Cytostatic Drug 6-Mercaptopurine Degradation on Pilot Scale Reactors by Advanced Oxidation Processes: UV-C/H2O2 and UV-C/TiO2/H2O2 Kinetics
Abstract
:1. Introduction
2. Results and Discussion
2.1. UV-C and UV-C/H2O2 6-MP Degradation Experiments
2.2. UV-C/TiO2 and UV-C/TiO2/H2O2 6-MP Degradation Experiments
2.3. Kinetic Analysis
2.4. Ecotoxicity Dynamics
2.5. Residual H2O2
2.6. 6-MP by-Products Formation
3. Materials and Methods
3.1. Sample Preparation and Reagents
3.2. UV-C and UV-C/H2O2 6-MP Degradation Processes
3.3. UV-C/TiO2 and UV-C/TiO2/H2O2 6-MP Degradation Processes
3.4. Control Experiments
3.5. Chemical Analysis
3.5.1. 6-MP Analysis
3.5.2. Ecotoxicity Measurement
3.5.3. Residual H2O2 Analysis
3.5.4. 6-MP by-Products Formation
3.6. Kinetic Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S.E.A.T.M.; Ritsema, C.J. Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- Dimpe, K.M.; Nomngongo, P.N. Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices. Trends Anal. Chem. 2016, 82, 199–207. [Google Scholar] [CrossRef]
- Belver, C.; Bedia, J.; Rodriguez, J.J. Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants. J. Hazard. Mater. 2017, 332, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Calza, P.; Medana, C.; Sarro, M.; Rosato, V.; Aigotti, R.; Baiocchi, C.; Minero, C. Photocatalytic degradation of selected anticancer drugs and identification of their transformation products in water by liquid chromatography–high resolution mass spectrometry. J. Chromatogr. A 2014, 1362, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Roig, B.; Marquenet, B.; Delpla, I.; Bessonneau, V.; Sellier, A.; Leder, C.; Thomas, O.; Bolek, R.; Kummerer, K. Monitoring of methotrexate chlorination in water. Water Res. 2014, 57, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Lutterbeck, C.A.; Baginska, E.; Machado, Ê.L.; Kümmerer, K. Removal of the anti-cancer drug methotrexate from water by advanced oxidation processes: Aerobic biodegradation and toxicity studies after treatment. Chemosphere 2015, 141, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Kanakaraju, D.; Glass, B.D.; Oelgemöller, M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. J. Environ. Manag. 2018, 219, 189–207. [Google Scholar] [CrossRef]
- Kosjek, T.; Negreira, N.; López de Alda, M.; Barceló, D. Aerobic activated sludge transformation of methotrexate: Identification of biotransformation products. Chemosphere 2015, 119, S42–S50. [Google Scholar] [CrossRef] [Green Version]
- Lai, W.W.; Hsu, M.H.; Lin, A.Y. The role of bicarbonate anions in methotrexate degradation via UV/TiO2: Mechanisms, reactivity and increased toxicity. Water Res. 2017, 112, 157–166. [Google Scholar] [CrossRef]
- Białk-Bielińska, A.; Mulkiewicz, E.; Stokowski, M.; Stolte, S.; Stepnowski, P. Acute aquatic toxicity assessment of six anti-cancer drugs and one metabolite using biotest battery e Biological effects and stability under test conditions. Chemosphere 2017, 189, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Blaney, L.; Chen, P.; Deng, S.; Hopanna, M.; Bao, Y.; Yu, G. Ozonation of the 5-fluorouracil anticancer drug and its prodrug capecitabine: Reaction kinetics, oxidation mechanisms, and residual toxicity. Front. Environ. Sci. Eng. 2019, 13, 59. [Google Scholar] [CrossRef]
- Lin, A.Y.; Hsueh, J.H.; Hong, P.K. Removal of antineoplastic drugs cyclophosphamide, ifosfamide, and 5-fluorouracil and a vasodilator drug pentoxifylline from wastewaters by ozonation. Environ. Sci. Pollut. Res. 2015, 22, 508–515. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, V.W.C.; Giannis, A.; Wang, J.-Y. Removal of cytostatic drugs from aquatic environment: A review. Sci. Total Environ. 2013, 445–446, 281–298. [Google Scholar] [CrossRef] [PubMed]
- Franquet-Griell, H.; Medina, A.; Sans, C.; Lacorte, S. Biological and photochemical degradation of cytostatic drugs under laboratory conditions. J. Hazard. Mater. 2017, 323, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S.; Athimoolan, S.; Sridhar, B. XRD, vibrational spectra and quantum chemical studies of an anticancer drug: 6-Mercaptopurine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 146, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Li, A.P.; Peng, J.D.; Zhou, M.; Zhang, J. Resonance light scattering determination of 6-mercaptopurine coupled with HPLC technique. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 154, 1–7. [Google Scholar] [CrossRef]
- Jin, M.; Mou, Z.L.; Zhang, R.L.; Liang, S.S.; Zhang, Z.Q. An efficient ratiometric fluorescence sensor based on metal-organic frameworks and quantum dots for highly selective detection of 6-mercaptopurine. Biosens. Bioelectron. 2017, 91, 162–168. [Google Scholar] [CrossRef]
- Zerra, P.; Bergsagel, J.; Keller, F.G.; Lew, G.; Pauly, M. Maintenance Treatment with Low-Dose Mercaptopurine in Combination with Allopurinol in Children with Acute Lymphoblastic Leukemia and Mercaptopurine-Induced Pancreatitis. Pediatr. Blood Cancer 2015, 63, 712–715. [Google Scholar] [CrossRef]
- Lennard, L.; Rees, C.A.; Lilleyman, J.S.; Maddocks, J.L. Childhood leukaemia: A relationship between intracellular 6- mercaptopurine metabolites and neutropenia. Br. J. Clin. Pharmacol. 1983, 16, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Schmiegelow, K.; Nielsen, S.N.; Frandsen, T.L.; Nersting, J. Mercaptopurine/Methotrexate maintenance therapy of childhood acute lymphoblastic leukemia: Clinical facts and fiction. Pediatr. Hematol. Oncol. J. 2014, 36, 503–517. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, O. Asociación de los Polimorfismos de la TPMT*1,*2,*3A,*3B,*3C y la MTHFR (677C>T y 1298A>C) con la Farmacocinética de la 6-Mercaptopurina, las Reacciones Adversas y la Susceptibilidad a Leucemia Linfoblástica Aguda en Pacientes Pediátricos. Ph.D. Dissertation, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Durango, México, June 2016. [Google Scholar]
- Consejo de Salubridad General. Cuadro Básico y Catálogo de Medicamentos; Comisión Interinstitucional del Cuadro Básico y Catálogo de Insumos del Sector Salud: Ciudad de México, México, 2017.
- Mejía, R. Cuadro Básico y Catálogo Institucional, Oncología; Secretaría de Salud de la Ciudad de México: Ciudad de México, México, 2018.
- Instituto Mexicano del Seguro Social. Cuadro Básico de Medicamentos Instituto Mexicano del Seguro Social; Dirección de Prestaciones Médicas, Unidad de Atención Médica: Ciudad de México, México, 2019.
- Medscape.com. Available online: https://reference.medscape.com/drug/purinethol-purixan-mercaptopurine-342094 (accessed on 15 February 2020).
- Drugs.com. Available online: https://www.drugs.com/dosage/mercaptopurine.html (accessed on 2 February 2020).
- Sarkar, S.; Das, R.; Choi, H.; Bhattacharjee, C. Involvement of process parameters and various modes of application of TiO2 nanoparticles in heterogeneous photocatalysis of pharmaceutical wastes—A short review. RSC Adv. 2014, 4, 57250–57266. [Google Scholar] [CrossRef]
- Chekir, N.; Tassalit, D.; Benhabiles, O.; Merzouk, N.K.; Ghenna, M.; Abdessemed, A.; Issaadi, R. A comparative study of tartrazine degradation using UV and solar fixed bed reactors. Int. J. Hydrog. Energy 2017, 42, 8948–8954. [Google Scholar] [CrossRef]
- Lee, C.M.; Palaniandy, P.; Dahlan, I. Pharmaceutical residues in aquatic environment and water remediation by TiO2 heterogeneous photocatalysis: A review. Environ. Earth Sci. 2017, 76, 611. [Google Scholar] [CrossRef]
- Ahmed, S.N.; Haider, W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review. Nanotechnology 2018, 29, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Tokode, O.; Prabhu, R.; Lawton, L.A.; Robertson, P.K.J. UV LED Sources for Heterogeneous Photocatalysis. Environ. Photochem. Part III 2014, 35, 159–179. [Google Scholar] [CrossRef] [Green Version]
- Yasmina, M.; Mourad, K.; Mohammed, S.H.; Khaoula, C. Treatment Heterogeneous Photocatalysis; Factors Influencing the Photocatalytic Degradation by TiO2. Energy Procedia 2014, 50, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.L.; Xu, L.J. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251–325. [Google Scholar] [CrossRef]
- Smaranda, I.; Nila, A.; Manta, C.-M.; Samohvalov, D.; Gherca, D.; Baibarac, M. The influence of UV light on the azathioprine photodegradation: New evidences by photoluminescence. Results Phys. 2019, 14, 102443. [Google Scholar] [CrossRef]
- Karran, P.; Attard, N. Thiopurines in current medical practice: Molecular mechanisms and contributions to therapy-related cancer. Nat. Rev. Cancer 2008, 8, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Hemmens, V.J.; Moore, D.E. Photo-oxidation of 6-Mercaptopurine in Aqueous Solution. J. Chem. Soc. 1984, 2, 209–211. [Google Scholar] [CrossRef]
- Litter, M.I. Introduction to Photochemical Advanced Oxidation Processes for Water Treatment. Environ. Photochem. Part II 2005, 2, 325–366. [Google Scholar] [CrossRef]
- Legrini, O.; Oliveros, E.; Braun, A.M. Photochemical processes for water treatment. Chem. Rev. 1993, 93, 671–698. [Google Scholar] [CrossRef]
- Kusic, H.; Koprivanac, N.; Bozic, A.L. Minimization of organic pollutant content in aqueous solution by means of AOPs: UV- and ozone-based technologies. Chem. Eng. J. 2006, 123, 127–137. [Google Scholar] [CrossRef]
- Baxendale, J.H.; Wilson, J.A. The photolysis of hydrogen peroxide at high light intensities. Trans. Faraday Soc. 1956, 53, 344–356. [Google Scholar] [CrossRef]
- Núñez-Núñez, C.M.; Cháirez-Hernández, I.; García-Roig, M.; García-Prieto, J.C.; Melgoza-Alemán, R.M.; Proal-Nájera, J.B. UV-C/H2O2 heterogeneous photocatalytic inactivation of coliforms in municipal wastewater in a TiO2/SiO2 fixed bed reactor: A kinetic and statistical approach. React. Kinet. Mech. Catal. 2018, 125, 1159–1177. [Google Scholar] [CrossRef]
- Parks, G.A. The isoelectric points of solid oxides, solid hydroxides and aqueous hydroxo complex systems. Chem. Rev. 1965, 65, 177–198. [Google Scholar] [CrossRef]
- Connors, K.A.; Amidon, G.L.; Stella, V.J. Chemical Stability of Pharmaceuticals: A Handbook for Pharmacists, 2nd ed.; Wiley: Hoboken, NJ, USA, 1986; p. 544. [Google Scholar]
- Pablos, C.; Marugán, J.; van Grieken, R.; Serrano, E. Emerging micropollutant oxidation during disinfection processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2. Water Res. 2013, 47, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Chatzimpaloglou, A.; Christophoridis, C.; Fountoulakis, I.; Antonopoulou, M.; Vlastos, D.; Bais, A.; Fytianos, K. Photolytic and photocatalytic of antineoplastic drug irinotecan. Kinetic study, identification of transformation products and toxicity evaluation. Chem. Eng. J. 2021, 405, 1–17. [Google Scholar] [CrossRef]
- Moore, D.E. Mechanism of photosensitization by phototoxic drugs. Mutat. Res. 1998, 422, 165–173. [Google Scholar] [CrossRef]
- Molinari, R.; Caruso, A.; Argurio, P.; Poerio, T. Degradation of the drugs Gemfibrozil and Tamoxifen in pressurized and de-pressurized membrane photoreactors using suspended polycrystalline TiO2 as catalyst. J. Membr. Sci. 2008, 319, 54–63. [Google Scholar] [CrossRef]
- Evgenidou, E.; Ofrydopoulou, A.; Malesic-Eleftheriadou, N.; Nannou, C.; Ainali, N.M.; Christodoulou, E.; Bikiaris, D.N.; Kyzas, G.Z.; Lambropoulou, D.A. New insights into transformation pathways of a mixture of cytostatic drugs using Polyester-TiO2 films: Identification of intermediates and toxicity assessment. Sci. Total Environ. 2020, 741, 140394. [Google Scholar] [CrossRef] [PubMed]
- Garcés-Giraldo, L.F.; Mejía-Franco, E.A.; Santamaría-Arango, J.J. La fotocatálisis como alternativa para el tratamiento de aguas residuales. Rev. Lasallista Investig. 2004, 1, 83–92. [Google Scholar]
- Pantoja-Espinoza, J.C.; Proal-Nájera, J.B.; García-Roig, M.; Cháirez-Hernández, I.; Osorio-Revilla, G.I. Comparative efficiencies of coliform bacteria inactivation in municipal wastewater by photolysis (UV) and photocatalysis (UV/TiO2/SiO2). Case: Treatment wastewater plant of Salamanca, Spain. Rev. Mex. Ing. Quim. 2015, 14, 119–135. [Google Scholar]
- AENOR. Determinación del Efecto Inhibidor de Muestras de Agua Sobre la Luminiscencia de Vibrio Fischeri (Ensayo de Bacterias Luminiscentes); UNE-EN ISO 11348-3; AENOR: Madrid, Spain, 2009. [Google Scholar]
- Klamerth, N. Application of a Solar Photo-Fenton for the Treatment of Contaminants in Municipal Wastewater Effluents. Ph.D. Dissertation, University of Almería, Almería, Spain, June 2011. [Google Scholar]
- Kuhn, H.; Försterling, H.D. Principles of Physical Chemistry, 2nd ed.; Wiley: West Sussex, UK, 2000; pp. 750–751. [Google Scholar]
Process | pHinitial | kph (min−1) | R2 | t1/2 (min) | Degradation % at 120 min |
UV-C | 3.5 | 0.0094 | 0.9562 | 73.74 | 65.60 |
7 | 0.0025 | 0.7494 | 277.26 | 52.24 | |
9.5 | 0.0063 | 0.8622 | 110.02 | 69.90 | |
UV-C/H2O2 | 3.5 | 0.1071 | 0.8076 | 6.47 | 100 |
7 | 0.1616 | 0.7693 | 4.29 | 100 | |
9.5 | 0.1975 | 0.7174 | 3.51 | 98.34 | |
Process | pHinitial | kop (min−1) | R2 | t1/2 (min) | Degradation % at 120 min |
UV-C/TiO2 | 3.5 | 0.0335 | 0.9340 | 20.69 | 58.60 |
7 | 0.0099 | 0.9970 | 70.01 | 61.70 | |
9.5 | 0.0072 | 0.8198 | 96.27 | 71 | |
UV-C/TiO2/H2O2 | 3.5 | 0.1387 | 0.6183 | 4.99 | 94.40 |
7 | 0.1725 | 0.7614 | 4.02 | 100 | |
9.5 | 0.0857 | 0.5526 | 8.09 | 92.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Burciaga, L.A.; García-Prieto, J.C.; García-Roig, M.; Lares-Asef, I.; Núñez-Núñez, C.M.; Proal-Nájera, J.B. Cytostatic Drug 6-Mercaptopurine Degradation on Pilot Scale Reactors by Advanced Oxidation Processes: UV-C/H2O2 and UV-C/TiO2/H2O2 Kinetics. Catalysts 2021, 11, 567. https://doi.org/10.3390/catal11050567
González-Burciaga LA, García-Prieto JC, García-Roig M, Lares-Asef I, Núñez-Núñez CM, Proal-Nájera JB. Cytostatic Drug 6-Mercaptopurine Degradation on Pilot Scale Reactors by Advanced Oxidation Processes: UV-C/H2O2 and UV-C/TiO2/H2O2 Kinetics. Catalysts. 2021; 11(5):567. https://doi.org/10.3390/catal11050567
Chicago/Turabian StyleGonzález-Burciaga, Luis A., Juan C. García-Prieto, Manuel García-Roig, Ismael Lares-Asef, Cynthia M. Núñez-Núñez, and José B. Proal-Nájera. 2021. "Cytostatic Drug 6-Mercaptopurine Degradation on Pilot Scale Reactors by Advanced Oxidation Processes: UV-C/H2O2 and UV-C/TiO2/H2O2 Kinetics" Catalysts 11, no. 5: 567. https://doi.org/10.3390/catal11050567