Microwave-Assisted Solvothermal Synthesis of Chalcogenide Composite Photocatalyst and Its Photocatalytic CO2 Reduction Activity under Simulated Solar Light
Abstract
1. Introduction
2. Results and Discussion
2.1. Chalcogenide Composite Photocatalysts
2.2. Photocatalytic Carbon Dioxide Reduction
2.2.1. The Different Types of RCZS/MSG Heterostructured Photocatalyst
2.2.2. The Concentration of Reductant
2.2.3. The Dosages of 0.5RCZS/MSG
3. Methods
3.1. Chalcogenide Composite Materials
3.1.1. MoS2/Graphene (MSG)
3.1.2. ZnS Inlaid into MoS2/Graphene (ZS/MSG)
3.1.3. Cu-Doped ZnS into MoS2/Graphene (CZS/MSG)
3.1.4. Ru, Cu co-Doped ZnS into MoS2/Graphene (RCZS/MSG)
3.2. Characterization Techniques
3.3. Photocatalytic Hydrogen Evolution and Carbon Dioxide Reduction
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Low, J.; Cheng, B.; Yu, J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci. 2017, 392, 658–686. [Google Scholar] [CrossRef]
- Nikokavoura, A.; Trapalis, C. Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2. Appl. Surf. Sci. 2017, 391, 149–174. [Google Scholar] [CrossRef]
- Jiao, J.; Wei, Y.; Zhao, Z.; Zhong, W.; Liu, J.; Li, J.; Duan, A.; Jiang, G. Synthesis of 3D ordered macroporous TiO2-supported Au nanoparticle photocatalysts and their photocatalytic performances for the reduction of CO2 to methane. Catal. Today 2015, 258, 319–326. [Google Scholar] [CrossRef]
- Chen, J.; Xin, F.; Qin, S.; Yin, X. Photocatalytically reducing CO2 to methyl formate in methanol over ZnS and Ni-doped ZnS photocatalysts. Chem. Eng. J. 2013, 230, 506–512. [Google Scholar] [CrossRef]
- Kortlever, R.; Balemans, C.; Kwon, Y.; Koper, M.T.M. Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst. Catal. Today 2015, 244, 58–62. [Google Scholar] [CrossRef]
- Gonell, F.; Puga, A.V.; Julián-López, B.; García, H.; Corma, A. Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide. Appl. Catal. B Environ. 2016, 180, 263–270. [Google Scholar] [CrossRef]
- Ha, E.; Liu, W.; Wang, L.; Man, H.W.; Hu, L.; Tsang, S.C.E.; Chan, C.T.L.; Kwok, W.M.; Lee, L.Y.S.; Wong, K.Y. Cu2ZnSnS4/MoS2-reduced graphene oxide heterostructure: Nanoscale interfacial contact and enhanced photocatalytic hydrogen generation. Sci. Rep. UK 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.J.; Chen, H.C.; Wu, J.J. (In, Cu) Co-doped ZnS nanoparticles for photoelectrochemical hydrogen production. Int. J. Hydrogen Energy 2019, 44, 110–117. [Google Scholar] [CrossRef]
- Lee, G.J.; Chen, H.C.; Wu, J.J. Enhancing the photocatalytic hydrogen evolution of copper doped zinc sulfide nanoballs through surfactants modification. Int. J. Hydrogen Energy 2019, 44, 30563–30573. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Chen, G.; Sang, Y.; Jiang, H.; He, J.; Li, X.; Liu, H. Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property. Nanoscale 2016, 8, 6101–6109. [Google Scholar] [CrossRef]
- Luciani, G.; Imparato, C.; Vitiello, G. Photosensitive hybrid nanostructured materials: The big challenges for sunlight capture. Catalysts 2020, 10, 103. [Google Scholar] [CrossRef]
- Yu, X.; Wang, L.; Zhang, J.; Guo, W.; Zhao, Z.; Qin, Y.; Mou, X.; Li, A.; Liu, H. Hierarchical hybrid nanostructures of Sn3O4 on N doped TiO2 nanotubes with enhanced photocatalytic performance. J. Mater. Chem. A 2015, 3, 19129–19136. [Google Scholar] [CrossRef]
- Lee, G.J.; Anandan, S.; Masten, S.J.; Wu, J.J. Sonochemical synthesis of hollow copper doped zinc sulfide nanostructures: Optical and catalytic properties for visible light assisted photosplitting of water. Ind. Eng. Chem. Res. 2014, 53, 8766–8772. [Google Scholar] [CrossRef]
- Lee, G.J.; Anandan, S.; Masten, S.J.; Wu, J.J. Photocatalytic hydrogen evolution from water splitting using Cu doped ZnS microspheres under visible light irradiation. Renew. Energy 2016, 89, 18–26. [Google Scholar] [CrossRef]
- Nosaka, Y.; Nishikawa, M.; Nosaka, A.Y. Spectroscopic investigation of the mechanism of photocatalysis. Molecules 2014, 19, 18248–18267. [Google Scholar] [CrossRef]
- Kuriki, R.; Ishitani, O.; Maeda, K. Unique solvent effects on visible-light CO2 reduction over ruthenium (II)-complex/carbon nitride hybrid photocatalysts. ACS Appl. Mater. Inter. 2016, 8, 6011–6018. [Google Scholar] [CrossRef]
- Kwak, J.H.; Kovarik, L.; Szanyi, J. CO2 reduction on supported Ru/Al2O3 catalysts: Cluster size dependence of product selectivity. ACS Catal. 2013, 3, 2449–2455. [Google Scholar] [CrossRef]
- Kumar, P.; Sain, B.; Jain, S.L. Photocatalytic reduction of carbon dioxide to methanol using a ruthenium trinuclear polyazine complex immobilized on graphene oxide under visible light irradiation. J. Mater. Chem. A 2014, 2, 11246–11253. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Tu, J.R.; Ye, Z.J.; Chen, D.Q.; Hu, B.; Huang, Y.W.; Chen, T.T.; Cao, D.P.; Yu, Z.T.; Zou, Z.G. MoS2-graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: A highly efficient photocatalyst for solar hydrogen generation. Appl. Catal. B Environ. 2016, 188, 13–22. [Google Scholar] [CrossRef]
- Lee, G.J.; Hou, Y.H.; Liu, N.; Wu, J.J. Enhanced photocatalytic hydrogen and methane evolution using chalcogenide with metal ion modification via a microwave-assisted solvothermal method. Catal. Today 2019. [Google Scholar] [CrossRef]
- Wang, G.; Huang, B.; Li, Z.; Lou, Z.; Wang, Z.; Dai, Y.; Whangbo, M.H. Synthesis and characterization of ZnS with controlled amount of S vacancies for photocatalytic H2 production under visible light. Sci. Rep. UK 2015, 5, 08544. [Google Scholar] [CrossRef] [PubMed]
- Anila, E.I.; Safeera, T.A.; Reshmi, R. Photoluminescence of nanocrystalline ZnS thin film grown by sol–gel method. J. Fluoresc. 2015, 25, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, J.; Zhang, Y.; Li, Q.; Gong, J.R. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 2011, 11, 4774–4779. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Wen, L.; Wang, D.; Xue, Y.; Lu, Q.; Wu, C.; Chen, J.; Song, S. Photocatalytic reduction of CO2 in aqueous solution on surface-fluorinated anatase TiO2 nanosheets with exposed {001} facets. Energy Fuel 2014, 28, 3982–3993. [Google Scholar] [CrossRef]
- Srinivas, B.; Shubhamangala, B.; Lalitha, K.; Kumar Reddy, P.A.; Kumari, V.D.; Subrahmanyam, M.; Ranjan, D.B. Photocatalytic reduction of CO2 over Cu-TiO2/molecular sieve 5A composite. Photochem. Photobiol. 2011, 87, 995–1001. [Google Scholar] [CrossRef]
- Lingampalli, S.R.; Ayyub, M.M.; Rao, C.N.R. Recent progress in the photocatalytic reduction of carbon dioxide. ACS Omega 2017, 2, 2740–2748. [Google Scholar] [CrossRef]
- Reli, M.; Šihor, M.; Kočí, K.; Praus, P.; Kozák, O.; Obalová, L. Influence of reaction medium on CO2 photocatalytic reduction yields over ZnS-MMT. GeoScience Eng. 2012, 58, 34–42. [Google Scholar] [CrossRef]
CZS/MSG | 0.5Ru | 1Ru | 2Ru | 3Ru | 4Ru |
---|---|---|---|---|---|
D111 (nm) 1 | 2.50 | 2.48 | 2.53 | 2.55 | 2.33 |
D50 (μm) 2 | 3.66 | 3.77 | 3.57 | 3.89 | 3.61 |
SBET (m2/g) | 46.23 | 40.97 | 30.25 | 34.10 | 35.90 |
Pore size (Å) | 49.39 | 40.77 | 57.06 | 51.97 | 52.13 |
Pore volume (cm3/g) | 0.0571 | 0.0418 | 0.0432 | 0.0443 | 0.0468 |
Photocurrent density (mA/cm2) 3 | 7.43 | 3.70 | 4.41 | 7.08 | 8.65 |
Dark current density (mA/cm2) | 1.12 | 1.93 | 1.64 | 2.52 | 3.27 |
percentage increase in current | 563.4 | 91.7 | 168.9 | 181.0 | 164.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.-J.; Hou, Y.-H.; Huang, H.-T.; Wang, W.; Lyu, C.; Wu, J.J. Microwave-Assisted Solvothermal Synthesis of Chalcogenide Composite Photocatalyst and Its Photocatalytic CO2 Reduction Activity under Simulated Solar Light. Catalysts 2020, 10, 789. https://doi.org/10.3390/catal10070789
Lee G-J, Hou Y-H, Huang H-T, Wang W, Lyu C, Wu JJ. Microwave-Assisted Solvothermal Synthesis of Chalcogenide Composite Photocatalyst and Its Photocatalytic CO2 Reduction Activity under Simulated Solar Light. Catalysts. 2020; 10(7):789. https://doi.org/10.3390/catal10070789
Chicago/Turabian StyleLee, Gang-Juan, Yu-Hong Hou, Hsin-Ting Huang, Wenmin Wang, Cong Lyu, and Jerry J. Wu. 2020. "Microwave-Assisted Solvothermal Synthesis of Chalcogenide Composite Photocatalyst and Its Photocatalytic CO2 Reduction Activity under Simulated Solar Light" Catalysts 10, no. 7: 789. https://doi.org/10.3390/catal10070789
APA StyleLee, G.-J., Hou, Y.-H., Huang, H.-T., Wang, W., Lyu, C., & Wu, J. J. (2020). Microwave-Assisted Solvothermal Synthesis of Chalcogenide Composite Photocatalyst and Its Photocatalytic CO2 Reduction Activity under Simulated Solar Light. Catalysts, 10(7), 789. https://doi.org/10.3390/catal10070789