Nash Equilibria and Undecidability in Generic Physical Interactions—A Free Energy Perspective
Abstract
:1. Introduction
Bob | |||
C | D | ||
Alice | C | ||
D |
- In such a setting, D is the dominant strategy and (D, D) is the Nash equilibrium. The optimal joint strategy is (C, C), in which both players cooperate, but this is clearly unstable.
2. Representing Generic Interactions as Games
2.1. Physical Interaction Is Information Exchange
2.2. Actions Require Quantum Reference Frames
2.3. VFE Provides a Generic Payoff Function
2.4. Normal-Form Games Are Special Cases
2.5. Example: The IPD as a Prediction Game
3. Generic Limits on Observation
- 1.
- S cannot determine, by means of Q, either Q’s dimension , Q’s associated sector dimension , or Q’s complete I/O function.
- 2.
- S cannot determine, by means of Q, the dimension, associated sector dimension, or I/O function of any other QRF implemented by S.
- 3.
- S cannot determine, by means of Q, the I/O function or dimension of any QRF implemented by any other system , regardless of the relation of S to , from to , inclusive.
- 4.
- Let , in which case . Then, cannot determine, by means of a QRF , the I/O function or dimension of any QRF implemented by .
4. Convergence and Equilibria in Generic Interactions
4.1. Convergence Driven by the FEP
- Does an equilibrium that minimizes VFE—maximizes predictive accuracy—for both S and E exist?
- Can S or E determine by finite observation that they have reached such an equilibrium?
- Can S or E determine that they are on a trajectory toward such an equilibrium?
- Nash’s theorem [3] gives a positive answer to the first of these questions. Such equilibria have also been characterized in the classical FEP literature, where it has been shown how mutual predictability induces generalized synchrony [67,68]; see, e.g., [69,70,71,72] for relevant earlier work and [73,74] for applications. A simple and limiting example of generalized synchrony is convergence to thermodynamic equilibrium, in which prediction ceases at “stasis” because there is no longer available thermodynamic free energy to support computation. Unlike the classical formulation, the quantum formulation of the FEP does not employ an embedding space to enforce separability between S and E; here, the limit of perfect mutual predictability corresponds to entanglement [29], as discussed further in Section 5 below.
4.2. Example: IPDs and Generalized Imitation Games
4.3. Example: The SPD and Its Limit Sets
4.4. Prediction, Regulation, and Generalized Synchronization—A Circularity of Idealizations
- Good Regulator ⟹ Identical Synchronization ⟹ Winnable Imitation Game
- (or decidable Turing Test) ⟹ Good Regulator
- The source of undecidability in every case is clear: if two interacting systems are identical, self-reference and other-reference are indistinguishable, and Gödel’s theorem applies equally to either.
5. Quantum Games
5.1. Definitions and Formalism
- (a)
- The underlying Hilbert space of the physical system;
- (b)
- The initial state , where is the associated game-state space;
- (c)
- and are sets of permissible quantum operations of players A and B, respectively;
- (d)
- are are the utility functions specifying the respective utility for each player.
- (a)
- A quantum strategy is called a dominant quantum strategy of Alice if for all . Likewise, a dominant strategy for Bob is defined.
- (b)
- A pair is said to be an equilibrium in dominant strategies if and are the players’ respective dominant strategies.
- (c)
- A combination of strategies is called a Nash equilibrium iffor all and .
- (d)
- A pair of strategies is called Pareto optimal if it is not possible to increase one player’s payoff without reducing the other’s payoff.
5.2. Example: The Decoherence Game
5.3. Example: The Bell/EPR Game
5.4. QRFs, Contextuality, and Asymptotic Entanglement
6. Discussion
6.1. Rationality
6.2. Entropy of Quantum Games
- high entropy ⟺ low rationality in the players’ behavior.
6.3. Alternative Equilibria
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CA | Cellular automaton |
CCCD | Cone–cocone diagram |
CH | Continuum hypothesis |
CHSH | Clauser–Horne–Shimony–Holt |
EPR | Einstein–Podolsky–Rosen |
FEP | Free energy principle |
GIG | Generalized imitation game |
GT | Game theory |
HP | Holographic principle |
I/O | Input/output |
IPD | Iterated prisoner’s dilemma |
KL | Kullback–Leibler |
LOCC | Local operations and classical communication |
MB | Markov blanket |
NE | Nash equilibrium |
NP | Nondeterministic polynomial |
PD | Prisoner’s dilemma |
PPAD | Polynomial parity arguments on directed graphs |
QRE | Quantal response equilibrium |
QRF | Quantum reference frame |
RNN | Recurrent neural network |
SPD | Spatialized prisoner’s dilemma |
TM | Turing machine |
TQFT | Topological quantum field theory |
VFE | Variational free energy |
References
- von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 1944. [Google Scholar]
- Nash, J.F. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 1950, 36, 48–49. [Google Scholar] [CrossRef] [PubMed]
- Nash, J.F. Non-cooperative Games. Ann. Math. 1951, 54, 286–295. [Google Scholar] [CrossRef]
- Holt, C.A.; Roth, A.E. The Nash equilibrium: A perspective. Proc. Natl. Acad. Sci. USA 2004, 101, 3999–4002. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, H.J. On the foundations of Nash equilibrium. Econ. Phil. 1996, 12, 67–88. [Google Scholar] [CrossRef]
- Sethi, R.; Weibull, J. What Is... Nash Equilibrium? Not. Amer. Math. Soc. 2016, 63, 526–528. [Google Scholar] [CrossRef]
- Maynard Smith, J. Evolution and the Theory of Games; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Hart, S.; Mas-Colell, A. Uncoupled dynamics do not lead to Nash equilibrium. Am. Econ. Rev. 2003, 93, 1830–1836. [Google Scholar] [CrossRef]
- Milionis, J.; Papdimitriou, C.; Piliouras, G.; Spendlove, K. An impossibility theorem in game dynamics. Proc. Natl. Acad. Sci. USA 2023, 120, e2305349120. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.B.T.; Farmer, J.D.; Galla, T. The prevalence of chaotic dynamics in games with many players. Nat. Sci. Rep. 2018, 8, 4902. [Google Scholar] [CrossRef]
- Pangallo, M.; Heinrich, T.; Farmer, J.D. Best reply structure and equilibrium convergence in generic games. Sci. Adv. 2019, 5, eaat1328. [Google Scholar] [CrossRef]
- Du, Y. On the complexity of deciding degeneracy in a bimatrix game with sparse payoff matrix. Theor. Comp. Sci. 2013, 472, 104–109. [Google Scholar] [CrossRef]
- Daskalakis, P.G.; Papadimitriou, C. The complexity of computing a Nash equilibrium. SIAM J. Comp. 2009, 39, 195–259. [Google Scholar] [CrossRef]
- Aaronson, S. Why philosophers should care about computational complexity. In Computability: Turing, Gödel, Church, and Beyond; Copeland, B.J., Posy, C.J., Shagrir, O., Eds.; MIT Press: Cambridge, MA, USA, 2013; pp. 261–327. [Google Scholar]
- Gödel, K. Über formal unentscheidbare sätze der Principia Mathematica und verwandter systeme, I. Monatsh. Math. Phys. 1931, 38, 173–198. [Google Scholar] [CrossRef]
- Tsuji, M.; Da Costa, N.C.A.; Doria, F.A. The incompleteness of theories of games. J. Philos. Logic 1998, 27, 553–568. [Google Scholar] [CrossRef]
- Grim, P. The undecidability of the spatialized prisoner’s dilemma. Theory Decis. 1997, 42, 53–80. [Google Scholar] [CrossRef]
- Moore, E.F. Gedankenexperiments on sequential machines. In Autonoma Studies; Shannon, C.E., McCarthy, J., Eds.; Princeton University Press: Princeton, NJ, USA, 1956; pp. 129–155. [Google Scholar]
- Turing, A.M. Computing machines and intelligence. Mind 1950, 59, 433–460. [Google Scholar] [CrossRef]
- Sato, Y.; Ikegami, T. Undecidability in the imitation game. Minds Mach. 2004, 14, 133–143. [Google Scholar] [CrossRef]
- Milnor, J. Games against Nature; RAND Corp.: Santa Monica, CA, USA, 1951. [Google Scholar]
- Feynman, R.P. Statistical Mechanics; Benjamin: Reading, MA, USA, 1972. [Google Scholar]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef]
- Friston, K. Life as we know it. J. R. Soc. Interface 2013, 10, 20130475. [Google Scholar] [CrossRef]
- Friston, K.J. A free energy principle for a particular physics. arXiv 2019, arXiv:1906.10184. [Google Scholar]
- Ramstead, M.J.; Sakthivadivel, D.A.R.; Heins, C.; Koudahl, M.; Millidge, B.; Da Costa, L.; Klein, B.; Friston, K.J. On Bayesian mechanics: A physics of and by beliefs. R. Soc. Interface Focus 2023, 13, 20220029. [Google Scholar] [CrossRef]
- Friston, K.J.; Da Costa, L.; Sakthivadivel, D.A.R.; Heins, C.; Pavliotis, G.A.; Ramstead, M.J.; Parr, T. Path integrals, particular kinds, and strange things. Phys. Life Rev. 2023, 47, 35–62. [Google Scholar] [CrossRef] [PubMed]
- Horsman, C.; Stepney, S.; Wagner, R.C.; Kendon, V. When does a physical system compute? Proc. R. Soc. A 2014, 470, 20140182. [Google Scholar] [CrossRef] [PubMed]
- Fields, C.; Friston, K.J.; Glazebrook, J.F.; Levin, M. A free energy principle for generic quantum systems. Prog. Biophys. Mol. Biol. 2022, 173, 36–59. [Google Scholar] [CrossRef]
- Fields, C.; Fabrocini, F.; Friston, K.; Glazebrook, J.F.; Hazan, H.; Levin, L.; Marcianò, A. Control flow in active inference systems, Part I: Formulations of classical and quantum active inference. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2023, 9, 235–245. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F. Representing measurement as a thermodynamic symmetry breaking. Symmetry 2020, 12, 810. [Google Scholar] [CrossRef]
- Addazi, A.; Chen, P.; Fabrocini, F.; Fields, C.; Greco, E.; Lulli, M.; Marcianò, A.; Pasechnik, R. Generalized holographic principle, gauge invariance and the emergence of gravity à la Wilczek. Front. Astron. Space Sci. 2021, 8, 563450. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F.; Marcianò, A. Reference frame induced symmetry breaking on holographic screens. Symmetry 2021, 13, 408. [Google Scholar] [CrossRef]
- ’t Hooft, G. Dimensional reduction in quantum gravity. In Salamfestschrift; Ali, A., Ellis, J., Randjbar-Daemi, S., Eds.; World Scientific: Singapore, 1993; pp. 284–296. [Google Scholar]
- Susskind, L. The world as a hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef]
- Bousso, R. The holographic principle. Rev. Mod. Phys. 2002, 74, 825–874. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F.; Marcianò, A. The physical meaning of the holographic principle. Quanta 2022, 11, 72–96. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Wheeler, J.A. Information, physics, quantum: The search for links. In Complexity, Entropy, and the Physics of Information; Zurek, W., Ed.; CRC Press: Boca Raton, FL, USA, 1989; pp. 3–28. [Google Scholar]
- Ekert, A.K.; Huttner, B.; Palmer, G.M.; Peres, A. Eavesdropping on quantum cryptographical systems. Phys. Rev. A 1994, 50, 1047–1056. [Google Scholar] [CrossRef]
- Pegg, D.; Barnett, S.; Jeffers, J. Quantum theory of preparation and measurement. J. Mod. Opt. 2010, 49, 913–924. [Google Scholar] [CrossRef]
- Aharonov, Y.; Kaufherr, T. Quantum frames of reference. Phys. Rev. D 1984, 30, 368–385. [Google Scholar] [CrossRef]
- Bartlett, S.D.; Rudolph, T.; Spekkens, R.W. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 2007, 79, 555–609. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F. A mosaic of Chu spaces and Channel Theory I: Category-theoretic concepts and tools. J. Expt. Theor. Artif. Intell. 2019, 31, 177–213. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F. Information flow in context-dependent hierarchical Bayesian inference. J. Expt. Theor. Artif. intell. 2022, 34, 111–142. [Google Scholar] [CrossRef]
- Barwise, J.; Seligman, J. Information Flow: The Logic of Distributed Systems; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Fields, C.; Glazebrook, J.F.; Marcianò, A. Sequential measurements, topological quantum field theories, and topological quantum neural networks. Fortschr. Phys. 2022, 70, 2200104. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F.; Marcianò, A. Communication protocols and QECCs from the perspective of TQFT, Part I: Constructing LOCC protocols and QECCs from TQFTs. Fortschr. Phys. 2024, 72, 202400049. [Google Scholar] [CrossRef]
- Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: San Mateo, CA, USA, 1988. [Google Scholar]
- Hutter, M. Universal Artificial Intellegence Sequential Decisions Based on Algorithmic Probability; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- MacKay, D.J. Free-energy minimisation algorithm for decoding and cryptoanalysis. Electron. Lett. 1995, 31, 445–447. [Google Scholar] [CrossRef]
- Ruffini, G. An algorithmic information theory of consciousness. Neurosci. Cons. 2017, 2017, nix019. [Google Scholar] [CrossRef]
- Wallace, C.S.; Dowe, D.L. Minimum message length and Kolmogorov complexity. Comput. J. 1999, 42, 270–283. [Google Scholar] [CrossRef]
- Hoffman, D.D.; Singh, M.; Prakash, C. The interface theory of perception. Psychon. Bull. Rev. 2015, 22, 1480–1506. [Google Scholar] [CrossRef] [PubMed]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Oudeyer, P.-Y.; Kaplan, F.; Hafner, V. Intrinsic motivation systems for autonomous mental development. IEEE Trans. Evol. Comput. 2007, 11, 265–286. [Google Scholar] [CrossRef]
- Gopnik, A. Explanation as orgasm and the drive for causal understanding: The evolution, function and phenomenology of the theory-formation system. In Cognition and Explanation; Keil, F., Wilson, R., Eds.; MIT Press: Cambridge, MA, USA, 2000; pp. 299–323. [Google Scholar]
- Fields, C.; Glazebrook, J.F.; Levin, M. Principled limitations on self-representation for generic physical systems. Entropy 2024, 26, 194. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F. Separability, contextuality, and the quantum Frame Problem. Int. J. Theor. Phys. 2023, 62, 159. [Google Scholar] [CrossRef]
- McCarthy, J.; Hayes, P.J. Some philosophical problems from the standpoint of artificial intelligence. In Machine Intelligence; Michie, D., Meltzer, B., Eds.; Edinburgh University Press: Edinburgh, UK, 1969; Volume 4, pp. 463–502. [Google Scholar]
- Harsanyi, J.C. Games with incomplete information played by Bayesian players, Part I. Manag. Sci. 1967, 14, 159–183. [Google Scholar] [CrossRef]
- Quine, W.V.O. Word and Object; MIT Press: Cambridge, MA, USA, 1960. [Google Scholar]
- Friston, K.; FitzGerald, T.; Rigoli, F.; Schwartenbeck, P.; Pezzulo, G. Active inference: A process theory. Neural Comput. 2017, 29, 1–49. [Google Scholar] [CrossRef] [PubMed]
- Ramstead, M.J.D.; Badcock, P.B.; Friston, K.J. Answering Schrödinger’s question: A free-energy formulation. Phys. Life Rev. 2018, 24, 1–16. [Google Scholar] [CrossRef]
- Ramstead, M.J.D.; Constant, A.; Badcock, P.B.; Friston, K.J. Variational ecology and the physics of sentient systems. Phys. Life Rev. 2019, 31, 188–205. [Google Scholar] [CrossRef]
- Raup, D.M. Extinction: Bad Genes or Bad Luck? Norton: New York, NY, USA, 1991. [Google Scholar]
- Friston, K.J.; Frith, C.D. Duet for one. Conscious. Cogn. 2015, 36, 390–405. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Frith, C.D. Active inference, communication and hermeneutics. Cortex 2015, 68, 129–143. [Google Scholar] [CrossRef]
- Schiff, S.J.; So, P.; Chang, T.; Burke, R.E.; Sauer, T. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys. Rev. E 1996, 54, 6708–6724. [Google Scholar] [CrossRef] [PubMed]
- Pecora, L.M.; Carroll, T.L.; Johnson, G.A.; Mar, D.J.; Heagy, J.F. Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos 1997, 7, 520–543. [Google Scholar] [CrossRef]
- Friston, K.; Breakspear, M.; Deco, G. Perception and self-organized instability. Front. Comp. Neurosci. 2012, 6, 44. [Google Scholar] [CrossRef]
- Friston, K.; Sengupta, B.; Auletta, G. Cognitive dynamics: From attractors to active inference. Proc. IEEE 2014, 102, 427–445. [Google Scholar] [CrossRef]
- Palacios, E.R.; Isomura, T.; Parr, T.; Friston, K. The emergence of synchrony in networks of mutually inferring neurons. Nature Sci. Rep. 2019, 9, 6412. [Google Scholar] [CrossRef] [PubMed]
- Bilek, E.; Zeidman, P.; Kirsch, P.; Tost, H.; Meyer-Lindenberg, A.; Friston, K. Directed coupling in multi-brain networks underlies generalized synchrony during social exchange. NeuroImage 2022, 252, 119038. [Google Scholar] [CrossRef]
- Rice, H.G. Classes of recursively enumerable sets and their decision problems. Trans. Am. Math. Soc. 1953, 74, 358–366. [Google Scholar] [CrossRef]
- Turing, A. On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. 1937, 42, 230–265. [Google Scholar] [CrossRef]
- Hopcroft, J.E.; Ullman, J.D. Introduction to Automata Theory, Languages, and Computation; Addison-Wesley: Boston, MA, USA, 1979. [Google Scholar]
- Dietrich, E.; Fields, C. Equivalence of the Frame and Halting problems. Algorithms 2020, 13, 175. [Google Scholar] [CrossRef]
- Dunbar, R.I.M. The social brain: Mind, language and society in evolutionary perspective. Annu. Rev. Anthropol. 2003, 32, 163–181. [Google Scholar] [CrossRef]
- Eisert, J.; Wilkens, M.; Lewenstein, M. Quantum games and quantum strategies. Phys. Rev. Lett. 1999, 83, 3077–3080. [Google Scholar] [CrossRef]
- Myerson, R.B. Game Theory: An Analysis of Conflict; MIT Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Chater, N. The Mind Is Flat; Allen Lane: London, UK, 2018. [Google Scholar]
- Markose, S.M. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race innovations. J. Dyn. Games Am. Inst. Math. Sci. 2017, 4, 255–284. [Google Scholar] [CrossRef]
- Prokopenko, M.; Harré, M.; Lizier, J.T.; Boschetti, F.; Pappas, P.; Kauffmann, S. Self-referential basis of undecidable dynamics: From the Liar Paradox and the Halting Problem to the Edge of Chaos. Phys. Life Rev. 2019, 31, 134–156. [Google Scholar] [CrossRef]
- Taiji, M.; Ikegami, T. Dynamics of internal models in game players. Phys. D Nonlinear Phenom. 1999, 134, 253–266. [Google Scholar] [CrossRef]
- Ikegami, T.; Taiji, M. Uncertainty, Possible Worlds and Coupled Dynamical Recognizers; University of Tokyo: Tokyo, Japan, 1998. [Google Scholar]
- Eisert, J.; Wilkens, M. Quantum games. J. Modern Opt. 2000, 47, 2543–2566. [Google Scholar] [CrossRef]
- Neyman, A. Bounded complexity justifies cooperation in the finitely repeated prisoners’ dilemma. Econ. Lett. 1985, 19, 227–229. [Google Scholar] [CrossRef]
- Conant, R.C.; Ashby, W.R. Every good regulator of a system must be a model of that system. Int. J. Syst. Sci. 1970, 1, 89–97. [Google Scholar] [CrossRef]
- Worden, R.P. The requirement for cognition, in an equation. arXiv 2024, arXiv:2405.08601. [Google Scholar]
- Kari, J. Rice’s theorem for the limit sets of cellular automata. Theor. Comp. Sci. 1994, 127, 229–254. [Google Scholar] [CrossRef]
- Di Lena, P.; Margara, L. On the undecidability of the limit behavior of Cellular Automata. Theor. Comp. Sci. 2020, 411, 1075–1084. [Google Scholar] [CrossRef]
- Meyer, D.A. Quantum strategies. Phys. Rev. Lett. 1999, 82, 1052. [Google Scholar] [CrossRef]
- Vos Fellman, P.; Vos Post, J. Quantum Nash equiibria and quantum computing. In Unifying Themes in Complex Systems; Minai, A., Braha, D., Bar-Yam, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 454–461. [Google Scholar]
- Scarani, V.; Iblisdir, S.; Gisin, N.; Acin, A. Quantum cloning. Rev. Mod. Pys. 2005, 77, 1225–1256. [Google Scholar] [CrossRef]
- Ney, P.-M.; Notarnicola, S.; Montanegro, S.; Morigi, S. Entanglement in the quantum Game of Life. Phys. Rev. A 2022, 105, 012416. [Google Scholar] [CrossRef]
- Kaur, H.; Kumar, A. Analysing the role of entanglement in the three-qubit Vaidman’s game. In Proceedings of the 2017 International Conference on Intelligent Communication and Computational Techniques (ICCT), Jaipur, India, 22–23 December 2017; pp. 96–101. [Google Scholar]
- Chitambar, E.; Leung, D.; Mančinska, L.; Ozols, M.; Winter, A. Everything you always wanted to know about LOCC (but were afraid to ask). Comms. Math. Phys. 2014, 328, 303–326. [Google Scholar] [CrossRef]
- Zurek, W.H. Environment-induced superselection rules. Phys. Rev. D 1982, 26, 1862–1880. [Google Scholar] [CrossRef]
- Joos, E.; Zeh, H.D. The emergence of classical properties Through interaction with the environment. Zeitschr. Phys. B 1985, 59, 233–243. [Google Scholar] [CrossRef]
- Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003, 715–775. [Google Scholar] [CrossRef]
- Blume-Kohout, R.; Zurek, W.H. Quantum Darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information. Phys. Rev. A 2006, 73, 062310. [Google Scholar] [CrossRef]
- Zurek, W.H. Quantum Darwinism. Nature Phys. 2009, 5, 181–188. [Google Scholar] [CrossRef]
- Aspect, A.; Grangier, P.; Roger, G. Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 1981, 47, 460–463. [Google Scholar] [CrossRef]
- Georgescu, I. How the Bell tests changed quantum physics. Nat. Phys. 2021, 3, 374–376. [Google Scholar] [CrossRef]
- Bell, J.S. On the Einstein-Podolsky-Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef]
- Bell, J.S. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 1966, 38, 447–452. [Google Scholar] [CrossRef]
- Mermin, N.D. Is the Moon there when nobody looks? Reality and the quantum theory. Phys. Today 1985, 38, 38–47. [Google Scholar] [CrossRef]
- Brunner, N.; Linden, N. Connection between Bell nonlocality and Bayesian game theory. Nat. Commun. 2013, 4, 2057. [Google Scholar] [CrossRef]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 1969, 23, 880–884. [Google Scholar] [CrossRef]
- Cirelson, B.S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 1980, 4, 93–100. [Google Scholar] [CrossRef]
- Kochen, S.; Specker, E.P. The problem of hidden variables in quantum mechanics. J. Math. Mech. 1967, 17, 59–87. [Google Scholar] [CrossRef]
- Mermin, N.D. Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 1993, 65, 803–815. [Google Scholar] [CrossRef]
- Howard, M.; Wallman, J.; Veitch, V.; Emerson, J. Contextuality supplies the ‘magic’ for quantum computation. Nature 2014, 510, 351–686. [Google Scholar] [CrossRef] [PubMed]
- Khrennikov, A. Contextuality, complementarity, signaling, and Bell tests. Entropy 2022, 24, 1380. [Google Scholar] [CrossRef] [PubMed]
- Fourny, G. On the interpretation of quantum theory as games between physicists and nature played in Minkowski spacetime. arXiv 2024, arXiv:2405.20143. [Google Scholar]
- Foster, D.P.; Young, H.P. On the impossibility of prediction of the behavior of rational agents. Proc. Natl. Acad. Sci. USA 2001, 98, 12848–12853. [Google Scholar] [CrossRef] [PubMed]
- Velupillai, K.V. Uncomputability and undecidability in economic theory. Appl. Math. Comput. 2009, 215, 1404–1416. [Google Scholar] [CrossRef]
- Ewerhart, C. On Strategic Reasoning and Theories of Rational Behavior. Ph.D. Thesis, University of Bonn, Bonn, Germany, 1997. [Google Scholar]
- Ewerhart, C. Rationality and the definition of consistent pairs. Int. J. Game Theory 1998, 27, 49–59. [Google Scholar] [CrossRef]
- Fey, M. An undecidable statement regarding zero-sum games. Games Econ. Behav. 2024, 145, 19–26. [Google Scholar] [CrossRef]
- Gödel, K. The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis with the Axioms of Set Theory; Annals of Mathematics Studies; Princeton University Press: Princeton, NJ, USA, 1940; Volume 3. [Google Scholar]
- Cohen, P.J. The independence of the Continuum Hypothesis, Part I. Proc. Nat. Acad. Sci. USA 1963, 50, 1143–1148. [Google Scholar] [CrossRef]
- Cohen, P.J. The independence of the Continuum Hypothesis, Part II. Proc. Nat. Acad. Sci. USA 1964, 51, 105–110. [Google Scholar] [CrossRef]
- Hu, T.-W.; Kaneko, M. Game Theoretic Decidability and Undecidability; WINPEC Working Paper Series No. E1410; Social Science Research Network (SSRN): Rochester, NY, USA, 2015. [Google Scholar]
- Sato, Y.; Akiyama, E.; Farmer, J.D. Chaos in learning a simple two-person game. Proc. Natl. Acad. Sci. USA 2002, 99, 4748–4751. [Google Scholar] [CrossRef]
- Kahneman, D.; Slovic, P.; Tversky, A. Judgement under Uncertainty: Heuristics and Biases; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- von Neumann, J. Thermodynamik quantummechanischer Geshameiten. Gött. Nach. 1927, 1, 273–291. [Google Scholar]
- Hidalgo, E.G. Quantum games entropy. Phys. A Stat. Mech. Appl. 2017, 383, 797–804. [Google Scholar] [CrossRef]
- McKelvey, R.D.; Palfrey, R.D. Quantal response equilbria for normal form games. Games Econ. Behav. 1995, 10, 6–38. [Google Scholar] [CrossRef]
- Friedman, E. Stochastic equilibria: Noise in actions or beliefs? Am. Econ. J. Microeconomics 2022, 14, 94–142. [Google Scholar] [CrossRef]
- Bland, J.R. Bayesian inference for Quantal Response Equilibrium in normal-form games. Games Econ. Behav. 2024, in press.
- Goeree, J.K.; Holt, C.A.; Palfrey, T.R. Quantal response equilibria. In Behavioural and Experimental Economics; The New Palgrave Economics Collection; Durlauf, S.N., Blume, L.E., Eds.; Palgrave Macmillan London: London, UK, 2010; pp. 234–242. [Google Scholar]
- Volacu, A. Mixed strategy Nash Equilibrium and Quantal Response Equilibrium: An experimental comparison using RPS games. Theor. Appl. Econ. 2014, XX1, 89–118. [Google Scholar]
- Wolfram, S. Undecidability and intractability in theoretical physics. Phys. Rev. Lett. 1985, 54, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Hawking, S. Gödel and the End of Physics. Lecture at the Dirac Centennial Celebration. Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK. 2002. Available online: https://www.damtp.cam.ac.uk/events/strings02/dirac/hawking.html (accessed on 13 January 2024).
- Conway, J.H.; Kochen, S. The strong free will theorem. Not. AMS 2009, 56, 226–232. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fields, C.; Glazebrook, J.F. Nash Equilibria and Undecidability in Generic Physical Interactions—A Free Energy Perspective. Games 2024, 15, 30. https://doi.org/10.3390/g15050030
Fields C, Glazebrook JF. Nash Equilibria and Undecidability in Generic Physical Interactions—A Free Energy Perspective. Games. 2024; 15(5):30. https://doi.org/10.3390/g15050030
Chicago/Turabian StyleFields, Chris, and James F. Glazebrook. 2024. "Nash Equilibria and Undecidability in Generic Physical Interactions—A Free Energy Perspective" Games 15, no. 5: 30. https://doi.org/10.3390/g15050030
APA StyleFields, C., & Glazebrook, J. F. (2024). Nash Equilibria and Undecidability in Generic Physical Interactions—A Free Energy Perspective. Games, 15(5), 30. https://doi.org/10.3390/g15050030