Electrochemical Oxidation of an Organic Dye Adsorbed on Tin Oxide and Antimony Doped Tin Oxide Graphene Composites
Abstract
1. Introduction
2. Result and Discussion
2.1. Raman Spectra
2.2. SEM and TEM
2.3. Adsorption Study
2.4. Electrochemical Regeneration
2.5. Adsorption/Regeneration Cycles
2.6. Electrochemical Characterization of the Adsorbents
2.6.1. Linear Sweep Voltammetry
2.6.2. Cyclic Voltammetry
3. Experimental
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ali, I. Water treatment by adsorption columns: Evaluation at ground level. Sep. Purif. Rev. 2014, 43, 175–205. [Google Scholar] [CrossRef]
- Lin, S.H.; Cheng, M.J. Adsorption of phenol and m-chlorophenol on organobentonites and repeated thermal regeneration. Waste Manag. 2002, 22, 595–603. [Google Scholar] [CrossRef]
- Namasivayam, C.; Sangeetha, D. Recycling of agricultural solid waste, coir pith: Removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon. J. Hazard. Mater. 2006, 135, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Berenguer, R.; Marco-Lozar, J.P.; Quijada, C.; Cazorla-Amorós, D.; Morallón, E. Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium. Carbon N. Y. 2010, 48, 2734–2745. [Google Scholar] [CrossRef]
- Wang, L.; Balasubramanian, N. Electrochemical regeneration of granular activated carbon saturated with organic compounds. Chem. Eng. J. 2009, 155, 763–768. [Google Scholar] [CrossRef]
- Asghar, H.M.A.; Hussain, S.N.; Roberts, E.P.L.; Brown, N.W. Removal of humic acid from water using adsorption coupled with electrochemical regeneration. Korean J. Chem. Eng. 2013, 30, 1415–1422. [Google Scholar] [CrossRef]
- Asghar, H.M.A.; Hussain, S.N.; Sattar, H.; Brown, N.W.; Roberts, E.P.L. Electrochemically synthesized GIC-based adsorbents for water treatment through adsorption and electrochemical regeneration. J. Ind. Eng. Chem. 2014, 20, 2200–2207. [Google Scholar] [CrossRef]
- Narbaitz, R.M.; Cen, J. Electrochemical regeneration of granular activated carbon. Water Res. 1994, 28, 1771–1778. [Google Scholar] [CrossRef]
- García-Otón, M.; Montilla, F.; Lillo-Rodenas, M.A.; Morallon, E.; Vázquez, J.L. Electrochemical regeneration of activated carbon saturated with toluene. J. Appl. Electrochem. 2005, 35, 319–325. [Google Scholar] [CrossRef]
- Han, Y.; Quan, X.; Ruan, X.; Zhang, W. Integrated electrochemically enhanced adsorption with electrochemical regeneration for removal of acid orange 7 using activated carbon fibers. Sep. Purif. Technol. 2008, 59, 43–49. [Google Scholar] [CrossRef]
- Brown, N.; Roberts, E.P.; Garforth, A.; Dryfe, R.A. Electrochemical regeneration of a carbon-based adsorbent loaded with crystal violet dye. Electrochim. Acta 2004, 49, 3269–3281. [Google Scholar] [CrossRef]
- Brown, N.W.; Roberts, E.P.L.; Chasiotis, A.; Cherdron, T.; Sanghrajka, N. Atrazine removal using adsorption and electrochemical regeneration. Water Res. 2004, 38, 3067–3074. [Google Scholar] [CrossRef]
- Brown, N.W.; Roberts, E.P.L. Electrochemical pre-treatment of effluents containing chlorinated compounds using an adsorbent. J. Appl. Electrochem. 2007, 37, 1329–1335. [Google Scholar] [CrossRef]
- Sharif, F.; Gagnon, L.R.; Mulmi, S.; Roberts, E.P.L. Electrochemical regeneration of a reduced graphene oxide/magnetite composite adsorbent loaded with methylene blue. Water Res. 2017, 114, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Nkrumah-Amoako, K.; Roberts, E.P.L.; Brown, N.W.; Holmes, S.M. The effects of anodic treatment on the surface chemistry of a Graphite Intercalation Compound. Electrochim. Acta 2014, 135, 568–577. [Google Scholar] [CrossRef]
- Rueffer, M.; Bejan, D.; Bunce, N.J. Graphite: An active or an inactive anode? Electrochim. Acta 2011, 56, 2246–2253. [Google Scholar] [CrossRef]
- Ntsendwana, B.; Mamba, B.B.; Sampath, S.; Arotiba, O.A. Synthesis, characterisation and application of an exfoliated graphite-diamond composite electrode in the electrochemical degradation of trichloroethylene. RSC Adv. 2013, 3, 24473–24483. [Google Scholar] [CrossRef]
- Peleyeju, M.G.; Umukoro, E.H.; Babalola, J.O.; Arotiba, O.A. Electrochemical Degradation of an Anthraquinonic Dye on an Expanded Graphite-Diamond Composite Electrode. Electrocatalysis 2016, 7, 132–139. [Google Scholar] [CrossRef]
- Yang, Y.; Hoffmann, M.R. Synthesis and Stabilization of Blue-Black TiO2 Nanotube Arrays for Electrochemical Oxidant Generation and Wastewater Treatment. Environ. Sci. Technol. 2016, 50, 11888–11894. [Google Scholar] [CrossRef]
- Jasmann, J.R.; Borch, T.; Sale, T.C.; Blotevogel, J. Advanced Electrochemical Oxidation of 1, 4-Dioxane via Dark Catalysis by Novel Titanium Dioxide (TiO2) Pellets. Environ. Sci. Technol. 2016, 50, 8817–8826. [Google Scholar] [CrossRef]
- Li, X.; Wu, Y.; Zhu, W.; Xue, F.; Qian, Y.; Wang, C. Enhanced electrochemical oxidation of synthetic dyeing wastewater using SnO2-Sb-doped TiO2-coated granular activated carbon electrodes with high hydroxyl radical yields. Electrochim. Acta 2016, 220, 276–284. [Google Scholar] [CrossRef]
- Guo, X.; Li, D.; Wan, J.; Yu, X. Preparation and electrochemical property of TiO2/Nano-graphite composite anode for electro-catalytic degradation of ceftriaxone sodium. Electrochim. Acta 2015, 180, 957–964. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Fu, J. The influence of TiO2 and aeration on the kinetics of electrochemical oxidation of phenol in packed bed reactor. J. Hazard. Mater. 2008, 160, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Zhao, G.; Lei, Y.; Li, H.; Li, P.; Liu, M. Novel vertically aligned TiO2 nanotubes embedded with Sb-doped SnO2 electrode with high oxygen evolution potential and long service time. Mater. Chem. Phys. 2009, 113, 314–321. [Google Scholar] [CrossRef]
- Xie, R.; Meng, X.; Sun, P.; Niu, J.; Jiang, W.; Bottomley, L.; Li, D.; Chen, Y.; Crittenden, J. Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact. Appl. Catal. B Environ. 2017, 203, 515–525. [Google Scholar] [CrossRef]
- Beck, F.; Kaiser, W.; Krohn, H. Boron doped diamond (BDD)-layers on titanium substrates as electrodes in applied electrochemistry. Electrochim. Acta 2000, 45, 4691–4695. [Google Scholar] [CrossRef]
- Song, S.; Fan, J.; He, Z.; Zhan, L.; Liu, Z.; Chen, J.; Xu, X. Electrochemical degradation of azo dye CI Reactive Red 195 by anodic oxidation on Ti/SnO2–Sb/PbO2 electrodes. Electrochim. Acta 2010, 55, 3606–3613. [Google Scholar] [CrossRef]
- Siedlecka, E.M.; Fabianska, A.; Stolte, S.; Nienstedt, A.; Ossowski, T.; Stepnowski, P.; Thöming, J. Electrocatalytic oxidation of 1-butyl-3-methylimidazolium chloride: Effect of the electrode material. Int. J. Electrochem. Sci. 2013, 8, 5560–5574. [Google Scholar]
- Sharif, F.; Roberts, E.P.L. Anodic electrochemical regeneration of a graphene/titanium dioxide composite adsorbent loaded with an organic dye. Chemosphere 2019, 241, 125020. [Google Scholar] [CrossRef]
- Zhao, G.; Wen, T.; Yang, X.; Yang, S.; Liao, J.; Hu, J.; Shao, D.; Wang, X. Preconcentration of U (VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans. 2012, 41, 6182–6188. [Google Scholar] [CrossRef]
- Zuo, J.; Xu, C.; Liu, X.; Wang, C.; Wang, C.; Hu, Y.; Qian, Y. Study of the Raman spectrum of nanometer SnO2. J. Appl. Phys. 1994, 75, 1835–1836. [Google Scholar] [CrossRef]
- Camacho-López, M.A.; Galeana-Camacho, J.R.; Esparza-García, A.; Sánchez-Pérez, C.; Julien, C.M. Characterization of nanostructured SnO2 films deposited by reactive DC-magnetron sputtering. Superf. Vacío 2013, 26, 95–99. [Google Scholar]
- Xu, J.M.; Li, L.; Wang, S.; Ding, H.L.; Zhang, Y.X.; Li, G.H. Influence of Sb doping on the structural and optical properties of tin oxide nanocrystals. CrystEngComm 2013, 15, 3296–3300. [Google Scholar] [CrossRef]
- Bonu, V.; Das, A.; Sivadasan, A.K.; Tyagi, A.K.; Dhara, S. Invoking forbidden modes in SnO2 nanoparticles using tip enhanced Raman spectroscopy. J. Raman Spectrosc. 2015, 46, 1037–1040. [Google Scholar] [CrossRef]
- Velmurugan, V.; Srinivasarao, U.; Ramachandran, R.; Saranya, M.; Grace, A.N. Synthesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications. Mater. Res. Bull. 2016, 84, 145–151. [Google Scholar] [CrossRef]
- Hameed, B.H.; Rahman, A.A. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J. Hazard. Mater. 2008, 160, 576–581. [Google Scholar] [CrossRef]
- De la Luz-Asunción, M.; Sánchez-Mendieta, V.; Martínez-Hernández, A.L.; Castaño, V.M.; Velasco-Santos, C. Adsorption of phenol from aqueous solutions by carbon nanomaterials of one and two dimensions: Kinetic and equilibrium studies. J. Nanomater. 2015, 16, 422. [Google Scholar] [CrossRef]
- Calcaterra, D.; Parise, M. Weathering as a predisposing factor to slope movements: An introduction. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 2010, 23, 1–4. [Google Scholar] [CrossRef]
- Lau, C.H.; Chen, S.F. Methylene blue adsorption by clays saturated with different inorganic cations. Int. Inf. Syst. Agric. Sci. Technol. 1978, 26, 59–66. [Google Scholar]
- Zhang, H. Regeneration of exhausted activated carbon by electrochemical method. Chem. Eng. J. 2002, 85, 81–85. [Google Scholar] [CrossRef]
- Asghar, H.M.A.; Hussain, S.N.; Roberts, E.P.L.; Campen, A.K.; Brown, N.W. Pre-treatment of adsorbents for waste water treatment using adsorption coupled-with electrochemical regeneration. J. Ind. Eng. Chem. 2013, 19, 1689–1696. [Google Scholar] [CrossRef]
- Radjenovic, J.; Sedlak, D.L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol. 2015, 49, 11292–11302. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Cui, X.; Liu, M.; Li, P.; Zhang, Y.; Cao, T.; Li, H.; Lei, Y.; Liu, L.; Li, D. Electrochemical Degradation of Refractory Pollutant Using a Novel Microstructured TiO2 Nanotubes/Sb-Doped SnO2 Electrode. Environ. Sci. Technol. 2009, 43, 1480–1486. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jin, T.; Hu, Z.; Zhou, L.; Zhou, M. TiO2-NTs/SnO2-Sb anode for efficient electrocatalytic degradation of organic pollutants: Effect of TiO2-NTs architecture. Sep. Purif. Technol. 2013, 102, 180–186. [Google Scholar] [CrossRef]
- Nurzulaikha, R.; Lim, H.N.; Harrison, I.; Lim, S.S.; Pandikumar, A.; Huang, N.M.; Lim, S.P.; Thien, G.S.H.; Yusoff, N.; Ibrahim, I. Graphene/SnO2 nanocomposite-modified electrode for electrochemical detection of dopamine. Sens. Bio-Sens. Res. 2015, 5, 42–49. [Google Scholar] [CrossRef]
- Yao, J.; Shen, X.; Wang, B.; Liu, H.; Wang, G. In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1849–1852. [Google Scholar] [CrossRef]
- Kong, J.; Shi, S.; Zhu, X.; Ni, J. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol. J. Environ. Sci. 2007, 19, 1380–1386. [Google Scholar] [CrossRef]
- He, D.; Mho, S. Electrocatalytic reactions of phenolic compounds at ferric ion co-doped SnO2: Sb5+ electrodes. J. Electroanal. Chem. 2004, 568, 19–27. [Google Scholar] [CrossRef]
- Caldararu, M.; Thomas, M.F.; Bland, J.; Spranceana, D. Redox processes in Sb-containing mixed oxides used in oxidation catalysis: I. Tin dioxide assisted antimony oxidation in solid state. Appl. Catal. A Gen. 2001, 209, 383–390. [Google Scholar] [CrossRef]
- Gao, J.; Qin, Y.; Zhou, T.; Cao, D.; Xu, P.; Hochstetter, D.; Wang, Y. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: Kinetics, equilibrium, and thermodynamics studies. J. Zhejiang Univ. Sci. B 2013, 14, 650–658. [Google Scholar] [CrossRef]
- Hussain, S.N.; Asghar, H.M.A.; Sattar, H.; Brown, N.W.; Roberts, E.P.L. Removal of Tartrazine From Water by Adsorption with Electrochemical Regeneration. Chem. Eng. Commun. 2015, 202, 1280–1288. [Google Scholar] [CrossRef]
- Mohammed, F.M.; Roberts, E.P.L.; Campen, A.K.; Brown, N.W. Wastewater treatment by multi-stage batch adsorption and electrochemical regeneration. J. Electrochem. Sci. Eng. 2012, 2, 223–236. [Google Scholar] [CrossRef]
Sample | Bare Graphene | G/SnO2 7 | G/SnO2 13 | G/Sb-SnO2 7 | G/Sb-SnO2 13 |
---|---|---|---|---|---|
Surface area (BET) m2 g−1 | 70 | 84 | 89 | 72 | 69 |
Surface area (MB) m2 g−1 | 62 | 88 | 98 | 85 | 85 |
Langmuir Parameters: | |||||
---|---|---|---|---|---|
Sample | Maximum Adsorption (mg g−1) | K | b | R2 | |
Bare graphene | 25 | 24.3 | 2.28 | 0.92 | 0.017 |
G/SnO2 7 | 36 | 34.53 | 11.92 | 0.97 | 0.003 |
G/SnO2 13 | 40 | 37.02 | 8.16 | 0.94 | 0.005 |
G/Sb-SnO2 7 | 35 | 33.82 | 8.87 | 0.97 | 0.005 |
G/Sb-SnO2 13 | 35 | 33.47 | 5.19 | 0.94 | 0.008 |
at Two Different Initial Concentrations | ||
---|---|---|
10 | 50 | |
Bare graphene | 0.04 | 0.009 |
G/ SnO2 7 | 0.008 | 0.002 |
G/ SnO2 13 | 0.012 | 0.002 |
G/ Sb-SnO2 7 | 0.011 | 0.002 |
G/ Sb-SnO2 13 | 0.019 | 0.004 |
Freundlich Parameters: | ||||
---|---|---|---|---|
Maximum Adsorption (mg g−1) | K | n | R2 | |
Bare graphene | 25 | 14.90 | 0.17 | 0.92 |
G/SnO2 7 | 36 | 26.44 | 0.09 | 0.83 |
G/ SnO2 13 | 40 | 26.63 | 0.12 | 0.89 |
G/Sb-SnO2 7 | 35 | 25.01 | 0.11 | 0.88 |
G/ Sb-SnO2 13 | 35 | 23.39 | 0.13 | 0.91 |
Adsorbent: | Bare Graphene | G/ SnO2 7 | G/ SnO2 13 | G/Sb-SnO2 7 | G/Sb-SnO2 13 |
---|---|---|---|---|---|
Charge passed NaCl (C mg−1) | 39 | 21 | 21 | 27 | 27 |
Charge passed Na2SO4 (C mg−1) | 35 | 23 | 23 | 21 | 21 |
Cell Voltage (V) | ≈2.6 | ≈2.6 | ≈2.6 | ≈2.6 | ≈2.6 |
Sample | G/SnO2 7 | G/SnO2 13 | G/Sb-SnO2 7 | G/Sb-SnO2 13 | Bare Graphene |
---|---|---|---|---|---|
Mass | 0.91 | 0.88 | 0.89 | 0.90 | 0.70 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharif, F.; Roberts, E.P.L. Electrochemical Oxidation of an Organic Dye Adsorbed on Tin Oxide and Antimony Doped Tin Oxide Graphene Composites. Catalysts 2020, 10, 263. https://doi.org/10.3390/catal10020263
Sharif F, Roberts EPL. Electrochemical Oxidation of an Organic Dye Adsorbed on Tin Oxide and Antimony Doped Tin Oxide Graphene Composites. Catalysts. 2020; 10(2):263. https://doi.org/10.3390/catal10020263
Chicago/Turabian StyleSharif, Farbod, and Edward P. L. Roberts. 2020. "Electrochemical Oxidation of an Organic Dye Adsorbed on Tin Oxide and Antimony Doped Tin Oxide Graphene Composites" Catalysts 10, no. 2: 263. https://doi.org/10.3390/catal10020263
APA StyleSharif, F., & Roberts, E. P. L. (2020). Electrochemical Oxidation of an Organic Dye Adsorbed on Tin Oxide and Antimony Doped Tin Oxide Graphene Composites. Catalysts, 10(2), 263. https://doi.org/10.3390/catal10020263