The Role of Structured Carbon in Downsized Transition Metal-Based Electrocatalysts toward a Green Nitrogen Fixation
Abstract
:1. Introduction
2. Electrocatalysts Design: The Key Aspects
3. Electrocatalysts’ Design: The Role of Carbon
3.1. Case of Graphene (X-Doped) to Limit HER
3.2. Graphitic Carbon Nitride (g-C3N4)
3.3. C2N Monolayer
4. The Concept of Downsized TM-Electrocatalysts: From Single to Quadruple—Atoms Dispersed on Structured Carbon Types
5. The Advantage of Single to Multiple Atoms
6. Guidelines to Future Approaches
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smil, V. Detonator of the Population Explosion. Nature 1999, 400, 415. [Google Scholar] [CrossRef]
- Industrial Ammonia Production Emits More CO2 Than Any Other Chemical-Making Reaction. Chemists Want to Change That. Available online: https://cen.acs.org/environment/green-chemistry/Industrial-ammonia-production-emits-CO2/97/i24 (accessed on 9 October 2021).
- Chu, S.; Cui, Y.; Liu, N. The Path towards Sustainable Energy. Nat. Mater. 2016, 16, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Vojvodic, A.; Medford, A.J.; Studt, F.; Abild-Pedersen, F.; Khan, T.S.; Bligaard, T.; Nørskov, J.K. Exploring the Limits: A Low-Pressure, Low-Temperature Haber–Bosch Process. Chem. Phys. Lett. 2014, 598, 108–112. [Google Scholar] [CrossRef]
- Rouwenhorst, K.H.R.; van der Ham, A.G.J.; Lefferts, L. Beyond Haber-Bosch: The Renaissance of the Claude Process. Int. J. Hydrogen Energy 2021, 46, 21566–21579. [Google Scholar] [CrossRef]
- Fúnez Guerra, C.; Reyes-Bozo, L.; Vyhmeister, E.; Jaén Caparrós, M.; Salazar, J.L.; Clemente-Jul, C. Technical-Economic Analysis for a Green Ammonia Production Plant in Chile and Its Subsequent Transport to Japan. Renew. Energy 2020, 157, 404–414. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, S.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule 2018, 2, 1242–1264. [Google Scholar] [CrossRef] [Green Version]
- Qichen Wang; Yongpeng Lei; Dingsheng Wang; Yadong Li Defect Engineering in Earth-Abundant Electrocatalysts for CO2 and N2 Reduction. Energy Environ. Sci. 2019, 12, 1730–1750. [CrossRef]
- Iglesias, D.; Giuliani, A.; Melchionna, M.; Marchesan, S.; Criado, A.; Nasi, L.; Bevilacqua, M.; Tavagnacco, C.; Vizza, F.; Prato, M.; et al. N-Doped Graphitized Carbon Nanohorns as a Forefront Electrocatalyst in Highly Selective O2 Reduction to H2O2. Chem 2018, 4, 106–123. [Google Scholar] [CrossRef]
- Melchionna, M.; Fornasiero, P.; Prato, M. The Rise of Hydrogen Peroxide as the Main Product by Metal-Free Catalysis in Oxygen Reductions. Adv. Mater. 2019, 31, 1802920. [Google Scholar] [CrossRef]
- Duan, X.; Xu, J.; Wei, Z.; Ma, J.; Guo, S.; Wang, S.; Liu, H.; Dou, S. Metal-Free Carbon Materials for CO2 Electrochemical Reduction. Adv. Mater. 2017, 29, 1701784. [Google Scholar] [CrossRef]
- Wu, J.; Ma, S.; Sun, J.; Gold, J.I.; Tiwary, C.; Kim, B.; Zhu, L.; Chopra, N.; Odeh, I.N.; Vajtai, R.; et al. A Metal-Free Electrocatalyst for Carbon Dioxide Reduction to Multi-Carbon Hydrocarbons and Oxygenates. Nat. Commun. 2016, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Tuci, G.; Zafferoni, C.; D’Ambrosio, P.; Caporali, S.; Ceppatelli, M.; Rossin, A.; Tsoufis, T.; Innocenti, M.; Giambastiani, G. Tailoring Carbon Nanotube N-Dopants While Designing Metal-Free Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Medium. ACS Catal. 2013, 3, 2108–2111. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, S.; Chen, P.; Wang, Y.; Lyu, D.; Yu, F.; Qing, M.; Tian, Z.Q.; Shen, P.K. Revealing the Dependence of Active Site Configuration of N Doped and N, S-Co-Doped Carbon Nanospheres on Six-Membered Heterocyclic Precursors for Oxygen Reduction Reaction. J. Catal. 2020, 389, 677–689. [Google Scholar] [CrossRef]
- You, C.; Liao, S.; Li, H.; Hou, S.; Peng, H.; Zeng, X.; Liu, F.; Zheng, R.; Fu, Z.; Li, Y. Uniform Nitrogen and Sulfur Co-Doped Carbon Nanospheres as Catalysts for the Oxygen Reduction Reaction. Carbon 2014, 69, 294–301. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, X.; Su, Y.; Zhang, F.; Feng, X. Polyaniline Nanosheet Derived B/N Co-Doped Carbon Nanosheets as Efficient Metal-Free Catalysts for Oxygen Reduction Reaction. J. Mater. Chem. A 2014, 2, 7742–7746. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Sun, X.; Yan, X.; Wu, Y.; Liu, H.; Zhu, Q.; Bediako, B.B.A.; Han, B. Boosting CO2 Electroreduction on N,P-Co-Doped Carbon Aerogels. Angew. Chem. Int. Ed. 2020, 59, 11123–11129. [Google Scholar] [CrossRef]
- Park, C.; Jung, H.; You, J.; Park, H.; Yu, Y.; Lee, S.; Jang, K.; Na, S. Enhancement of Electrode Performance through Surface Modification Using Carbon Nanotubes and Porous Gold Nanostructures. Nanotechnology 2021, 32, 505502. [Google Scholar] [CrossRef]
- Francke, M.; Hermann, H.; Wenzel, R.; Seifert, G.; Wetzig, K. Modification of Carbon Nanostructures by High Energy Ball-Milling under Argon and Hydrogen Atmosphere. Carbon 2005, 43, 1204–1212. [Google Scholar] [CrossRef]
- Majumder, M.; Saini, H.; Dědek, I.; Schneemann, A.; Chodankar, N.R.; Ramarao, V.; Santosh, M.S.; Nanjundan, A.K.; Kment, Š.; Dubal, D.; et al. Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia. ACS Nano 2021, 15, 17275–17298. [Google Scholar] [CrossRef]
- Ong, W.-J.; Kurnianditia Putri, L.; Tan, Y.-C.; Tan, L.-L.; Li, N.; Hau Ng, Y.; Wen, X.; Chai, S.-P.; Berlin, S.-V. Unravelling Charge Carrier Dynamics in Protonated G-C3N4 Interfaced with Carbon Nanodots as Co-Catalysts toward Enhanced Photocatalytic CO2 Reduction: A Combined Experimental and First-Principles DFT Study. Nano Res. 2017, 10, 1673–1696. [Google Scholar] [CrossRef]
- Yadav, R.M.; Li, Z.; Zhang, T.; Sahin, O.; Roy, S.; Gao, G.; Guo, H.; Vajtai, R.; Wang, L.; Ajayan, P.M.; et al. Amine-Functionalized Carbon Nanodot Electrocatalysts Converting Carbon Dioxide to Methane. Adv. Mater. 2021, 2105690. [Google Scholar] [CrossRef]
- Martínez-Periñán, E.; Bravo, I.; Rowley-Neale, S.J.; Lorenzo, E.; Banks, C.E. Carbon Nanodots as Electrocatalysts towards the Oxygen Reduction Reaction. Electroanalysis 2018, 30, 436–444. [Google Scholar] [CrossRef]
- Andersen, S.Z.; Čolić, V.; Yang, S.; Schwalbe, J.A.; Nielander, A.C.; McEnaney, J.M.; Enemark-Rasmussen, K.; Baker, J.G.; Singh, A.R.; Rohr, B.A.; et al. A Rigorous Electrochemical Ammonia Synthesis Protocol with Quantitative Isotope Measurements. Nature 2019, 570, 504–508. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, M.; Bevilacqua, M.; Tavagnacco, C.; Vizza, F.; Fornasiero, P. Fast Screening Method for Nitrogen Reduction Reaction (NRR) Electrocatalytic Activity with Rotating Ring-Disc Electrode (RRDE) Analysis in Alkaline Environment. ChemCatChem 2020, 12, 6205–6213. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Renner, J.N.; Foster, S.L. The Use of Controls for Consistent and Accurate Measurements of Electrocatalytic Ammonia Synthesis from Dinitrogen. ACS Catal. 2018, 8, 7820–7827. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.-F.; Ren, S.; Zhang, L.; Cheng, H.; Luo, Y.; Zhu, K.; Ding, L.-X.; Wang, H. Advances in Electrocatalytic N2 Reduction—Strategies to Tackle the Selectivity Challenge. Small Methods 2019, 3, 1800337. [Google Scholar] [CrossRef]
- Mukherjee, S.; Cullen, D.A.; Karakalos, S.; Liu, K.; Zhang, H.; Zhao, S.; Xu, H.; More, K.L.; Wang, G.; Wu, G. Metal-Organic Framework-Derived Nitrogen-Doped Highly Disordered Carbon for Electrochemical Ammonia Synthesis Using N2 and H2O in Alkaline Electrolytes. Nano Energy 2018, 48, 217–226. [Google Scholar] [CrossRef]
- Song, Y.; Johnson, D.; Peng, R.; Hensley, D.K.; Bonnesen, P.V.; Liang, L.; Huang, J.; Yang, F.; Zhang, F.; Qiao, R.; et al. A Physical Catalyst for the Electrolysis of Nitrogen to Ammonia. Sci. Adv. 2018, 4, e1700336. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Dong, H.; Cao, X.; Li, Y. Computational Insights into Nitrogen Reduction Reaction Catalyzed by Transition Metal Doped Graphene: Comparative Investigations. Mater. Chem. Phys. 2020, 243, 122622. [Google Scholar] [CrossRef]
- Wen, Y.; Zhu, H.; Hao, J.; Lu, S.; Zong, W.; Lai, F.; Ma, P.; Dong, W.; Liu, T.; Du, M. Metal-Free Boron and Sulphur Co-Doped Carbon Nanofibers with Optimized p-Band Centers for Highly Efficient Nitrogen Electroreduction to Ammonia. Appl. Catal. B Environ. 2021, 292, 120144. [Google Scholar] [CrossRef]
- Kirk, C.; Chen, L.D.; Siahrostami, S.; Karamad, M.; Bajdich, M.; Voss, J.; Nørskov, J.K.; Chan, K. Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene. ACS Cent. Sci. 2017, 3, 1286–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, K.; Siahrostami, S.; Akey, A.J.; Li, Y.; Lu, Z.; Lattimer, J.; Hu, Y.; Stokes, C.; Gangishetty, M.; Chen, G.; et al. Transition-Metal Single Atoms in a Graphene Shell as Active Centers for Highly Efficient Artificial Photosynthesis. Chem 2017, 3, 950–960. [Google Scholar] [CrossRef] [Green Version]
- Siahrostami, S.; Jiang, K.; Karamad, M.; Chan, K.; Wang, H.; Nørskov, J. Theoretical Investigations into Defected Graphene for Electrochemical Reduction of CO2. ACS Sustain. Chem. Eng. 2017, 5, 11080–11085. [Google Scholar] [CrossRef]
- Shi, L.; Yin, Y.; Wang, S.; Sun, H. Rational Catalyst Design for N2 Reduction under Ambient Conditions: Strategies toward Enhanced Conversion Efficiency. ACS Catal. 2020, 10, 6870–6899. [Google Scholar] [CrossRef]
- Zhang, M.; Choi, C.; Huo, R.; Gu, G.H.; Hong, S.; Yan, C.; Xu, S.; Robertson, A.W.; Qiu, J.; Jung, Y.; et al. Reduced Graphene Oxides with Engineered Defects Enable Efficient Electrochemical Reduction of Dinitrogen to Ammonia in Wide PH Range. Nano Energy 2020, 68, 104323. [Google Scholar] [CrossRef]
- Xia, L.; Yang, J.; Wang, H.; Zhao, R.; Chen, H.; Fang, W.; Asiri, A.M.; Xie, F.; Cui, G.; Sun, X. Sulfur-Doped Graphene for Efficient Electrocatalytic N2-to-NH3 Fixation. Chem. Commun. 2019, 55, 3371–3374. [Google Scholar] [CrossRef]
- Zhou, F.; Azofra, L.M.; Ali, M.; Kar, M.; Simonov, A.N.; McDonnell-Worth, C.; Sun, C.; Zhang, X.; Macfarlane, D.R. Electro-Synthesis of Ammonia from Nitrogen at Ambient Temperature and Pressure in Ionic Liquids. Energy Environ. Sci. 2017, 10, 2516–2520. [Google Scholar] [CrossRef]
- Yu, X.; Han, P.; Wei, Z.; Huang, L.; Gu, Z.; Peng, S.; Ma, J.; Zheng, G. Boron-Doped Graphene for Electrocatalytic N2 Reduction. Joule 2018, 2, 1610–1622. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, Q.; Guo, X.; Kong, X.; Ke, J.; Chi, M.; Li, Q.; Geng, Z.; Zeng, J. A Highly Efficient Metal-Free Electrocatalyst of F-Doped Porous Carbon toward N2 Electroreduction. Adv. Mater. 2020, 32, 1907690. [Google Scholar] [CrossRef]
- Lv, C.; Qian, Y.; Yan, C.; Ding, Y.; Liu, Y.; Chen, G.; Yu, G. Defect Engineering Metal-Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angew. Chem. Int. Ed. 2018, 57, 10246–10250. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Qiao, M.; Wu, G.; Chen, W.; Yuan, T.; Xu, Q.; Chen, M.; Zhang, Y.; Wang, X.; et al. Atomically Dispersed Au1 Catalyst towards Efficient Electrochemical Synthesis of Ammonia. Sci. Bull. 2018, 63, 1246–1253. [Google Scholar] [CrossRef] [Green Version]
- Geng, Z.; Liu, Y.; Kong, X.; Li, P.; Li, K.; Liu, Z.; Du, J.; Shu, M.; Si, R.; Zeng, J. Achieving a Record-High Yield Rate of 120.9 for N2 Electrochemical Reduction over Ru Single-Atom Catalysts. Adv. Mater. 2018, 30, 1803498. [Google Scholar] [CrossRef]
- Han, L.; Liu, X.; Chen, J.; Lin, R.; Liu, H.; Lü, F.; Bak, S.; Liang, Z.; Zhao, S.; Stavitski, E.; et al. Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation. Angew. Chem. Int. Ed. 2019, 58, 2321–2325. [Google Scholar] [CrossRef]
- Lü, F.; Zhao, S.; Guo, R.; He, J.; Peng, X.; Bao, H.; Fu, J.; Han, L.; Qi, G.; Luo, J.; et al. Nitrogen-Coordinated Single Fe Sites for Efficient Electrocatalytic N2 Fixation in Neutral Media. Nano Energy 2019, 61, 420–427. [Google Scholar] [CrossRef]
- Wang, M.; Liu, S.; Qian, T.; Liu, J.; Zhou, J.; Ji, H.; Xiong, J.; Zhong, J.; Yan, C. Over 56.55% Faradaic Efficiency of Ambient Ammonia Synthesis Enabled by Positively Shifting the Reaction Potential. Nature Communications 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Zheng, J.; Jiang, L.; Lyu, Y.; Jian, S.P.; Wang, S. Green Synthesis of Nitrogen-to-Ammonia Fixation: Past, Present, and Future. Energy Environ. Mater. 2021. [Google Scholar] [CrossRef]
- Xu, H.; Ma, L.; Jin, Z. Nitrogen-Doped Graphene: Synthesis, Characterizations and Energy Applications. J. Energy Chem. 2018, 27, 146–160. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Zhu, Q.; Lv, Z.; Dong, H.; Yu, J.; Dong, L. Nitrogen-Doped Graphene as Catalysts and Catalyst Supports for Oxygen Reduction in Both Acidic and Alkaline Solutions. Int. J. Hydrogen Energy 2013, 38, 1413–1418. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, Y.; Matson, D.W.; Li, J.; Lin, Y. Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano 2010, 4, 1790–1798. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Gopalakrishnan, K.; Govindaraj, A. Synthesis, Properties and Applications of Graphene Doped with Boron, Nitrogen and Other Elements. Nano Today 2014, 9, 324–343. [Google Scholar] [CrossRef]
- Zhang, Y.; Melchionna, M.; Medved, M.; Błoński, P.; Steklý, T.; Bakandritsos, A.; Kment, Š.; Zbořil, R.; Otyepka, M.; Fornaserio, P.; et al. Enhanced On-Site Hydrogen Peroxide Electrosynthesis by a Selectively Carboxylated N-Doped Graphene Catalyst. ChemCatChem 2021, 13, 4372–4383. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, J.; Wang, L.; Wang, D.; Ding, F.; Tao, X.; Chen, W. Manageable N-Doped Graphene for High Performance Oxygen Reduction Reaction. Sci. Rep. 2013, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Deng, B.; Wang, D.; Jiang, Z.; Zhang, J.; Shi, S.; Jiang, Z.J.; Liu, M. Amine Group Induced High Activity of Highly Torn Amine Functionalized Nitrogen-Doped Graphene as the Metal-Free Catalyst for Hydrogen Evolution Reaction. Carbon 2018, 138, 169–178. [Google Scholar] [CrossRef]
- Yuan, J.; Zhi, W.Y.; Liu, L.; Yang, M.P.; Wang, H.; Lu, J.X. Electrochemical Reduction of CO2 at Metal-Free N-Functionalized Graphene Oxide Electrodes. Electrochim. Acta 2018, 282, 694–701. [Google Scholar] [CrossRef]
- Le, Y.-Q.; Gu, J.; Tian, W.Q. Nitrogen-Fixation Catalyst Based on Graphene: Every Part Counts. Chem. Commun. 2014, 50, 13319–13322. [Google Scholar] [CrossRef]
- Zhu, J.; Xiao, P.; Li, H.; Carabineiro, S.A.C. Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis. ACS Appl. Mater. Interfaces 2014, 6, 16449–16465. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Wang, X. Two-Dimensional Covalent Carbon Nitride Nanosheets: Synthesis, Functionalization, and Applications. Energy Environ. Sci. 2015, 8, 3092–3108. [Google Scholar] [CrossRef]
- Longobardo, F.; Filippini, G.; Forster, L.; Criado, A.; di Carmine, G.; Nasi, L.; D’Agostino, C.; Melchionna, M.; Fornasiero, P.; Prato, M. Light-Driven, Heterogeneous Organocatalysts for C-C Bond Formation toward Valuable Perfluoroalkylated Intermediates. Sci. Adv. 2020, 6, eabc9923. [Google Scholar] [CrossRef]
- Lin, L.; Ou, H.; Zhang, Y.; Wang, X. Tri-s-Triazine-Based Crystalline Graphitic Carbon Nitrides for Highly Efficient Hydrogen Evolution Photocatalysis. ACS Catal. 2016, 6, 3921–3931. [Google Scholar] [CrossRef]
- Ghosh, I.; Khamrai, J.; Savateev, A.; Shlapakov, N.; Antonietti, M.; König, B. Organic Semiconductor Photocatalyst Can Bifunctionalize Arenes and Heteroarenes. Science 2019, 365, 360–366. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L.H.; Han, Y.; Chen, Y.; Du, A.; Jaroniec, M.; Qiao, S.Z. Hydrogen Evolution by a Metal-Free Electrocatalyst. Nat. Commun. 2014, 5, 3783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Liu, L.; Ma, T.; Zhang, Y.; Huang, H.; Wang, Y.H.; Liu, L.Z.; Zhang, Y.H.; Huang, H.W.; Ma, T.Y. 2D Graphitic Carbon Nitride for Energy Conversion and Storage. Adv. Funct. Mater. 2021, 31, 2102540. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, J.; Cabrera, C.R.; Chen, Z. Computational Screening of Efficient Single-Atom Catalysts Based on Graphitic Carbon Nitride (g-C3N4) for Nitrogen Electroreduction. Small Methods 2019, 3, 1800368. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, Z.; Zhao, J. Computational Screening of a Single Transition Metal Atom Supported on the C2N Monolayer for Electrochemical Ammonia Synthesis. Phys. Chem. Chem. Phys. 2018, 20, 12835–12844. [Google Scholar] [CrossRef]
- Shen, R.; Chen, W.; Peng, Q.; Lu, S.; Zheng, L.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J.; Zhuang, Z.; et al. High-Concentration Single Atomic Pt Sites on Hollow CuSx for Selective O2 Reduction to H2O2 in Acid Solution. Chem 2019, 5, 2099–2110. [Google Scholar] [CrossRef]
- Singh, H.K.; Kumar, P.; Waghmare, U.V. Theoretical Prediction of a Stable 2D Crystal of Vanadium Porphyrin: A Half-Metallic Ferromagnet. J. Phys. Chem. C 2015, 119, 25657–25662. [Google Scholar] [CrossRef]
- Choi, W.I.; Jhi, S.H.; Kim, K.; Kim, Y.H. Divacancy-Nitrogen-Assisted Transition Metal Dispersion and Hydrogen Adsorption in Defective Graphene: A First-Principles Study. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 81, 085441. [Google Scholar] [CrossRef] [Green Version]
- Deng, D.; Chen, X.; Yu, L.; Wu, X.; Liu, Q.; Liu, Y.; Yang, H.; Tian, H.; Hu, Y.; Du, P.; et al. A Single Iron Site Confined in a Graphene Matrix for the Catalytic Oxidation of Benzene at Room Temperature. Sci. Adv. 2015, 1, e1500462. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, W.; Wang, S.; Gao, Z.; Luo, Z.; Wang, X.; Zeng, R.; Li, A.; Li, H.; Wang, M.; et al. Atomic-Level Insights in Optimizing Reaction Paths for Hydroformylation Reaction over Rh/CoO Single-Atom Catalyst. Nat. Commun. 2016, 7, 14036. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Zhao, Y.; Qin, R.; Mo, S.; Chen, G.; Gu, L.; Chevrier, D.M.; Zhang, P.; Guo, Q.; Zang, D.; et al. Photochemical Route for Synthesizing Atomically Dispersed Palladium Catalysts. Science 2016, 352, 797–801. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.; Xiong, H.; DeLaRiva, A.T.; Peterson, E.J.; Pham, H.; Challa, S.R.; Qi, G.; Oh, S.; Wiebenga, M.H.; Hernández, X.I.P.; et al. Thermally Stable Single-Atom Platinum-on-Ceria Catalysts via Atom Trapping. Science 2016, 353, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Cheng, H.; Qu, Z.; Yu, R.; Liu, F.; Ma, Q.; Zhao, S.; Hu, H.; Cheng, Y.; Yang, C.; et al. Recent Progress on the Synthesis and Oxygen Reduction Applications of Fe-Based Single-Atom and Double-Atom Catalysts. J. Mater. Chem. A 2021, 9, 19489–19507. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Y.; Zhang, Y.X.; Niu, Z. Dual-Atom Catalysts: Controllable Synthesis and Electrocatalytic Applications. Sci. China Chem. 2021, 64, 1908–1922. [Google Scholar] [CrossRef]
- Chen, Z.W.; Chen, L.X.; Jiang, M.; Chen, D.; Wang, Z.L.; Yao, X.; Singh, C.V.; Jiang, Q. A Triple Atom Catalyst with Ultrahigh Loading Potential for Nitrogen Electrochemical Reduction. J. Mater. Chem. A 2020, 8, 15086–15093. [Google Scholar] [CrossRef]
- Li, M.; Cui, Y.; Zhang, X.; Luo, Y.; Dai, Y.; Huang, Y. Screening a Suitable Mo Form Supported on Graphdiyne for Effectively Electrocatalytic N2 Reduction Reaction: From Atomic Catalyst to Cluster Catalyst. J. Phys. Chem. Lett. 2020, 11, 8128–8137. [Google Scholar] [CrossRef]
- Qiao, B.; Wang, A.; Yang, X.; Allard, L.F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-Atom Catalysis of CO Oxidation Using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641. [Google Scholar] [CrossRef]
- Mao, X.; Zhou, S.; Yan, C.; Zhu, Z.; Du, A. A Single Boron Atom Doped Boron Nitride Edge as a Metal-Free Catalyst for N2 Fixation. Phys. Chem. Chem. Phys. 2019, 21, 1110–1116. [Google Scholar] [CrossRef]
- Yao, X.; Chen, Z.W.; Wang, Y.R.; Lang, X.Y.; Zhu, Y.F.; Gao, W.; Jiang, Q. High-Loading Intrinsic Active Sites for Ammonia Synthesis Using Efficient Single-Atom Catalyst: 2D Tungsten-Porphyrin Sheet. Appl. Surf. Sci. 2020, 529, 147183. [Google Scholar] [CrossRef]
- Zheng, M.; Xu, H.; Li, Y.; Ding, K.; Zhang, Y.; Sun, C.; Chen, W.; Lin, W. Electrocatalytic Nitrogen Reduction by Transition Metal Single-Atom Catalysts on Polymeric Carbon Nitride. J. Phys. Chem. C 2021, 125, 13880–13888. [Google Scholar] [CrossRef]
- Chen, Z.W.; Yan, J.-M.; Jiang, Q. Single or Double: Which Is the Altar of Atomic Catalysts for Nitrogen Reduction Reaction? Small Methods 2019, 3, 1800291. [Google Scholar] [CrossRef]
- Qian, Y.; Liu, Y.; Zhao, Y.; Zhang, X.; Yu, G. Single vs Double Atom Catalyst for N2 Activation in Nitrogen Reduction Reaction: A DFT Perspective. EcoMat 2020, 2, e12014. [Google Scholar] [CrossRef] [Green Version]
- Arachchige, L.J.; Xu, Y.; Dai, Z.; Zhang, X.; Wang, F.; Sun, C. Theoretical Investigation of Single and Double Transition Metals Anchored on Graphyne Monolayer for Nitrogen Reduction Reaction. J. Phys. Chem. C 2020, 124, 15295–15301. [Google Scholar] [CrossRef]
- Yang, W.; Huang, H.; Ding, X.; Ding, Z.; Wu, C.; Gates, I.D.; Gao, Z. Theoretical Study on Double-Atom Catalysts Supported with Graphene for Electroreduction of Nitrogen into Ammonia. Electrochim. Acta 2020, 335, 135667. [Google Scholar] [CrossRef]
- Wu, Y.; He, C.; Zhang, W. Novel Design Strategy of High Activity Electrocatalysts toward Nitrogen Reduction Reaction via Boron–Transition-Metal Hybrid Double-Atom Catalysts. ACS Appl. Mater. Interfaces 2021, 13, 47520–47529. [Google Scholar] [CrossRef]
- Yongkang Xu; Zhewei Cai; Pan Du; Jiaxing Zhou; Yonghui Pan; Ping Wu; Chenxin Cai Taming the Challenges of Activity and Selectivity in the Electrochemical Nitrogen Reduction Reaction Using Graphdiyne-Supported Double-Atom Catalysts. J. Mater. Chem. A 2021, 9, 8489–8500. [CrossRef]
- Kang, B.; Yuan, Y.; Lv, Y.; Ai, H.; Yong Lee, J. Synergistic Ultra-High Activity of Double B Doped Graphyne for Electrocatalytic Nitrogen Reduction. Chem. Eng. J. 2022, 428, 131318. [Google Scholar] [CrossRef]
- Zheng, G.; Li, L.; Hao, S.; Zhang, X.; Tian, Z.; Chen, L. Double Atom Catalysts: Heteronuclear Transition Metal Dimer Anchored on Nitrogen-Doped Graphene as Superior Electrocatalyst for Nitrogen Reduction Reaction. Adv. Theory Simul. 2020, 3, 2000190. [Google Scholar] [CrossRef]
- Wei, Z.; He, J.; Yang, Y.; Xia, Z.; Feng, Y.; Ma, J. Fe, V-Co-Doped C2N for Electrocatalytic N2-to-NH3 Conversion. J. Energy Chem. 2021, 53, 303–308. [Google Scholar] [CrossRef]
- Ma, D.; Zeng, Z.; Liu, L.; Huang, X.; Jia, Y. Computational Evaluation of Electrocatalytic Nitrogen Reduction on TM Single-, Double-, and Triple-Atom Catalysts (TM = Mn, Fe, Co, Ni) Based on Graphdiyne Monolayers. J. Phys. Chem. C 2019, 123, 19066–19076. [Google Scholar] [CrossRef]
Catalyst | Electrolyte | Potential/V vs. RHE | Rate/ µgNH3 H−1 mgcat−1 | FE/ % | |
---|---|---|---|---|---|
N-DOPED CARBON | 0.1 M KOH | −0.3 | 70.8 † | 10.2 | [28] |
N-DOPED CARBON NANOSPIKES | 0.25 M LiClO4 | −1.19 | 97.18 * | 11.56 | [29] |
S-, B-DOPED CARBON NANOFIBERS | 0.5 M K2SO4 | −0.7 | 3.79 * | 22.4 | [31] |
DEFECTIVE RGO | 0.1 M HCl | −0.116 | 7.1 | 22 | [36] |
S-DOPED GRAPHENE | 0.1 M HCl | −0.6 | 27.3 | 11.5 | [37] |
FTO | Ionic liquid | −0.8 | 1.3 †* | 30 | [38] |
B-DOPED GRAPHENE | 0.05 M H2SO4 | −0.5 | 49 † | 10.8 | [39] |
F-DOPED CARBON | 0.05 M H2SO4 | −0.2 | 197.7 | 54.8 | [40] |
DEFECTIVE G-C3N4 | 0.1 M HCl | −0.2 | 8.09 | 11.59 | [41] |
AU1-C3N4 | 0.005 M H2SO4 | −0.1 | 1.96 † | 11.1 | [42] |
RU SA/NC | 0.05 M H2SO4 | −0.2 | 120.9 | 29.6 | [43] |
MO SA/NPC | 0.1 M KOH | −0.3 | 34.0 | 14.6 | [44] |
ISAS-FE/NC | 0.1 M PBS | −0.4 | 62.9 | 18.6 | [45] |
FE SA/NC | 0.1 M KOH | 0.0 | 7.48 | 56.55 | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, M.; Melchionna, M.; Fornasiero, P.; Bevilacqua, M. The Role of Structured Carbon in Downsized Transition Metal-Based Electrocatalysts toward a Green Nitrogen Fixation. Catalysts 2021, 11, 1529. https://doi.org/10.3390/catal11121529
Ferrara M, Melchionna M, Fornasiero P, Bevilacqua M. The Role of Structured Carbon in Downsized Transition Metal-Based Electrocatalysts toward a Green Nitrogen Fixation. Catalysts. 2021; 11(12):1529. https://doi.org/10.3390/catal11121529
Chicago/Turabian StyleFerrara, Marcello, Michele Melchionna, Paolo Fornasiero, and Manuela Bevilacqua. 2021. "The Role of Structured Carbon in Downsized Transition Metal-Based Electrocatalysts toward a Green Nitrogen Fixation" Catalysts 11, no. 12: 1529. https://doi.org/10.3390/catal11121529
APA StyleFerrara, M., Melchionna, M., Fornasiero, P., & Bevilacqua, M. (2021). The Role of Structured Carbon in Downsized Transition Metal-Based Electrocatalysts toward a Green Nitrogen Fixation. Catalysts, 11(12), 1529. https://doi.org/10.3390/catal11121529