef]
- Enterkin, J.A.; Setthapun, W.; Elam, J.W.; Christensen, S.T.; Rabuffetti, F.A.; Marks, L.D.; Stair, P.C.; Poeppelmeier, K.R.; Marshall, C.L. Propane Oxidation over Pt/SrTiO3 Nanocuboids. ACS Catal. 2011, 1, 629–635. [Google Scholar] [CrossRef]
- García, T.; Solsona, B.; Taylor, S.H. Naphthalene Total Oxidation over Metal Oxide Catalysts. Appl. Catal. B Environ. 2006, 66, 92–99. [Google Scholar] [CrossRef]
- Sharma, R.K.; Zhou, B.; Tong, S.; Chuang, K.T. Catalytic Destruction of Volatile Organic Compounds Using Supported Platinum and Palladium Hydrophobic Catalysts. Ind. Eng. Chem. Res. 1995, 34, 4310–4317. [Google Scholar] [CrossRef]
- Aggett, K.; Davies, T.E.; Morgan, D.J.; Hewes, D.; Taylor, S.H. The Influence of Precursor on the Preparation of CeO2 Catalysts for the Total Oxidation of the Volatile Organic Compound Propane. Catalysts 2021, 11, 1461. [Google Scholar] [CrossRef]
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef]
- Garcia, T.; Solsona, B.; Taylor, S.H. Nano-Crystalline Ceria Catalysts for the Abatement of Polycyclic Aromatic Hydrocarbons. Catal. Lett. 2005, 105, 183–189. [Google Scholar] [CrossRef]
- Setiabudi, A.; Chen, J.; Mul, G.; Makkee, M.; Moulijn, J.A. CeO2 Catalysed Soot Oxidation: The Role of Active Oxygen to Accelerate the Oxidation Conversion. Appl. Catal. B Environ. 2004, 51, 9–19. [Google Scholar] [CrossRef]
- Zheng, X.; Li, Y.; Zhang, L.; Shen, L.; Xiao, Y.; Zhang, Y.; Au, C.; Jiang, L. Insight into the Effect of Morphology on Catalytic Performance of Porous CeO2 Nanocrystals for H2S Selective Oxidation. Appl. Catal. B Environ. 2019, 252, 98–110. [Google Scholar] [CrossRef]
- Shah, P.M.; Day, A.N.; Davies, T.E.; Morgan, D.J.; Taylor, S.H. Mechanochemical Preparation of Ceria-Zirconia Catalysts for the Total Oxidation of Propane and Naphthalene Volatile Organic Compounds. Appl. Catal. B Environ. 2019, 253, 331–340. [Google Scholar] [CrossRef]
- Shah, P.M.; Burnett, J.W.H.; Morgan, D.J.; Davies, T.E.; Taylor, S.H. Ceria–Zirconia Mixed Metal Oxides Prepared via Mechanochemical Grinding of Carbonates for the Total Oxidation of Propane and Naphthalene. Catalysts 2019, 9, 475. [Google Scholar] [CrossRef]
- Feng, Q.; Kanoh, H.; Ooi, K. Manganese Oxide Porous Crystals. J. Mater. Chem. 1999, 9, 319–333. [Google Scholar] [CrossRef]
- Garcia, T.; Sellick, D.; Varela, F.; Vázquez, I.; Dejoz, A.; Agouram, S.; Taylor, S.H.; Solsona, B. Total Oxidation of Naphthalene Using Bulk Manganese Oxide Catalysts. Appl. Catal. A Gen. 2013, 450, 169–177. [Google Scholar] [CrossRef]
- Qi, G.; Li, W. NO Oxidation to NO2 over Manganese-Cerium Mixed Oxides. Catal. Today 2015, 258, 205–213. [Google Scholar] [CrossRef]
- Liang, Y.; Huang, Y.; Zhang, H.; Lan, L.; Zhao, M.; Gong, M.; Chen, Y.; Wang, J. Interactional Effect of Cerium and Manganese on NO Catalytic Oxidation. Environ. Sci. Pollut. Res. 2017, 24, 9314–9324. [Google Scholar] [CrossRef] [Green Version]
- Venkataswamy, P.; Rao, K.N.; Jampaiah, D.; Reddy, B.M. Nanostructured Manganese Doped Ceria Solid Solutions for CO Oxidation at Lower Temperatures. Appl. Catal. B Environ. 2015, 162, 122–132. [Google Scholar] [CrossRef]
- Liu, X.; Lu, J.; Qian, K.; Huang, W.; Luo, M. A Comparative Study of Formaldehyde and Carbon Monoxide Complete Oxidation on MnOx-CeO2 Catalysts. J. Rare Earths 2009, 27, 418–424. [Google Scholar] [CrossRef]
- Li, H.; Qi, G.; Tana; Zhang, X.; Huang, X.; Li, W.; Shen, W. Low-Temperature Oxidation of Ethanol over a Mn0.6Ce0.4O2 Mixed Oxide. Appl. Catal. B Environ. 2011, 103, 54–61. [Google Scholar] [CrossRef]
- Delimaris, D.; Ioannides, T. Intrinsic Activity of MnOx-CeO2 Catalysts in Ethanol Oxidation. Catalysts 2017, 7, 339. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Sayari, A.; Adnot, A.; Larachi, F. Composition–Activity Effects of Mn–Ce–O Composites on Phenol Catalytic Wet Oxidation. Appl. Catal. B Environ. 2001, 32, 195–204. [Google Scholar] [CrossRef]
- Arena, F.; Negro, J.; Parmaliana, A.; Spadaro, L.; Trunfio, G. Improved MnCeOx Systems for the Catalytic Wet Oxidation (CWO) of Phenol in Wastewater Streams. Ind. Eng. Chem. Res. 2007, 46, 6724–6731. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Chen, X.; Xu, W.; Xu, Z.; Jia, H.; Chen, J. Homogeneous Introduction of CeOy into MnOx-Based Catalyst for Oxidation of Aromatic VOCs. Appl. Catal. B Environ. 2018, 224, 825–835. [Google Scholar] [CrossRef]
- Matějová, L.; Topka, P.; Jirátová, K.; Šolcová, O. Total Oxidation of Model Volatile Organic Compounds over Some Commercial Catalysts. Appl. Catal. A Gen. 2012, 443–444, 40–49. [Google Scholar] [CrossRef]
- Xu, Y.; Mofarah, S.; Mehmood, R.; Cazorla, C.; Koshy, P.; Sorrell, C. Design Strategies for Ceria Nanomaterials: Untangling Key Mechanistic Concepts. Mater. Horiz. 2021, 8, 102–123. [Google Scholar] [CrossRef]
- Thakur, N.; Manna, P.; Das, J. Synthesis and Biomedical Applications of Nanoceria, a Redox Active Nanoparticle. J. Nanobiotechnology 2019, 17, 84. [Google Scholar] [CrossRef] [Green Version]
- Sellick, D.R.; Aranda, A.; García, T.; López, J.M.; Solsona, B.; Mastral, A.M.; Morgan, D.J.; Carley, A.F.; Taylor, S.H. Influence of the Preparation Method on the Activity of Ceria Zirconia Mixed Oxides for Naphthalene Total Oxidation. Appl. Catal. B Environ. 2013, 132–133, 98–106. [Google Scholar] [CrossRef]
- Ntainjua, E.N.; Davies, T.E.; Garcia, T.; Solsona, B.; Taylor, S.H. The Influence of Platinum Addition on Nano-Crystalline Ceria Catalysts for the Total Oxidation of Naphthalene a Model Polycyclic Aromatic Hydrocarbon. Catal. Lett. 2011, 141, 1732–1738. [Google Scholar] [CrossRef]
- Smith, L.R.; Sainna, M.A.; Douthwaite, M.; Davies, T.E.; Dummer, N.F.; Willock, D.J.; Knight, D.W.; Catlow, C.R.A.; Taylor, S.H.; Hutchings, G.J. Gas Phase Glycerol Valorization over Ceria Nanostructures with Well-Defined Morphologies. ACS Catal. 2021, 11, 4893–4907. [Google Scholar] [CrossRef]
- Ren, T.-Z.; Xu, P.-B.; Deng, Q.-F.; Yuan, Z.-Y. Mesoporous Ce1–xMnxO2 Mixed Oxides with CuO Loading for the Catalytic Total Oxidation of Propane. Reac. Kinet. Mech. Cat. 2013, 110, 405–420. [Google Scholar] [CrossRef]
- Zhan, S.; Zhu, D.; Qiu, M.; Yu, H.; Li, Y. Highly Efficient Removal of NO with Ordered Mesoporous Manganese Oxide at Low Temperature. RSC Advances 2015, 5, 29353–29361. [Google Scholar] [CrossRef]
- Augustin, M.; Fenske, D.; Bardenhagen, I.; Westphal, A.; Knipper, M.; Plaggenborg, T.; Kolny-Olesiak, J.; Parisi, J. Manganese Oxide Phases and Morphologies: A Study on Calcination Temperature and Atmospheric Dependence. Beilstein. J. Nanotechnol. 2015, 6, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Jampaiah, D.; Venkataswamy, P.; Tur, K.M.; Ippolito, S.J.; Bhargava, S.K.; Reddy, B.M. Effect of MnOx Loading on Structural, Surface, and Catalytic Properties of CeO2-MnOx Mixed Oxides Prepared by Sol-Gel Method. Z. Anorg. Allg. Chem. 2015, 641, 1141–1149. [Google Scholar] [CrossRef]
- Liu, L.; Shi, J.; Zhang, X.; Liu, J. Flower-Like Mn-Doped CeO2 Microstructures: Synthesis, Characterizations, and Catalytic Properties. J. Chem. 2015, 2015, e254750. [Google Scholar] [CrossRef] [Green Version]
- Spanier, J.E.; Robinson, R.D.; Zhang, F.; Chan, S.-W.; Herman, I.P. Size-Dependent Properties of CeO2 Nanoparticles as Studied by Raman Scattering. Phys. Rev. B 2001, 64, 245407. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Liu, J.; Sun, P.; Ye, S.; Liu, B. Effects of Mn-Doped Ceria Oxygen-Storage Material on Oxidation Activity of Diesel Soot. RSC Adv. 2017, 7, 7406–7412. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, X.; Gao, S.; Wu, Z.; Liu, Y.; Weng, X. Deactivation Mechanism of Ce/TiO2 Selective Catalytic Reduction Catalysts by the Loading of Sodium and Calcium Salts. Catal. Sci. Technol. 2013, 3, 715–722. [Google Scholar] [CrossRef]
- Mirzaei, A.A.; Shaterian, H.R.; Joyner, R.W.; Stockenhuber, M.; Taylor, S.H.; Hutchings, G.J. Ambient Temperature Carbon Monoxide Oxidation Using Copper Manganese Oxide Catalysts: Effect of Residual Na+ Acting as Catalyst Poison. Catal. Commun. 2003, 4, 17–20. [Google Scholar] [CrossRef]
- Junta, J.L.; Hochella, M.F. Manganese (II) Oxidation at Mineral Surfaces: A Microscopic and Spectroscopic Study. Geochim. Cosmochim. Acta 1994, 58, 4985–4999. [Google Scholar] [CrossRef]
- Tang, W.; Wu, X.; Liu, G.; Li, S.; Li, D.; Li, W.; Chen, Y. Preparation of Hierarchical Layer-Stacking Mn-Ce Composite Oxide for Catalytic Total Oxidation of VOCs. J. Rare Earths 2015, 33, 62–69. [Google Scholar] [CrossRef]
- Du, J.; Qu, Z.; Dong, C.; Song, L.; Qin, Y.; Huang, N. Low-Temperature Abatement of Toluene over Mn-Ce Oxides Catalysts Synthesized by a Modified Hydrothermal Approach. Appl. Surf. Sci. 2018, 433, 1025–1035. [Google Scholar] [CrossRef]
- Stobbe, E.R.; de Boer, B.A.; Geus, J.W. The Reduction and Oxidation Behaviour of Manganese Oxides. Catal. Today 1999, 47, 161–167. [Google Scholar] [CrossRef]
- Rudisill, S.G.; Hein, N.M.; Terzic, D.; Stein, A. Controlling Microstructural Evolution in Pechini Gels through the Interplay between Precursor Complexation, Step-Growth Polymerization, and Template Confinement. Chem. Mater. 2013, 25, 745–753. [Google Scholar] [CrossRef]
- Winck, L.B.; de Almeida Ferreira, J.L.; Martinez, J.M.G.; Araujo, J.A.; Rodrigues, A.C.M.; da Silva, C.R.M. Synthesis, Sintering and Characterization of Ceria-Based Solid Electrolytes Codoped with Samaria and Gadolinium Using the Pechini Method. Ceram. Int. 2017, 43, 16408–16415. [Google Scholar] [CrossRef]
- Ishikawa, S.; Jones, D.R.; Iqbal, S.; Reece, C.; Morgan, D.J.; Willock, D.J.; Miedziak, P.J.; Bartley, J.K.; Edwards, J.K.; Murayama, T.; et al. Identification of the Catalytically Active Component of Cu–Zr–O Catalyst for the Hydrogenation of Levulinic Acid to γ-Valerolactone. Green Chem. 2017, 19, 225–236. [Google Scholar] [CrossRef]
- Trikalitis, P.N.; Pomonis, P.J. Catalytic Activity and Selectivity of Perovskites La1−xSrxV1−x3+Vx4+O3 for the Transformation of Isopropanol. Appl. Catal. A Gen. 1995, 131, 309–322. [Google Scholar] [CrossRef]
Sample | Phases Present | Position of CeO2 (111) Reflection (°) | Average Crystallite Size (Å) | D-Spacing from (200) Lattice Plane (Å) | Unit Cell Volume (Å) | |
---|---|---|---|---|---|---|
CeO2 | MnOx | |||||
CeO2 | CeO2 | 28.6 | 106 | - | 2.74 | 164.6 |
Ce0.95Mn0.05Ox | CeO2 | 28.7 | 47 | - | 2.72 | 161.0 |
Ce0.9Mn0.1Ox | CeO2 | 28.7 | 43 | - | 2.71 | 159.2 |
Ce0.75Mn0.25Ox | CeO2 | 29.0 | 63 | - | 2.70 | 157.5 |
Ce0.5Mn0.5Ox | CeO2 | 28.8 | 60 | - | 2.68 | 154.0 |
Ce0.25Mn0.75Ox | CeO2/Mn2O3 | 28.8 | 41 | 152 | 2.69 | 155.7 |
MnOx | MnO2/Mn2O3 | - | 361 |
Catalyst | BET Surface Area (m2 g−1) | Raman FWHM of 464 cm−1 peak (cm−1) | Peak Area Ratio of 600 cm−1/464 cm−1 |
---|---|---|---|
CeO2 | 21 | 38.4 | 0.0627 |
Ce0.95Mn0.05Ox | 29 | 48.3 | 0.0671 |
Ce0.9Mn0.1Ox | 29 | 50.3 | 0.0996 |
Ce0.75Mn0.25Ox | 34 | 81.2 | 0.5408 |
Ce0.5Mn0.25Ox | 39 | - | - |
Ce0.25Mn0.75Ox | 41 | - | - |
MnOx | 18 | - | - |
Sample | Phases Present | Position of CeO2 (111) Reflection (°) | Average Crystallite Size (Å) | Unit Cell Volume (Å3) | BET Surface Area (m2 g−1) | |
---|---|---|---|---|---|---|
CeO2 | MnOx | |||||
Mechanochemical grinding–carbonates | CeO2 Mn2O3 | 28.4 | 156 | 216 | 168.20 | 83 |
Mechanochemical grinding–nitrates | CeO2 MnO2 | 28.8 | 63 | 111 | 157.46 | 44 |
Urea co-precipitation | CeO2 Mn2O3 | 28.8 | 75 | 68 | 152.27 | 59 |
Oxalic acid | Mn2O3 | - | - | 51 | - | 53 |
Citric acid co-precipitation | CeO2 | 28.7 | 101 | 89 | 157.46 | 3 |
Sample | Magnitude of Mn 3s Peak Splitting/eV |
---|---|
Mechanochemical–carbonates | 5.5 |
Mechanochemical–nitrates | 5.7 |
Urea coprecipitation | - |
Oxalic acid coprecipitation | 5.2 |
Citric acid coprecipitation | 4.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, P.M.; Bailey, L.A.; Taylor, S.H. The Influence of Cerium to Manganese Ratio and Preparation Method on the Activity of Ceria-Manganese Mixed Metal Oxide Catalysts for VOC Total Oxidation. Catalysts 2023, 13, 114. https://doi.org/10.3390/catal13010114
Shah PM, Bailey LA, Taylor SH. The Influence of Cerium to Manganese Ratio and Preparation Method on the Activity of Ceria-Manganese Mixed Metal Oxide Catalysts for VOC Total Oxidation. Catalysts. 2023; 13(1):114. https://doi.org/10.3390/catal13010114
Chicago/Turabian StyleShah, Parag M., Liam A. Bailey, and Stuart H. Taylor. 2023. "The Influence of Cerium to Manganese Ratio and Preparation Method on the Activity of Ceria-Manganese Mixed Metal Oxide Catalysts for VOC Total Oxidation" Catalysts 13, no. 1: 114. https://doi.org/10.3390/catal13010114
APA StyleShah, P. M., Bailey, L. A., & Taylor, S. H. (2023). The Influence of Cerium to Manganese Ratio and Preparation Method on the Activity of Ceria-Manganese Mixed Metal Oxide Catalysts for VOC Total Oxidation. Catalysts, 13(1), 114. https://doi.org/10.3390/catal13010114