The Mimic Enzyme Properties of Au@PtNRs and the Detection for Ascorbic Acid Based on Their Catalytic Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Morphology Analysis of Au-tipped Pt NRs
2.2. Peroxidase Activity of Au-tipped Pt NRs
2.3. The Inhibitory Effects of AA on the Peroxidase Activity
2.4. Detection of AA by Au-tipped Pt NRs
3. Materials and Methods
3.1. Materials
3.2. Preparation of Au NRs
3.3. Preparation of Au-tipped Pt NRs
3.4. Colorimetric Detection of AA
3.5. Validation of the Colorimetric Method for the Detection of AA
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tcherniak, A.; Dominguez-Medina, S.; Chang, W.S.; Swanglap, P.; Slaughter, L.S.; Landes, C.F.; Link, S. One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods. J. Phys. Chem. C 2011, 115, 15938–15949. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, Y.; Lawes, D.J.; Ball, G.E.; Zhou, C.; Liu, Z.; Amal, R. Analysis of the promoted activity and molecular mechanwasm of hydrogen production over fine Au-Pt alloyed TiO2Photocatalysts. ACS Catal. 2015, 5, 3924–3931. [Google Scholar] [CrossRef]
- Taylor, A.B.; Siddiquee, A.M.; Chon, J.W.M. Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion. ACS Nano 2014, 8, 12071–12079. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.Y.; Lei, D.Y.; Jiang, R.; Liu, X.; Dai, J.; Wang, J.; Chan, H.L.W.; Tsang, Y.H. Bifunctional Au@Pt core–shell nanostructures for in situ monitoring of catalytic reactions by surface-enhanced Raman scattering spectroscopy. Nanoscale 2014, 6, 9063–9070. [Google Scholar] [CrossRef]
- Zhang, G.R.; Zhao, D.; Feng, Y.Y.; Zhang, B.; Su, D.S.; Liu, G.; Xu, B.Q. Catalytic Pt-on-Au nanostructures: Why Pt becomes more active on smaller Au particles. ACS Nano 2012, 6, 2226–2236. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, F.; Hang, L.; Sun, Y.-Q.; Liu, D.; Li, H.; Liu, G.; Lyu, X.; Li, C.; Cai, W.; et al. Controlled Syntheswas of Sponge-like Porous Au-Ag Alloy Nanocubes for Surface-Enhanced Raman Scattering Property. J. Mater. Chem. C 2017, 5, 11039–11045. [Google Scholar] [CrossRef]
- Zheng, Z.; Tachikawa, T.; Majima, T. Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J. Am. Chem. Soc. 2014, 136, 6870–6873. [Google Scholar] [CrossRef]
- Nagvenkar, A.P.; Gedanken, A. Cu0.89Zn0.11O, a New Peroxidase-Mimicking Nanozyme with High Sensitivity for Glucose and Antioxidant Detection. ACS Appl. Mater. Interfaces 2016, 8, 22301–22308. [Google Scholar] [CrossRef]
- Ju, Y.; Kim, J. Dendrimer-encapsulated Pt nanoparticles with peroxidase-mimetic activity as biocatalytic labels for sensitive colorimetric analyses. Chem. Commun. 2015, 51, 13752–13755. [Google Scholar] [CrossRef]
- Yousefinejad, S.; Rasti, H.; Hajebi, M.; Kowsari, M.; Sadravi, S.; Honarasa, F. Design of C-dots/Fe3O4magnetic nanocomposite as an efficient new nanozyme and its application for determination of H2O2in nanomolar level. Sens. Actuators B Chem. 2017, 247, 691–696. [Google Scholar] [CrossRef]
- Bi, C.; Feng, C.; Miao, T.; Song, Y.; Wang, D.; Xia, H. Understanding the effect of ultrathin AuPd alloy shells of irregularly shaped Au@AuPd nanoparticles with high-index facets on enhanced performance of ethanol oxidation. Nanoscale 2015, 7, 20105–20116. [Google Scholar] [CrossRef]
- Tseng, C.-W.; Chang, H.-Y.; Chang, J.-Y.; Huang, C.-C. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nanoscale 2012, 4, 6823. [Google Scholar] [CrossRef]
- Hasnat, M.A.; Rahman, M.M.; Borhanuddin, S.M.; Siddiqua, A.; Bahadur, N.M.; Karim, M.R. Efficient hydrogen peroxide decomposition on bimetallic Pt-Pd surfaces. Catal. Commun. 2010, 12, 286–291. [Google Scholar] [CrossRef]
- Chen, C.; Kang, Y.J.; Huo, Z.Y.; Zhu, Z.W.; Huang, W.Y.; Xin, H.L.; Snyder, J.D.; Li, D.G.; Herron, J.A.; Mavrikakwas, M.; et al. Highly crystalline multimetallic nanoframes with three-dimensionalelectrocatalytic surfaces. Science 2014, 343, 1339–1343. [Google Scholar] [CrossRef]
- Luo, R.C.; Li, C.; Du, X.W.; Yang, J. Direct conversion of bulk metals to size-tailored, monodwasperse spherical non-coinage-metal nanocrystals. Angew. Chem. Int. Ed. 2015, 54, 4787–4791. [Google Scholar] [CrossRef]
- Kareem, H.; Shan, S.; Lin, F.; Li, J.; Wu, Z.; Prasai, B.; O’Brien, C.P.; Lee, I.C.; Tran, D.T.; Yang, L.; et al. Evolution of surface catalytic sites on thermochemically-tuned gold-palladium nanoalloys. Nanoscale 2018, 10, 3849–3862. [Google Scholar] [CrossRef]
- Zhang, X.; Li, N.; Wang, H.; Yuan, C.; Gu, G.; Zhang, Y.; Nieckarz, D.; Szabelski, P.; Hou, S.; Teo, B.K.; et al. Influence of relativwastic effects on assembled structures of V-Shaped bwaspyridine molecules on M(111) surfaces where M = Cu, Ag, Au. ACS Nano 2017, 11, 8511–8518. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Q.; Sun, Y.; Zhao, Q.; Yang, J. Lateral etching of core-shell AU@metal nanorods to metal-tipped au nanorods with improved catalytic activity. ACS Nano 2012, 6, 1165–1175. [Google Scholar] [CrossRef]
- Rodal-Cedeira, S.; Montes-García, V.; Polavarapu, L.; Solís, D.M.; Heidari, H.; la Porta, A.; Angiola, M.; Martucci, A.; Taboada, J.M.; Obelleiro, F.; et al. Plasmonic Au@Pd Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions. Chem. Mater. 2016, 28, 9169–9180. [Google Scholar] [CrossRef]
- Cai, S.; Jia, X.; Han, Q.; Yan, X.; Yang, R.; Wang, C. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects. Nano Res. 2017, 10, 2056–2069. [Google Scholar] [CrossRef]
- Song, H.; Meng, X.; Dao, T.D.; Zhou, W.; Liu, H.; Shi, L.; Zhang, H.; Nagao, T.; Kako, T.; Ye, J. Light-enhanced carbon dioxide activation and conversion by effective plasmonic coupling effect of pt and au nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 408–416. [Google Scholar] [CrossRef]
- Chen, C.; Fan, S.; Li, C.; Chong, Y.; Tian, X.; Zheng, J.; Fu, P.P.; Jiang, X.; Wamer, W.G.; Yin, J. Platinum nanoparticles inhibit antioxidant effects of vitamin C via ascorbate oxidase-mimetic activity. J. Mater. Chem. B 2016, 4, 7895–7901. [Google Scholar] [CrossRef] [PubMed]
- Bwaswas, B.; Manna, R.K.; Laskar, A.; Kumar, P.B.S.; Adhikari, R.; Kumaraswamy, G. Linking catalyst-coated wasotropic colloids into “active” flexible chains enhances their diffusivity. ACS Nano 2017, 11, 10025–10031. [Google Scholar] [CrossRef]
- Cai, S.; Han, Q.; Qi, C.; Lian, Z.; Jia, X.; Yang, R.; Wang, C. Pt74 Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose. Nanoscale 2016, 8, 3685–3693. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, X.; Zheng, Z.; Ke, X.; Jaatinen, E.; Zhao, J.; Guo, C.; Xie, T.; Wang, D. Mechanwasm of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Chem. Commun. 2009, 48, 7524–7526. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Qin, K.; Yuan, D.; Tan, J.; Qin, L.; Zhang, X.; Wei, H. Rational Design of Au@Pt Multibranched Nanostructures as Bifunctional Nanozymes. ACS Appl. Mater. Interfaces 2018, 10, 12954–12959. [Google Scholar] [CrossRef]
- Nguyen, V.; Kwon, Y.S.; Hoonkimand, J.; Bock, M. Supporting Information. 2014; 1–12. [Google Scholar] [CrossRef]
- Dai, L.; Zhao, Y.; Chi, Q.; Liu, H.; Li, J.; Huang, T. Morphological control and evolution of octahedral and truncated trwasoctahedral Pt–Au alloy nanocrystals under microwave irradiation. Nanoscale 2014, 6, 9944–9950. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wong, R.J.; Ho, J.H.; Jiang, Y.; Amal, R. Sensitization of Pt/TiO2 using plasmonic Au nanoparticles for hydrogen evolution under visible-light irradiation. ACS Appl. Mater. Interfaces 2017, 9, 30575–30582. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, H.; Han, W.; Liu, J.; Qi, J.; Li, H.; Wang, L. The Mimic Enzyme Properties of Au@PtNRs and the Detection for Ascorbic Acid Based on Their Catalytic Properties. Catalysts 2020, 10, 1285. https://doi.org/10.3390/catal10111285
Gan H, Han W, Liu J, Qi J, Li H, Wang L. The Mimic Enzyme Properties of Au@PtNRs and the Detection for Ascorbic Acid Based on Their Catalytic Properties. Catalysts. 2020; 10(11):1285. https://doi.org/10.3390/catal10111285
Chicago/Turabian StyleGan, Hao, Wenzhao Han, Jiadi Liu, Juntian Qi, Hui Li, and Liping Wang. 2020. "The Mimic Enzyme Properties of Au@PtNRs and the Detection for Ascorbic Acid Based on Their Catalytic Properties" Catalysts 10, no. 11: 1285. https://doi.org/10.3390/catal10111285
APA StyleGan, H., Han, W., Liu, J., Qi, J., Li, H., & Wang, L. (2020). The Mimic Enzyme Properties of Au@PtNRs and the Detection for Ascorbic Acid Based on Their Catalytic Properties. Catalysts, 10(11), 1285. https://doi.org/10.3390/catal10111285