Investigation of ZrMnFe/Sepiolite Catalysts on Toluene Degradation in a One-Stage Plasma-Catalysis System
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Effect of Catalysis
2.2. Durability of Catalyst
3. Materials and Methods
3.1. Experimental Setup
3.2. Catalyst Preparation
3.3. Catalyst Characterization
3.4. Evaluation Method
4. Catalyst Characterization
4.1. XRD
4.2. BET
4.3. SEM and TEM
4.4. XPS
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Du, C.; Lu, S.; Wang, Q.; Buekens, A.G.; Ni, M.; Debecker, D.P. A review on catalytic oxidation of chloroaromatics from flue gas. Chem. Eng. J. 2018, 334, 519–544. [Google Scholar] [CrossRef]
- Dan, H.E.; LIU, L.S.; Jun, R.E.N.; HU, T.P. Catalytic combustion of volatile organic compounds over CuO-CeO2 supported on SiO2-Al2O3 modified glass-fiber honeycomb. J. Fuel Chem. Technol. 2017, 45, 356–361. [Google Scholar]
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Dobslaw, D.; Schller, J.; Krivak, D.; Helbich, S.; Engesser, K.H. Performance of different biological waste air purification processes in treatment of a waste gas mix containing tert-butyl alcohol and acetone: A comparative study. Chem. Eng. J. 2019, 355, 572–585. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, B.; Creamer, A.E.; Cao, C.; Li, Y. Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater. 2017, 338, 102–123. [Google Scholar] [CrossRef]
- Kim, H.H.; Prieto, G.; Takashima, K.; Katsura, S.; Mizuno, A. Performance evaluation of discharge plasma process for gaseous pollutant removal. J. Electrost. 2002, 55, 25–41. [Google Scholar] [CrossRef]
- Ma, T.; Jiang, H.; Liu, J.; Zhong, F. Decomposition of benzene using a pulse-modulated DBD plasma. Plasma Chem. Plasma Process. 2016, 36, 1533–1543. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, J.; Liang, X.; Long, C. Plasma-catalytic removal of toluene over the supported manganese oxides in DBD reactor: Effect of the structure of zeolites support. Chemosphere 2018, 208, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Song, H.; Li, B.; Li, X.; Zhu, T. Simultaneous removal of toluene and styrene by non-thermal plasma-catalysis: Effect of VOCs interaction and system configuration. Chemosphere 2020, 263, 127893. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; He, H.; Liu, F.; Wang, C. Effect of doping metals on OMS-2/γ-Al2O3 catalysts for plasma-catalytic removal of o-Xylene. J. Phys. Chem. C 2016, 120, 6136–6144. [Google Scholar] [CrossRef]
- Jiang, N.; Qiu, C.; Guo, L.; Shang, K.; Lu, N.; Li, J.; Wu, Y. Post plasma-catalysis of low concentration VOC over alumina-supported silver catalysts in a surface/packed-bed hybrid discharge reactor. Water Air Soil Pollut. 2017, 228, 113.1–113.11. [Google Scholar] [CrossRef]
- He, C.; Yu, Y.; Yue, L.; Qiao, N.; Li, J.; Shen, Q.; Yu, W.; Chen, J.; Hao, Z. Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx catalysts synthesized via a simple self-precipitation protocol. Appl. Catal. B Environ. 2014, 147, 156–166. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Ying, D.; Wang, Y.; Sun, T.; Jia, J. In plasma catalytic oxidation of toluene using monolith CuO foam as a catalyst in a wedged high voltage electrode dielectric barrier discharge reactor: Influence of reaction parameters and byproduct control. Int. J. Environ. Res. Public Health 2019, 16, 711. [Google Scholar] [CrossRef] [Green Version]
- Chung, W.C.; Mei, D.H.; Tu, X.; Chang, M.B. Removal of VOCs from gas streams via plasma and catalysis. Catal. Rev. 2019, 61, 270–331. [Google Scholar] [CrossRef]
- Wu, J.; Huang, Y.; Xia, Q.; Zhong, L. Decomposition of toluene in a plasma catalysis system with NiO, MnO2, CeO2, Fe2O3, and CuO catalysts. Plasma Chem. Plasma Process. 2013, 33, 1073–1082. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Zhu, T.; Fan, X. Removal of gas phase low-concentration toluene over Mn, Ag and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration. J. Hazard. Mater. 2015, 292, 70–78. [Google Scholar] [CrossRef]
- Aouadi, I.; Tatibout, J.M.; Bergaoui, L. MnOx/TiO2 catalysts for vocs abatement by coupling non-thermal plasma and photocatalysis. Plasma Chem. Plasma Process. 2016, 36, 1485–1499. [Google Scholar] [CrossRef]
- Ye, Z.; Jean-Marc, G.; Nathalie, D.G.; Rino, M.; Jean-Fran Ois, L. The design of MnOx based catalyst in post-plasma catalysis configuration for toluene abatement. Catalysts 2018, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.; Shen, Z.; Huang, Y.; Lu, J.; Ren, D.; Sun, J.; Cao, J.; LIU, H. Post-plasma-catalytic removal of toluene using MnO2-Co3O4 catalysts and their synergistic mechanism. Chem. Eng. J. 2018, 348, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Hastuti, E.; Subhan, A.; Amonpattaratkit, P.; Zainuri, M.; Suasmoro, S. The effects of Fe-doping on MnO2: Phase transitions, defect structures and its influence on electrical properties. RSC Adv. 2021, 11, 7808–7823. [Google Scholar] [CrossRef]
- Kim, I.H.; Park, C.H.; Woo, T.G.; Jeong, J.H.; Jeon, C.S.; Kim, Y.D. Comparative studies of mesoporous Fe2O3/Al2O3 and Fe2O3/SiO2 fabricated by temperature-regulated chemical vapour deposition as catalysts for acetaldehyde oxidation. Catal. Lett. 2018, 148, 454–464. [Google Scholar] [CrossRef]
- Su, Y.J.; Jongyoon, B.; Sunyoung, P.; Yong-Ki, P. Plasma-assisted oxidation of toluene over Fe/Zeolite catalyst in DBD reactor using adsorption/desorption system. Catal. Commun. 2018, 113, 36–40. [Google Scholar]
- Xia, Y.; Dai, H.; Jiang, H.; Zhang, L.; Deng, J.; Liu, Y. Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol. J. Hazard. Mater. 2011, 186, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Huang, R.; Wu, J.; Fu, M.; Ye, D. On the performance and mechanisms of toluene removal by FeOx/sba-15-assisted non-thermal plasma at atmospheric pressure and room temperature. Catal. Today 2015, 242, 274–286. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, S.; Liu, F.; Zhao, C.; Zhao, D.; Li, X. Study on preparation and toluene removal of BiOI/Bi2WO6/ACF photocatalyst. Appl. Surf. Sci. 2019, 488, 161–169. [Google Scholar] [CrossRef]
- Lu, H.; Yao, X.; Li, J.; Yao, S.; Nozaki, T. Mechanism on the plasma-catalytic oxidation of graphitic carbon over Au/γ-Al2O3 by in situ plasma drifts-mass spectrometer. J. Hazard. Mater. 2020, 396, 122730. [Google Scholar] [CrossRef] [PubMed]
- Veerapandian, S.K.P.; De Geyter, N.; Giraudon, J.M.; Lamonier, J.F.; Morent, R. The use of zeolites for VOCs abatement by combining non-thermal plasma, adsorption, and/or catalysis: A review. Catalysts 2019, 9, 98. [Google Scholar] [CrossRef] [Green Version]
- Vandenbroucke, A.M.; Morent, R.; De Geyter, N.; Leys, C. Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J. Hazard. Mater. 2011, 195, 30–54. [Google Scholar] [CrossRef]
- Feng, X.; Liu, H.; He, C.; Shen, Z.; Wang, T. Synergistic effect and mechanism of non-thermal plasma catalysis system in volatile organic compounds removal: A review. Catal. Sci. Technol. 2018, 8, 936–954. [Google Scholar] [CrossRef]
- Azadeh, G.; Bahram, B.; Abbas, S.; Leila, M. Molybdenum complex supported on amine-functionalized natural sepiolite-type mineral as a recyclable inorganic-organic hybrid catalyst for epoxidation of alkenes. Mater. Chem. Phys. 2018, 218, 326–335. [Google Scholar]
- Dong, N.; Ye, Q.; Chen, M.; Cheng, S.; Dai, H. Sodium-treated sepiolite-supported transition metal (Cu, Fe, Ni, Mn, or Co) catalysts for HCHO oxidation. Chin. J. Catal. 2020, 41, 1734–1744. [Google Scholar] [CrossRef]
- Niu, J.; Qian, H.; Liu, J.; Liu, H.; Zhang, P.; Duan, E. Process and mechanism of toluene oxidation using Cu1-yMn2CeyOx/sepiolite prepared by the co-precipitation method. J. Hazard. Mater. 2018, 357, 332–340. [Google Scholar] [CrossRef]
- Hhn, A.; Kai, W.A.; Yuan, L.A.; Akm, C.; Gza, B. Sepiolite supported bivo4 nanocomposites for efficient photocatalytic degradation of organic pollutants: Insight into the interface effect towards separation of photogenerated charges. Sci. Total Environ. 2020, 722, 137825. [Google Scholar]
- Zhu, X.; Zhang, S.; Yang, Y.; Zheng, C.; Zhou, J.; Gao, X.; Tu, X. Enhanced performance for plasma-catalytic oxidation of ethyl acetate over La1-xCexCoO3+ δ catalysts. Appl. Catal. B Environ. 2017, 213, 97–105. [Google Scholar] [CrossRef]
- Li, S.J.; Yu, X.; Xiao, Q. Using non-thermal plasma for decomposition of toluene adsorbed on γ-Al2O3 and ZSM-5: Configuration and optimization of a double dielectric barrier discharge reactor. Chem. Eng. J. 2019, 375, 122027. [Google Scholar] [CrossRef]
- Lee, B.; Kim, D.W.; Park, D.W. Decomposition of heptane by dielectric barrier discharge (DBD) plasma reactor having the segmented electrode: Comparison of decomposition mechanisms to toluene. Plasma Chem. Plasma Process. 2020, 40, 61–77. [Google Scholar] [CrossRef]
- Guo, Y.F.; Ye, D.Q.; Chen, K.F.; He, J.C. Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam. Catal. Today 2007, 126, 328–337. [Google Scholar] [CrossRef]
- Pan, K.L.; Chang, M.B. Plasma catalytic oxidation of toluene over double perovskite-type oxide via packed-bed DBD. Environ. Sci. Pollut. Res. 2019, 26, 12948–12962. [Google Scholar] [CrossRef] [PubMed]
- Paulussen, S.; Verheyde, B.; Tu, X.; De Bie, C.; Martens, T.; Petrovic, D.; Bogaerts, A.; Sels, B. Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges. Plasma Sources Sci. Technol. 2010, 19, 34015–34016. [Google Scholar] [CrossRef]
- Wang, Y.; He, H.; Zhang, C.; Wang, Y.; Zhang, B. Effects of precursors for manganese-loaded gamma-Al2O3 catalysts on plasma-catalytic removal of o-xylene. Chem. Eng. J. 2016, 288, 406–413. [Google Scholar] [CrossRef]
- Saputra, E.; Muhammad, S.; Sun, H.; Ang, H.M.; Tadé, M.O.; Wang, S. Shape-controlled activation of peroxymonosulfate by single crystal α-Mn2O3 for catalytic phenol degradation in aqueous solution. Appl. Catal. B Environ. 2014, 154, 246–251. [Google Scholar] [CrossRef]
- Cao, W.; Tan, O.K.; Pan, J.S.; Zhu, W.; Reddy, C.G. Xps characterization of xα-Fe2O3-(1-x) ZrO2 for oxygen gas sensing application. Mater. Chem. Phys. 2002, 75, 67–70. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
Catalyst Sample | Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) | Content (1) (mg/g) |
---|---|---|---|---|
SEP | 174.9 | 0.56 | 9.3 | - |
Mn/SEP | 154.8 | 0.53 | 7.2 | Mn: 47.3 |
Fe/SEP | 141.4 | 0.48 | 7.9 | Fe: 46.6 |
MnFe/SEP | 142.1 | 0.49 | 8.9 | Mn/Fe: 47.1/46.2 |
ZrMnFe/SEP | 138.9 | 0.45 | 5.6 | Zr:Mn/Fe: 17.9/46.9/46.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Liu, X.; Chen, J.; Li, X.; Ma, T.; Zhong, F. Investigation of ZrMnFe/Sepiolite Catalysts on Toluene Degradation in a One-Stage Plasma-Catalysis System. Catalysts 2021, 11, 828. https://doi.org/10.3390/catal11070828
Liu J, Liu X, Chen J, Li X, Ma T, Zhong F. Investigation of ZrMnFe/Sepiolite Catalysts on Toluene Degradation in a One-Stage Plasma-Catalysis System. Catalysts. 2021; 11(7):828. https://doi.org/10.3390/catal11070828
Chicago/Turabian StyleLiu, Jianqi, Xin Liu, Jiayao Chen, Xianying Li, Tianpeng Ma, and Fangchuan Zhong. 2021. "Investigation of ZrMnFe/Sepiolite Catalysts on Toluene Degradation in a One-Stage Plasma-Catalysis System" Catalysts 11, no. 7: 828. https://doi.org/10.3390/catal11070828