Ambient Temperature CO Oxidation Using Palladium–Platinum Bimetallic Catalysts Supported on Tin Oxide/Alumina
Abstract
:1. Introduction
2. Results
2.1. CO Oxidation Using Bimetallic PtPd Catalysts Supported on γ-Alumina Spheres
2.2. CO Oxidation Using Bimetallic PtPd Catalysts Supported on Tin Oxide-Coated γ-Alumina Spheres
2.3. Catalyst Characterisation
3. Materials and Methods
3.1. Catalyst Preparation
3.1.1. PtPd/Al2O3 Spheres
3.1.2. PtPd/SnO2/Al2O3 Spheres
3.1.3. PtPd/Na2SnO3/Al2O3
3.1.4. PtPd/SnC2O4/Al2O3
3.2. Catalyst Characterisation
3.3. Catalyst Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M.J.; Delmon, B. Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4. J. Catal. 1993, 144, 175–192. [Google Scholar] [CrossRef]
- Falsig, H.; Hvolbæk, B.; Kristensen, I.S.; Jiang, T.; Bligaard, T.; Christensen, C.H.; Nørskov, J.K. Trends in the Catalytic CO Oxidation Activity of Nanoparticles. Angew. Chem. Int. Ed. 2008, 47, 4835–4839. [Google Scholar] [CrossRef] [PubMed]
- Royer, S.; Duprez, D. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. ChemCatChem 2011, 3, 24–65. [Google Scholar] [CrossRef]
- Hutchings, G.J.; Mirzaei, A.A.; Joyner, R.W.; Siddiqui, M.R.H.; Taylor, S.H. Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Appl. Catal. A Gen. 1998, 166, 143–152. [Google Scholar] [CrossRef]
- Krämer, M.; Schmidt, T.; Stöwe, K.; Maier, W.F. Structural and catalytic aspects of sol–gel derived copper manganese oxides as low-temperature CO oxidation catalyst. Appl. Catal. A Gen. 2006, 302, 257–263. [Google Scholar] [CrossRef]
- Brittan, M.I.; Bliss, H.; Walker, C.A. Kinetics of the Hopcalite-catalyzed oxidation of carbon monoxide. AIChE J. 1970, 16, 305–314. [Google Scholar] [CrossRef]
- Alayoglu, S.; Nilekar, A.U.; Mavrikakis, M.; Eichhorn, B. Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 2008, 7, 333–338. [Google Scholar] [CrossRef]
- Mallat, T.; Baiker, A. Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chem. Rev. 2004, 104, 3037–3058. [Google Scholar] [CrossRef]
- Periana, R.A.; Taube, D.J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Platinum Catalysts for the High-Yield Oxidation of Methane to a Methanol Derivative. Science 1998, 280, 560–564. [Google Scholar] [CrossRef]
- Gélin, P.; Primet, M. Complete oxidation of methane at low temperature over noble metal based catalysts: A review. Appl. Catal. B: Environ. 2002, 39, 1–37. [Google Scholar]
- Liu, K.; Wang, A.; Zhang, T. Recent Advances in Preferential Oxidation of CO Reaction over Platinum Group Metal Catalysts. ACS Catal. 2012, 2, 1165–1178. [Google Scholar] [CrossRef]
- Lee, C.-H.; Chen, Y.-W. Effect of Basic Additives on Pt/Al2O3 for CO and Propylene Oxidation under Oxygen-Deficient Conditions. Ind. Eng. Chem. Res. 1997, 36, 1498–1506. [Google Scholar] [CrossRef]
- Carlsson, P.-A.; Skoglundh, M. Low-temperature oxidation of carbon monoxide and methane over alumina and ceria supported platinum catalysts. Appl. Catal. B Environ. 2011, 101, 669–675. [Google Scholar] [CrossRef] [Green Version]
- Bunluesin, T.; Putna, E.S.; Gorte, R.J. A comparison of CO oxidation on ceria-supported Pt, Pd, and Rh. Catal. Lett. 1996, 41, 1–5. [Google Scholar] [CrossRef]
- Becker, E.; Thormählen, P.; Maunula, T.; Suopanki, A.; Skoglundh, M. Low-temperature activity for CO oxidation over diesel oxidation catalysts studied by High Throughput Screening and DRIFT spectroscopy. Top. Catal. 2007, 42, 421–424. [Google Scholar] [CrossRef]
- Wang, L.; Pu, C.; Xu, L.; Cai, Y.; Guo, Y.; Guo, Y.; Lu, G. Effect of supports over Pd/Fe2O3 on CO oxidation at low temperature. Fuel Process. Technol. 2017, 160, 152–157. [Google Scholar] [CrossRef]
- 1An, N.; Li, S.; Duchesne, P.N.; Wu, P.; Zhang, W.; Lee, J.-F.; Cheng, S.; Zhang, P.; Jia, M.; Zhang, W. Size Effects of Platinum Colloid Particles on the Structure and CO Oxidation Properties of Supported Pt/Fe2O3 Catalysts. J. Phys. Chem. C 2013, 117, 21254–21262. [Google Scholar]
- Kim, G.J.; Kwon, D.W.; Hong, S.C. Effect of Pt Particle Size and Valence State on the Performance of Pt/TiO2 Catalysts for CO Oxidation at Room Temperature. J. Phys. Chem. C 2016, 120, 17996–18004. [Google Scholar] [CrossRef]
- Dong, G.; Wang, J.; Gao, Y.; Chen, S. A novel catalyst for CO oxidation at low temperature. Catal. Lett. 1999, 58, 37–41. [Google Scholar] [CrossRef]
- Qiao, B.; Wang, A.; Yang, X.; Allard, L.F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641. [Google Scholar] [CrossRef]
- Bond, G.C.; Molloy, L.R.; Fuller, M.J. Oxidation of carbon monoxide over palladium–tin(IV) oxide catalysts: An example of spillover catalysis. J. Chem. Soc. Chem. Commun. 1975, 796–797. [Google Scholar] [CrossRef]
- Kamiuchi, N.; Taguchi, K.; Matsui, T.; Kikuchi, R.; Eguchi, K. Sintering and redispersion of platinum catalysts supported on tin oxide. Appl. Catal. B: Environ. 2009, 89, 65–72. [Google Scholar] [CrossRef]
- Grass, K.; Lintz, H.G. The Kinetics of Carbon Monoxide Oxidation on Tin(IV) Oxide Supported Platinum Catalysts. J. Catal. 1997, 172, 446–452. [Google Scholar] [CrossRef]
- Sheintuch, M.; Schmidt, J.; Lecthman, Y.; Yahav, G. Modelling catalyst—Support interactions in carbon monoxide oxidation catalysed by Pd/SnO2. Appl. Catal. 1989, 49, 55–65. [Google Scholar] [CrossRef]
- Wang, X.; Tian, J.S.; Zheng, Y.H.; Xu, X.L.; Liu, W.M.; Fang, X.Z. Tuning Al2O3 Surface with SnO2 to Prepare Improved Supports for Pd for CO Oxidation. ChemCatChem 2014, 6, 1604–1611. [Google Scholar] [CrossRef]
- Bae, J.; Kim, J.; Jeong, H.; Lee, H. CO oxidation on SnO2 surfaces enhanced by metal doping. Catal. Sci. Technol. 2018, 8, 782–789. [Google Scholar] [CrossRef]
- Śmiechowicz, I.; Kocemba, I.; Rogowski, J.; Czupryn, K. CO oxidation over Pt/SnO2 catalysts. React. Kinet. Mech. Catal. 2018, 124, 633–649. [Google Scholar] [CrossRef] [Green Version]
- Margitfalvi, J.L.; Borbáth, I.; Hegedűs, M.; Tfirst, E.; Gőbölös, S.; Lázár, K. Low-Temperature CO Oxidation over New Types of Sn–Pt/SiO2 Catalysts. J. Catal. 2000, 196, 200–204. [Google Scholar] [CrossRef]
- Margitfalvi, J.L.; Borbáth, I.; Hegedűs, M.; Szegedi, Á.; Lázár, K.; Gőbölös, S.; Kristyán, S. Low temperature oxidation of CO over tin-modified Pt/SiO2 catalysts. Catal. Today 2002, 73, 343–353. [Google Scholar] [CrossRef]
- Margitfalvi, J.L.; Borbáth, I.; Lázár, K.; Tfirst, E.; Szegedi, A.; Hegedűs, M.; Gőbölös, S. In Situ Characterization of Sn–Pt/SiO2 Catalysts Used in Low Temperature Oxidation of CO. J. Catal. 2001, 203, 94–103. [Google Scholar] [CrossRef]
- Lázár, K.; Rhodes, W.D.; Borbáth, I.; Hegedüs, M.; Margitfalvi, J.L. Reaction-Induced Transformations in Pt–Sn/SiO2 Catalysts: In Situ 119Sn Mössbauer Study. Hyperfine Interact. 2002, 139, 87–96. [Google Scholar] [CrossRef]
- Hazlett, M.J.; Moses-Debusk, M.; Parks, J.E.; Allard, L.F.; Epling, W.S. Kinetic and mechanistic study of bimetallic Pt-Pd/Al2O3 catalysts for CO and C3H6 oxidation. Appl. Catal. B Environ. 2017, 202, 404–417. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Chen, Z.; Ma, B.; Hao, X.; Kapur, N.; Hyun, J.; Cho, K.; Shan, B. CO adsorption on Pt (111) and Pd (111) surfaces: A first-principles based lattice gas Monte-Carlo study. Comput. Theor. Chem. 2012, 987, 77–83. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, D.; Xu, X.; Wang, X.; Zhang, N. Study on RuO2/SnO2: Novel and Active Catalysts for CO and CH4 Oxidation. ChemCatChem 2012, 4, 1122–1132. [Google Scholar] [CrossRef]
- Stranick, M.A.; Moskwa, A. SnO2 by XPS. Surf. Sci. Spectra 1993, 2, 50–54. [Google Scholar] [CrossRef]
- Cao, X.; Cao, L.; Yao, W.; Ye, X. Structural Characterization of Pd-doped SnO2 Thin Films Using XPS. Surf. Interface Anal. 1996, 24, 662–666. [Google Scholar] [CrossRef]
- Partridge, J.G.; Field, M.R.; Peng, J.L.; Sadek, A.Z.; Kalantar-zadeh, K.; Du Plessis, J.; McCulloch, D.G. Nanostructured SnO2 films prepared from evaporated Sn and their application as gas sensors. Nanotechnology 2008, 19, 125504. [Google Scholar] [CrossRef] [Green Version]
- Smekal, W.; Werner, W.S.M.; Powell, C.J. Simulation of electron spectra for surface analysis (SESSA): A novel software tool for quantitative Auger-electron spectroscopy and X-ray photoelectron spectroscopy. Surf. Interface Anal. 2005, 37, 1059–1067. [Google Scholar] [CrossRef]
- Wang, D.; Cui, X.; Xiao, Q.; Hu, Y.; Wang, Z.; Yiu, Y.M.; Sham, T.K. Electronic behaviour of Au-Pt alloys and the 4f binding energy shift anomaly in Au bimetallics- X-ray spectroscopy studies. AIP Adv. 2018, 8, 065210. [Google Scholar] [CrossRef]
- Oran, U.; Uner, D. Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/γ-Al2O3 catalysts. Appl. Catal. B Environ. 2004, 54, 183–191. [Google Scholar] [CrossRef]
- Tielsch, B.J.; Fulghum, J.E.; Surman, D.J. Differential Charging in XPS. Part II: Sample Mounting and X-ray Flux Effects on Heterogeneous Samples. Surf. Interface Anal. 1996, 24, 459–468. [Google Scholar] [CrossRef]
- Baer, D.R.; Artyushkova, K.; Cohen, H.; Easton, C.D.; Engelhard, M.; Gengenbach, T.R.; Greczynski, G.; Mack, P.; Morgan, D.J.; Roberts, A. XPS guide: Charge neutralization and binding energy referencing for insulating samples. J. Vac. Sci. Technol. A 2020, 38, 031204. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, K.; Schwank, J. A chemisorption and XPS study of bimetallic Pt-Sn/Al2O3 catalysts. J. Catal. 1991, 127, 287–306. [Google Scholar] [CrossRef]
- Mirkelamoglu, B.; Karakas, G. The role of alkali-metal promotion on CO oxidation over PdO/SnO2 catalysts. Appl. Catal. A Gen. 2006, 299, 84–94. [Google Scholar] [CrossRef]
- Akın, A.N.; Kılaz, G.; İşli, A.İ.; Önsan, Z.İ. Development and characterization of Pt–SnO2/γ-Al2O3 catalysts. Chem. Eng. Sci. 2001, 56, 881–888. [Google Scholar] [CrossRef]
Catalyst | Pd | Pt | Sn | O | Al | C | Ca | Pt/Pd Ratio | Dispersion (Sn/Al) |
---|---|---|---|---|---|---|---|---|---|
0.1% Pt/0.4% Pd/8% SnO2/Al2O3 (Slurry) | 0.80 | 0.20 | 0.77 | 39.72 | 36.27 | 21.79 | 0.45 | 0.25 | 0.02 |
0.1% Pt/0.4% Pd/1% SnO2/Al2O3 (Slurry) | 1.08 | 0.37 | 0.35 | 54.48 | 18.04 | 25.67 | 0 | 0.34 | 0.02 |
0.1% Pt/0.4% Pd/1% SnO2/Al2O3 (Na2SnO3) | 11.47 | 1.11 | 1.60 | 47.17 | 16.00 | 22.69 | 0 | 0.10 | 0.10 |
0.1% Pt/0.4% Pd/16% SnO2/Al2O3 (Na2SnO3) | 3.96 | 1.11 | 5.31 | 48.17 | 14.73 | 26.71 | 0 | 0.28 | 0.36 |
0.1% Pt/0.4% Pd/16% SnO2/Al2O3 (Sn(C2O4)) | 1.58 | 0.60 | 0.56 | 44.78 | 33.76 | 18.72 | 0 | 0.38 | 0.02 |
0.1% Pt/0.4% Pd/0.5% SnO2/Al2O3 (Sn(C2O4)) | 1.33 | 0.43 | 11.77 | 51.80 | 12.29 | 22.40 | 0 | 0.32 | 0.96 |
Catalyst | Pd | Pt | Sn | O | Al | Cl | Na | Pt/Pd Ratio |
---|---|---|---|---|---|---|---|---|
0.1% Pt/0.4% Pd/8% SnO2/Al2O3 (Slurry) | 0.30 | 0.05 | 1.90 | 74.39 | 23.36 | N.D. | N.D. | 0.16 |
0.1% Pt./0.4% Pd/1% SnO2/Al2O3 (Slurry) | 0.30 | 0.08 | 2.45 | 71.17 | 26.00 | N.D. | N.D. | 0.26 |
0.1% Pt/0.4% Pd/1% SnO2/Al2O3 (Na2SnO3) | 1.30 | 0.14 | 0.86 | 70.65 | 26.65 | N.D. | 0.41 | 0.11 |
0.1% Pt/0.4% Pd/16% SnO2/Al2O3 (Na2SnO3) | 1.08 | 0.28 | 1.91 | 69.17 | 26.54 | 0.16 | 0.85 | 0.26 |
0.1% Pt/0.4% Pd/16% SnO2/Al2O3 (Sn(C2O4)) | 0.28 | 0.03 | 1.63 | 75.72 | 22.35 | N.D. | N.D. | 0.11 |
0.1% Pt/0.4% Pd/0.5% SnO2/Al2O3 (Sn(C2O4)) | 0.27 | 0.09 | 1.61 | 71.88 | 26.33 | N.D. | N.D. | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldridge, J.K.; Smith, L.R.; Morgan, D.J.; Carley, A.F.; Humphreys, M.; Clarke, M.J.; Wormald, P.; Taylor, S.H.; Hutchings, G.J. Ambient Temperature CO Oxidation Using Palladium–Platinum Bimetallic Catalysts Supported on Tin Oxide/Alumina. Catalysts 2020, 10, 1223. https://doi.org/10.3390/catal10111223
Aldridge JK, Smith LR, Morgan DJ, Carley AF, Humphreys M, Clarke MJ, Wormald P, Taylor SH, Hutchings GJ. Ambient Temperature CO Oxidation Using Palladium–Platinum Bimetallic Catalysts Supported on Tin Oxide/Alumina. Catalysts. 2020; 10(11):1223. https://doi.org/10.3390/catal10111223
Chicago/Turabian StyleAldridge, James K., Louise R. Smith, David J. Morgan, Albert F. Carley, Mandy Humphreys, Michael J. Clarke, Patricia Wormald, Stuart H. Taylor, and Graham J. Hutchings. 2020. "Ambient Temperature CO Oxidation Using Palladium–Platinum Bimetallic Catalysts Supported on Tin Oxide/Alumina" Catalysts 10, no. 11: 1223. https://doi.org/10.3390/catal10111223
APA StyleAldridge, J. K., Smith, L. R., Morgan, D. J., Carley, A. F., Humphreys, M., Clarke, M. J., Wormald, P., Taylor, S. H., & Hutchings, G. J. (2020). Ambient Temperature CO Oxidation Using Palladium–Platinum Bimetallic Catalysts Supported on Tin Oxide/Alumina. Catalysts, 10(11), 1223. https://doi.org/10.3390/catal10111223