A Game-Theoretic Model of Voluntary Yellow Fever Vaccination to Prevent Urban Outbreaks
Abstract
:1. Introduction
2. Mathematical Model
2.1. Compartmental Model
2.2. Game-Theoretic Component
2.3. Model Calibration
3. Analysis of the ODE System
3.1. Disease-Free Equilibrium
3.2. Endemic Equilibrium
4. Results
4.1. Optimal Vaccination Decisions
- (1)
- If , then vaccination is too expensive and the Nash equilibrium is to not vaccinate, even if , i.e., to not vaccinate for any and thus for all .
- (2)
- When , then and , i.e., the individuals should vaccinate (but not always) when and not vaccinate at all when .
4.2. Optimal Bite Prevention
- (1)
- If , then for all , i.e., the cost of bite prevention is too high no matter what is the vaccination coverage in the population.
- (2)
- If , then and , i.e., the individuals should somewhat prevent vector bites (but never fully) if the vaccination coverage is relatively low, but do not prevent them at all once the vaccination coverage is above a certain threshold.
4.3. Optimal Vaccination and Bite Prevention
4.4. Validation
4.5. Sensitivity Analysis
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- PAHO/WHO. Yellow Fever. 2022. Available online: https://www.paho.org/en/topics/yellow-fever (accessed on 5 June 2022).
- Monath, T.P.; Vasconcelos, P.F. Yellow fever. J. Clin. Virol. 2015, 64, 160–173. [Google Scholar] [CrossRef] [PubMed]
- Monath, T.P. Yellow fever: An update. Lancet Infect. Dis. 2001, 1, 11–20. [Google Scholar] [CrossRef]
- WHO. Yellow Fever Fact Sheet. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/yellow-fever (accessed on 5 June 2022).
- WHO. Yellow Fever, Q&A. 2017. Available online: https://www.who.int/news-room/questions-and-answers/item/yellow-fever (accessed on 5 June 2022).
- Robert, M.A.; Stewart-Ibarra, A.M.; Estallo, E.L. Climate change and viral emergence: Evidence from Aedes-borne arboviruses. Curr. Opin. Virol. 2020, 40, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Robert, M.A.; Christofferson, R.C.; Weber, P.D.; Wearing, H.J. Temperature impacts on dengue emergence in the United States: Investigating the role of seasonality and climate change. Epidemics 2019, 28, 100344. [Google Scholar] [CrossRef]
- Robert, M.A.; Christofferson, R.C.; Silva, N.J.; Vasquez, C.; Mores, C.N.; Wearing, H.J. Modeling mosquito-borne disease spread in US urbanized areas: The case of dengue in Miami. PLoS ONE 2016, 11, e0161365. [Google Scholar] [CrossRef]
- Barrett, A.D. Yellow fever in Angola and beyond—the problem of vaccine supply and demand. N. Engl. J. Med. 2016, 375, 301–303. [Google Scholar] [CrossRef]
- WHO. A global strategy to Eliminate Yellow Fever Epidemics (EYE) 2017–2026. 2017. Available online: https://apps.who.int/iris/bitstream/handle/10665/272408/9789241513661-eng.pdf (accessed on 5 June 2022).
- Anderson, R.M.; May, R.M. Infectious Diseases of Humans: Dynamics and Control; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Behrend, M.R.; Basáñez, M.G.; Hamley, J.I.; Porco, T.C.; Stolk, W.A.; Walker, M.; de Vlas, S.J.; Consortium, N.M. Modelling for policy: The five principles of the Neglected Tropical Diseases Modelling Consortium. PLoS Negl. Trop. Dis. 2020, 14, e0008033. [Google Scholar] [CrossRef] [Green Version]
- Raimundo, S.M.; Amaku, M.; Massad, E. Equilibrium analysis of a yellow fever dynamical model with vaccination. Comput. Math. Methods Med. 2015, 2015, 482091. [Google Scholar]
- Kung’aro, M.; Luboobi, L.S.; Shahada, F. Modelling and stability analysis of SVEIRS yellow fever two host model. Gulf J. Math. 2015, 3, 106–129. [Google Scholar]
- Yusuf, T.T.; Daniel, D.O. Mathematical modeling of yellow fever transmission dynamics with multiple control measures. Asian Res. J. Math. 2019, 13, 1–15. [Google Scholar] [CrossRef]
- Danbaba, U.; Garba, S. Stability analysis and optimal control for yellow fever model with vertical transmission. Int. J. Appl. Comput. Math. 2020, 6, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Raimundo, S.M.; Yang, H.M.; Massad, E. Modeling vaccine preventable vector-borne infections: Yellow fever as a case study. J. Biol. Syst. 2016, 24, 193–216. [Google Scholar] [CrossRef]
- Zhao, S.; Stone, L.; Gao, D.; He, D. Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination. PLoS Negl. Trop. Dis. 2018, 12, e0006158. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A.; Massad, E. Estimating the number of unvaccinated Chinese workers against yellow fever in Angola. BMC Infect. Dis. 2018, 18, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Musa, S.S.; Hebert, J.T.; Cao, P.; Ran, J.; Meng, J.; He, D.; Qin, J. Modelling the effective reproduction number of vector-borne diseases: The yellow fever outbreak in Luanda, Angola 2015–2016 as an example. PeerJ 2020, 8, e8601. [Google Scholar] [CrossRef]
- Wu, J.T.; Peak, C.M.; Leung, G.M.; Lipsitch, M. Fractional dosing of yellow fever vaccine to extend supply: A modelling study. Lancet 2016, 388, 2904–2911. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, M.U.; Faria, N.R.; Reiner, R.C., Jr.; Golding, N.; Nikolay, B.; Stasse, S.; Johansson, M.A.; Salje, H.; Faye, O.; Wint, G.W. Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015–2016: A modelling study. Lancet Infect. Dis. 2017, 17, 330–338. [Google Scholar] [CrossRef]
- Bauch, C.T.; Earn, D.J. Vaccination and the theory of games. Proc. Natl. Acad. Sci. USA 2004, 101, 13391–13394. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Bauch, C.T.; Bhattacharyya, S.; d’Onofrio, A.; Manfredi, P.; Perc, M.; Perra, N.; Salathé, M.; Zhao, D. Statistical physics of vaccination. Phys. Rep. 2016, 664, 1–113. [Google Scholar] [CrossRef]
- Verelst, F.; Willem, L.; Beutels, P. Behavioural change models for infectious disease transmission: A systematic review (2010–2015). J. R. Soc. Interface 2016, 13, 20160820. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.L.; Piraveenan, M.; Pattison, P.; Prokopenko, M. Game theoretic modelling of infectious disease dynamics and intervention methods: A review. J. Biol. Dyn. 2020, 14, 57–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brettin, A.; Rossi-Goldthorpe, R.; Weishaar, K.; Erovenko, I.V. Ebola could be eradicated through voluntary vaccination. R. Soc. Open Sci. 2018, 5, 171591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agusto, F.B.; Erovenko, I.V.; Fulk, A.; Abu-Saymeh, Q.; Romero-Alvarez, D.; Ponce, J.; Sindi, S.; Ortega, O.; Saint Onge, J.M.; Peterson, A.T. To isolate or not to isolate: The impact of changing behavior on COVID-19 transmission. BMC Public Health 2022, 22, 1–20. [Google Scholar] [CrossRef]
- Choi, W.; Shim, E. Optimal strategies for social distancing and testing to control COVID-19. J. Theor. Biol. 2021, 512, 110568. [Google Scholar] [CrossRef] [PubMed]
- Piraveenan, M.; Sawleshwarkar, S.; Walsh, M.; Zablotska, I.; Bhattacharyya, S.; Farooqui, H.H.; Bhatnagar, T.; Karan, A.; Murhekar, M.; Zodpey, S. Optimal governance and implementation of vaccination programmes to contain the COVID-19 pandemic. R. Soc. Open Sci. 2021, 8, 210429. [Google Scholar] [CrossRef] [PubMed]
- Bankuru, S.V.; Kossol, S.; Hou, W.; Mahmoudi, P.; Rychtář, J.; Taylor, D. A game-theoretic model of Monkeypox to assess vaccination strategies. PeerJ 2020, 8, e9272. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.R.M.; Foster, A.O.; Feagins, D.A.; Rowell, J.T.; Erovenko, I.V. Optimal voluntary and mandatory insect repellent usage and emigration strategies to control the chikungunya outbreak on Reunion Island. PeerJ 2020, 8, e10151. [Google Scholar] [CrossRef]
- Scheckelhoff, K.; Ejaz, A.; Erovenko, I.V.; Rychtář, J.; Taylor, D. Optimal Voluntary Vaccination of Adults and Adolescents Can Help Eradicate Hepatitis B in China. Games 2021, 12, 82. [Google Scholar] [CrossRef]
- Kobe, J.; Pritchard, N.; Short, Z.; Erovenko, I.V.; Rychtář, J.; Rowell, J.T. A game-theoretic model of cholera with optimal personal protection strategies. Bull. Math. Biol. 2018, 80, 2580–2599. [Google Scholar] [CrossRef]
- World Bank. Birth Rate, Angola. 2020. Available online: https://data.worldbank.org/indicator/SP.DYN.CBRT.IN?locations=AO (accessed on 5 June 2022).
- World Bank. Life Expectancy, Angola. 2020. Available online: https://data.worldbank.org/indicator/SP.DYN.LE00.IN?locations=AO (accessed on 5 June 2022).
- Andraud, M.; Hens, N.; Marais, C.; Beutels, P. Dynamic epidemiological models for dengue transmission: A systematic review of structural approaches. PLoS ONE 2012, 7, e49085. [Google Scholar] [CrossRef] [Green Version]
- Chikaki, E.; Ishikawa, H. A dengue transmission model in Thailand considering sequential infections with all four serotypes. J. Infect. Dev. Ctries. 2009, 3, 711–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, M.A.; Arana-Vizcarrondo, N.; Biggerstaff, B.J.; Staples, J.E. Incubation periods of yellow fever virus. Am. J. Trop. Med. Hyg. 2010, 83, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monath, T.P. Treatment of yellow fever. Antivir. Res. 2008, 78, 116–124. [Google Scholar] [CrossRef] [PubMed]
- CDC. Yellow Fever, Q&A. 2019. Available online: https://www.cdc.gov/yellowfever/ (accessed on 5 June 2022).
- Ankrah, D. PIN41 Cost-Effectiveness of Vaccination Against Yellow Fever in Ghana. Value Health 2012, 15, A244. [Google Scholar] [CrossRef] [Green Version]
- Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- Campo, V.N.; Palacios, J.L.D.; Nagahashi, H.; Oh, H.; Rychtář, J.; Taylor, D. A game-theoretic model of rabies in domestic dogs with multiple voluntary preventive measures. J. Math. Biol. 2022, submitted.
- Imperial College, London. Yellow Fever Immunization Coverage Across Africa. 2022. Available online: https://polici.shinyapps.io/yellow_fever_africa/ (accessed on 5 June 2022).
- Arriola, L.; Hyman, J.M. Sensitivity analysis for uncertainty quantification in mathematical models. In Mathematical and Statistical Estimation Approaches in Epidemiology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 195–247. [Google Scholar]
- Dorsett, C.; Oh, H.; Paulemond, M.L.; Rychtář, J. Optimal repellent usage to combat dengue fever. Bull. Math. Biol. 2016, 78, 916–922. [Google Scholar] [CrossRef]
- Fortunato, A.K.; Glasser, C.P.; Watson, J.A.; Lu, Y.; Rychtář, J.; Taylor, D. Mathematical modelling of the use of insecticide-treated nets for elimination of visceral leishmaniasis in Bihar, India. R. Soc. Open Sci. 2021, 8, 201960. [Google Scholar] [CrossRef]
- Angina, J.; Bachhu, A.; Talati, E.; Talati, R.; Rychtář, J.; Taylor, D. Game-theoretical model of the voluntary use of insect repellents to prevent Zika fever. Dyn. Games Appl. 2022, 12, 133–146. [Google Scholar] [CrossRef]
- Acosta-Alonzo, C.B.; Erovenko, I.V.; Lancaster, A.; Oh, H.; Rychtář, J.; Taylor, D. High endemic levels of typhoid fever in rural areas of Ghana may stem from optimal voluntary vaccination behaviour. Proc. R. Soc. A 2020, 476, 20200354. [Google Scholar] [CrossRef]
- Han, C.Y.; Issa, H.; Rychtář, J.; Taylor, D.; Umana, N. A voluntary use of insecticide treated nets can stop the vector transmission of Chagas disease. PLoS Negl. Trop. Dis. 2020, 14, e0008833. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Fu, Z.; Wang, B. Epidemic dynamics on complex networks. Prog. Nat. Sci. 2006, 16, 452–457. [Google Scholar]
- Fu, F.; Rosenbloom, D.I.; Wang, L.; Nowak, M.A. Imitation dynamics of vaccination behaviour on social networks. Proc. R. Soc. B Biol. Sci. 2011, 278, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, J.; Zhou, C.; Small, M.; Wang, B. Hub nodes inhibit the outbreak of epidemic under voluntary vaccination. New J. Phys. 2010, 12, 023015. [Google Scholar] [CrossRef]
- Iwamura, Y.; Tanimoto, J. Realistic decision-making processes in a vaccination game. Phys. A Stat. Mech. Appl. 2018, 494, 236–241. [Google Scholar] [CrossRef]
- Kabir, K.A.; Jusup, M.; Tanimoto, J. Behavioral incentives in a vaccination-dilemma setting with optional treatment. Phys. Rev. E 2019, 100, 062402. [Google Scholar] [CrossRef]
- Kabir, K.A.; Tanimoto, J. Modelling and analysing the coexistence of dual dilemmas in the proactive vaccination game and retroactive treatment game in epidemic viral dynamics. Proc. R. Soc. A 2019, 475, 20190484. [Google Scholar] [CrossRef] [Green Version]
- Kuga, K.; Tanimoto, J.; Jusup, M. To vaccinate or not to vaccinate: A comprehensive study of vaccination-subsidizing policies with multi-agent simulations and mean-field modeling. J. Theor. Biol. 2019, 469, 107–126. [Google Scholar] [CrossRef]
- Arefin, M.R.; Masaki, T.; Kabir, K.A.; Tanimoto, J. Interplay between cost and effectiveness in influenza vaccine uptake: A vaccination game approach. Proc. R. Soc. A 2019, 475, 20190608. [Google Scholar] [CrossRef]
- Arefin, M.R.; Kabir, K.A.; Tanimoto, J. A mean-field vaccination game scheme to analyze the effect of a single vaccination strategy on a two-strain epidemic spreading. J. Stat. Mech. Theory Exp. 2020, 2020, 033501. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Xia, C. Role of vaccine efficacy in the vaccination behavior under myopic update rule on complex networks. Chaos Solitons Fractals 2020, 130, 109425. [Google Scholar] [CrossRef] [PubMed]
Symbol | Description | Value | Source |
---|---|---|---|
Human birth rate (per 1000) | [35] | ||
Human natural death rate | [36] | ||
a | Mosquito biting rate | [37] | |
b | Transmission probability from vector to host (per bite) | [37] | |
c | Transmission probability from host to vector (per bite) | [38] | |
Duration of the latent period in host | 4 | [39] | |
Duration of the latent period in vector | 10 | [40] | |
Duration of the infectious period (host) | 4 | [41] | |
Duration of the toxic case | 8 | [41] | |
Vector life span | 20 | [37] | |
Proportion of the severe cases | [1] | ||
Non-severe case relative infectivity | estimated | ||
Proportion of vaccinated individuals | variable in | ||
Bite prevention strategy | variable in | ||
Cost of vaccination relative to the cost of YF | 2/30 | [5,42] | |
Cost of bite prevention | 3/30 | estimated | |
Vector birth rate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caasi, J.A.S.; Joseph, B.M.; Kodiyamplakkal, H.J.; Manibusan, J.R.U.; Camacho Aquino, L.J.; Oh, H.; Rychtář, J.; Taylor, D. A Game-Theoretic Model of Voluntary Yellow Fever Vaccination to Prevent Urban Outbreaks. Games 2022, 13, 55. https://doi.org/10.3390/g13040055
Caasi JAS, Joseph BM, Kodiyamplakkal HJ, Manibusan JRU, Camacho Aquino LJ, Oh H, Rychtář J, Taylor D. A Game-Theoretic Model of Voluntary Yellow Fever Vaccination to Prevent Urban Outbreaks. Games. 2022; 13(4):55. https://doi.org/10.3390/g13040055
Chicago/Turabian StyleCaasi, Jovic Aaron S., Brian M. Joseph, Heera J. Kodiyamplakkal, Jaelene Renae U. Manibusan, Leslie J. Camacho Aquino, Hyunju Oh, Jan Rychtář, and Dewey Taylor. 2022. "A Game-Theoretic Model of Voluntary Yellow Fever Vaccination to Prevent Urban Outbreaks" Games 13, no. 4: 55. https://doi.org/10.3390/g13040055
APA StyleCaasi, J. A. S., Joseph, B. M., Kodiyamplakkal, H. J., Manibusan, J. R. U., Camacho Aquino, L. J., Oh, H., Rychtář, J., & Taylor, D. (2022). A Game-Theoretic Model of Voluntary Yellow Fever Vaccination to Prevent Urban Outbreaks. Games, 13(4), 55. https://doi.org/10.3390/g13040055