Evasion Differential Game of Multiple Pursuers and a Single Evader with Geometric Constraints in ℓ2
Abstract
:1. Introduction
2. Statement of the Problem
3. The Main Result
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berkovitz, L.D. A Survey of Differential Games, Mathematical Theory of Control; Academic Press: New York, NY, USA, 1967; pp. 373–385. [Google Scholar]
- Chikrii, A.A. Conflict-Controlled Processes; Kluwer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Elliot, R.J.; Kalton, N.J. The Existence of Value for Differential Games; American Mathematical Soc.: Providence, RI, USA, 1972. [Google Scholar]
- Fleming, W.H. A note on differential games of prescribed duration. Contrib. Theory Games 1957, 3, 407–416. [Google Scholar]
- Fleming, W.H. The convergence problem for differential games. J. Math. Anal. Appl. 1961, 3, 102–116. [Google Scholar] [CrossRef] [Green Version]
- Friedman, A. Differential Games; Wiley Interscience: New York, NY, USA, 1971. [Google Scholar]
- Hajek, O. Pursuit Games; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Ho, Y.; Bryson, A.; Baron, S. Differential games and optimal pursuit-evasion strategies. IEEE Trans. Autom. Control 1965, 10, 385–389. [Google Scholar] [CrossRef]
- Isaacs, R. Differential Games; John Wiley & Sons: New York, NY, USA, 1965. [Google Scholar]
- Krasovskii, N.N.; Subbotin, A.I. Game-Theoretical Control Problems; Springer: New York, NY, USA, 1988. [Google Scholar]
- Petrosyan, L.A. Differential Games of Pursuit; World Scientific: Singapore, 1993. [Google Scholar]
- Pontryagin, L.S. Selected Works; Nauka: Moscow, Russia, 1988. [Google Scholar]
- Fattorini, H.O. Time-Optimal control of solutions of operational differential equations. SIAM J. Control 1964, 2, 54–59. [Google Scholar]
- Fursikov, A.V. Optimal Control of Distributed Systems, Theory and Applications; Translations of Math. Monographs, 187; American Mathematical Society: Providence, RI, USA, 2000. [Google Scholar]
- Lions, J.L. Contrôle Optimal de Systémes Gouvernées par des Equations aux Dérivées Partielles; Dunod: Paris, France, 1968. [Google Scholar]
- Osipov, Y.S. The theory of differential games in systems with distributed parameters. Dokl Akad Nauk SSSR 1975, 223, 1314–1317. [Google Scholar]
- Avdonin, S.A.; Ivanov, S.A. Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Azamov, A.A.; Ruziboev, M.B. The time-optimal problem for evolutionary partial differential equations. J. Appl. Math. Mech. 2013, 77, 220–224. [Google Scholar] [CrossRef]
- Butkovskiy, A.G. Theory of Optimal Control of Distributed Parameter Systems; Elsevier: New York, NY, USA, 1969. [Google Scholar]
- Chernous’ko, F.L. Bounded controls in distributed-parameter systems. J. Appl. Math. Mech. 1992, 56, 707–723. [Google Scholar] [CrossRef]
- Ibragimov, G.I. A Problem of Optimal Pursuit in Systems with Distributed Parameters. J. Appl. Math. Mech. 2002, 66, 719–724. [Google Scholar] [CrossRef]
- Satimov, N.Y.; Tukhtasinov, M. Game problems on a fixed interval in controlled first-order evolution equations. Math. Notes 2006, 80, 578–589. [Google Scholar] [CrossRef]
- Satimov, N.Y.; Tukhtasinov, M. On Some Game Problems for First-Order Controlled Evolution Equations. Differ. Equ. 2005, 41, 1169–1177. [Google Scholar] [CrossRef]
- Satimov, N.Y.; Tukhtasinov, M. On Game Problems for Second-Order Evolution Equations. Russ. Math. 2007, 51, 49–57. [Google Scholar] [CrossRef]
- Tukhtasinov, M. Some problems in the theory of differential pursuit games in systems with distributed parameters. J. Appl. Math. Mech. 1995, 59, 979–984. [Google Scholar] [CrossRef]
- Tukhtasinov, M.; Mamatov, M.S. On Pursuit Problems in Controlled Distributed Parameters Systems. Math. Notes 2008, 84, 256–262. [Google Scholar] [CrossRef]
- Chernous’ko, F.L. A Problem of Evasion of Several Pursuers. Prikl. Mat. Mekh. 1976, 40, 14–24. [Google Scholar]
- Chernous’ko, F.L.; Zak, V.L. On differential games of evasion from many pursuers. J. Optim. Theory Appl. 1985, 46, 461–470. [Google Scholar] [CrossRef]
- Pshenichnii, B.N. Simple pursuit by several objects. Cybern. Syst. Anal. 1976, 12, 484–485. [Google Scholar] [CrossRef]
- Makkapati, V.R.; Tsiotras, P. Optimal evading strategies and task allocation in multi-player pursuit-evasion problems. Dyn. Games Appl. 2019, 9, 1168–1187. [Google Scholar] [CrossRef]
- Sun, W.; Tsiotras, P.; Lolla, T.; Subramani, D.N.; Lermusiaux, P.F.J. Multiple-pursuer/one-evader pursuit-evasion game in dynamic flowfields. JGCD 2017, 40. [Google Scholar] [CrossRef]
- Ramana, M.V.; Kothari, M. Pursuit-Evasion Games of High Speed Evader. J. Intell. Robot. Syst. 2017, 85, 293–306. [Google Scholar] [CrossRef]
- Ibragimov, G.I.; Ferrara, M.; Ruziboev, M.; Pansera, B.A. Linear evasion differential game of one evader and several pursuers with integral constraints. Int. J. Game Theory 2021, 50, 729–750. [Google Scholar] [CrossRef]
- Tukhtasinov, M.; Ibragimov, G.; Kuchkarova, S.; Mat Hasim, R. Differential Games for an Infinite 2-Systems of Differential Equations. Mathematics 2021, 9, 1467. [Google Scholar] [CrossRef]
- Ruziboev, M.; Mamayusupov, K.; Ibragimov, G.; Khaitmetov, A. On a linear differential game in the Hilbert space ℓ2. arXiv 2023, arXiv:2302.01632. [Google Scholar]
- Ibragimov, G.I.; Allahabi, F.; Kuchkarov, A.S. A pursuit problem in an infinite system of second-order differential equations. Ukr. Math. J. 2014, 65, 1203–1216. [Google Scholar] [CrossRef]
- Ibragimov, G.I. The optimal pursuit problem reduced to an infinite system of differential equation. J. Appl. Math. Mech. 2013, 77, 470–476. [Google Scholar] [CrossRef]
- Ibragimov, G.I. Optimal pursuit time for a differential game in the Hilbert space l2. Sci. Asia 2013, 39S, 25–30. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibragimov, G.; Ruziboev, M.; Zaynabiddinov, I.; Pansera, B.A. Evasion Differential Game of Multiple Pursuers and a Single Evader with Geometric Constraints in ℓ2. Games 2023, 14, 52. https://doi.org/10.3390/g14040052
Ibragimov G, Ruziboev M, Zaynabiddinov I, Pansera BA. Evasion Differential Game of Multiple Pursuers and a Single Evader with Geometric Constraints in ℓ2. Games. 2023; 14(4):52. https://doi.org/10.3390/g14040052
Chicago/Turabian StyleIbragimov, Gafurjan, Marks Ruziboev, Ibroximjon Zaynabiddinov, and Bruno Antonio Pansera. 2023. "Evasion Differential Game of Multiple Pursuers and a Single Evader with Geometric Constraints in ℓ2" Games 14, no. 4: 52. https://doi.org/10.3390/g14040052
APA StyleIbragimov, G., Ruziboev, M., Zaynabiddinov, I., & Pansera, B. A. (2023). Evasion Differential Game of Multiple Pursuers and a Single Evader with Geometric Constraints in ℓ2. Games, 14(4), 52. https://doi.org/10.3390/g14040052