Monte Carlo Methods for the Shapley–Shubik Power Index †
Abstract
:1. Introduction
2. Notations and Definitions
3. Naive Algorithm and Its Analysis
Algorithm 1 Naive Algorithm. |
Step 0: Set , . Step 1: Choose uniformly at random. Put (the random variable) . Update . Step 2: If , then output and stop. Else, update and go to Step 1. |
4. Our Algorithm
Algorithm 2 Our Algorithm. |
Step 0: Set , . Step 1: Choose uniformly at random. Put the random variable . Update Step 2: If , then output and stop. Else, update and go to Step 1. |
5. Computational Experiments
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. (Bretagnolle–Huber–Carol Inequality)
References
- Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 1944. [Google Scholar]
- Shapley, L.S.; Shubik, M. A method for evaluating the distribution of power in a committee system. Am. Political Sci. Rev. 1954, 48, 787–792. [Google Scholar] [CrossRef]
- Shapley, L.S. A value for n-person games. In Contributions to the Theory of Games II; Kuhn, H.W., Tucker, A.W., Eds.; Princeton University Press: Princeton, NJ, USA, 1953; pp. 307–317. [Google Scholar]
- Laruelle, A.; Widgrén, M. Is the allocation of voting power among EU states fair? Public Choice 1998, 94, 317–339. [Google Scholar] [CrossRef]
- Leech, D. Designing the voting system for the Council of the European Union. Public Choice 2002, 113, 437–464. [Google Scholar] [CrossRef] [Green Version]
- Życzkowski, K.; Słomczyński, W. Square Root Voting System, Optimal Threshold and π. In Power, Voting, and Voting Power: 30 Years After; Springer: Berlin/Heidelberg, Germany, 2013; pp. 573–592. [Google Scholar]
- Owen, G. Evaluation of a presidential election game. Am. Political Sci. Rev. 1975, 69, 947–953. [Google Scholar] [CrossRef]
- Miller, N.R. A priori voting power and the US Electoral College. In Power, Voting, and Voting Power: 30 Years After; Springer: Berlin/Heidelberg, Germany, 2013; pp. 411–442. [Google Scholar]
- Leech, D. Voting power in the governance of the International Monetary Fund. Ann. Oper. Res. 2002, 109, 375–397. [Google Scholar] [CrossRef] [Green Version]
- Leech, D.; Leech, R. A new analysis of a priori voting power in the IMF: Recent quota reforms give little cause for celebration. In Power, Voting, and Voting Power: 30 Years After; Springer: Berlin/Heidelberg, Germany, 2013; pp. 389–410. [Google Scholar]
- Young, H.P. Cost allocation. Handb. Game Theory Econ. Appl. 1994, 2, 1193–1235. [Google Scholar]
- Lucchetti, R.; Radrizzani, P. Microarray data analysis via weighted indices and weighted majority games. In International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 179–190. [Google Scholar]
- Holler, M.J.; Rupp, F. Power in networks: A PGI analysis of Krackhardt’s Kite Network. In Transactions on Computational Collective Intelligence XXXIV; Springer: Berlin/Heidelberg, Germany, 2019; pp. 21–34. [Google Scholar]
- Holler, M.J.; Rupp, F. Power in Networks: The Medici. Homo Oeconomicus 2021, 38, 59–75. [Google Scholar] [CrossRef]
- Bachrach, Y.; Rosenschein, J.S.; Porat, E. Power and stability in connectivity games. In Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, Estoril, Portugal, 12–16 May 2008; Volume 2, pp. 999–1006. [Google Scholar]
- Garey, M.R.; Johnson, D.S. Computers and Intractability; Freeman: San Francisco, CA, USA, 1979; Volume 174. [Google Scholar]
- Deng, X.; Papadimitriou, C.H. On the complexity of cooperative solution concepts. Math. Oper. Res. 1994, 19, 257–266. [Google Scholar] [CrossRef]
- Prasad, K.; Kelly, J.S. NP-completeness of some problems concerning voting games. Int. J. Game Theory 1990, 19, 1–9. [Google Scholar] [CrossRef]
- Matsui, Y.; Matsui, T. NP-completeness for calculating power indices of weighted majority games. Theor. Comput. Sci. 2001, 263, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Elkind, E.; Goldberg, L.A.; Goldberg, P.W.; Wooldridge, M. Computational complexity of weighted threshold games. In AAAI; Association for the Advancement of Artificial Intelligence: Menlo Park, CA, USA, 2007; pp. 718–723. [Google Scholar]
- Mann, I.; Shapley, L.S. Values of Large Games, IV: Evaluating the Electoral College by Montecarlo Techniques; Technical Report RM-2651; The RAND Corporation: Santa Monica, CA, USA, 1960. [Google Scholar]
- Matsui, T.; Matsui, Y. A survey of algorithms for calculating power indices of weighted majority games. J. Oper. Res. Soc. Jpn. 2000, 43, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Fatima, S.S.; Wooldridge, M.; Jennings, N.R. A linear approximation method for the Shapley value. Artif. Intell. 2008, 172, 1673–1699. [Google Scholar] [CrossRef] [Green Version]
- Castro, J.; Gómez, D.; Tejada, J. Polynomial calculation of the Shapley value based on sampling. Comput. Oper. Res. 2009, 36, 1726–1730. [Google Scholar] [CrossRef]
- Bachrach, Y.; Markakis, E.; Resnick, E.; Procaccia, A.D.; Rosenschein, J.S.; Saberi, A. Approximating power indices: Theoretical and empirical analysis. Auton. Agents-Multi-Agent Syst. 2010, 20, 105–122. [Google Scholar] [CrossRef]
- Castro, J.; Gómez, D.; Molina, E.; Tejada, J. Improving polynomial estimation of the Shapley value by stratified random sampling with optimum allocation. Comput. Oper. Res. 2017, 82, 180–188. [Google Scholar] [CrossRef]
- Owen, G. Multilinear extensions of games. Manag. Sci. 1972, 18, 64–79. [Google Scholar] [CrossRef]
- Leech, D. Computing power indices for large voting games. Manag. Sci. 2003, 49, 831–837. [Google Scholar] [CrossRef] [Green Version]
- Brams, S.J.; Affuso, P.J. Power and size: A new paradox. Theory Decis. 1976, 7, 29–56. [Google Scholar] [CrossRef]
- Lucas, W.F. Measuring power in weighted voting systems. In Political and Related Models; Springer: Berlin/Heidelberg, Germany, 1983; pp. 183–238. [Google Scholar]
- Mann, I.; Shapley, L.S. Values of Large Games, VI: Evaluating the Electoral College Exactly; Technical Report RM-3158-PR; The RAND Corporation: Santa Monica, CA, USA, 1962. [Google Scholar]
- Uno, T. Efficient computation of power indices for weighted majority games. In International Symposium on Algorithms and Computation; Springer: Berlin/Heidelberg, Germany, 2012; pp. 679–689. [Google Scholar]
- Bilbao, J.M.; Fernandez, J.R.; Jiménez-Losada, A.; Lopez, J.J. Generating functions for computing power indices efficiently. Top 2000, 8, 191–213. [Google Scholar] [CrossRef]
- Bolus, S. Power indices of simple games and vector-weighted majority games by means of binary decision diagrams. Eur. J. Oper. Res. 2011, 210, 258–272. [Google Scholar] [CrossRef]
- Rushdi, A.M.A.; Ba-Rukab, O.M. Map calculation of the Shapley-Shubik voting powers: An example of the European Economic Community. Int. J. Math. Eng. Manag. Sci. 2017, 2, 17–29. [Google Scholar] [CrossRef]
- Berghammer, R.; Bolus, S.; Rusinowska, A.; De Swart, H. A relation-algebraic approach to simple games. Eur. J. Oper. Res. 2011, 210, 68–80. [Google Scholar] [CrossRef] [Green Version]
- Klinz, B.; Woeginger, G.J. Faster algorithms for computing power indices in weighted voting games. Math. Soc. Sci. 2005, 49, 111–116. [Google Scholar] [CrossRef]
- Alonso-Meijide, J.M.; Casas-Méndez, B.; Fiestras-Janeiro, M.G. Computing Banzhaf–Coleman and Shapley–Shubik power indices with incompatible players. Appl. Math. Comput. 2015, 252, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Courtin, S.; Nganmeni, Z.; Tchantcho, B. The Shapley–Shubik power index for dichotomous multi-type games. Theory Decis. 2016, 81, 413–426. [Google Scholar] [CrossRef]
- Hoeffding, W. Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 1963, 58, 13–30. [Google Scholar] [CrossRef]
- van der Vaart, A.W.; Wellner, J.A. Weak Convergence and Empirical Processes: With Applications to Statistics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Felsenthal, D.S.; Machover, M. The Treaty of Nice and qualified majority voting. Soc. Choice Welf. 2001, 18, 431–464. [Google Scholar] [CrossRef] [Green Version]
- Bilbao, J.M.; Fernandez, J.R.; Jiménez, N.; Lopez, J.J. Voting power in the European Union enlargement. Eur. J. Oper. Res. 2002, 143, 181–196. [Google Scholar] [CrossRef] [Green Version]
- Owen, G. Game Theory; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
Required Number of Samples | ||
---|---|---|
Property | Algorithm 1 | Algorithm 2 |
(Naive Algorithm) | (Our Algorithm) | |
[25] | (assume ) | |
EU Council | |||
Algorithm 1 | Algorithm 2 | ratio | |
Player 1 | 0.0557 | 0.0022 | 25.318 |
Player 13 | 0.0199 | 47.819 | |
Player 27 | 0.0049 | 35.033 | |
United States | |||
Algorithm 1 | Algorithm 2 | ratio | |
Player 1 | 0.0489 | 0.0181 | 2.7017 |
Player 26 | 0.0088 | 68.552 | |
Player 51 | 0.0032 | 65.424 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ushioda, Y.; Tanaka, M.; Matsui, T. Monte Carlo Methods for the Shapley–Shubik Power Index. Games 2022, 13, 44. https://doi.org/10.3390/g13030044
Ushioda Y, Tanaka M, Matsui T. Monte Carlo Methods for the Shapley–Shubik Power Index. Games. 2022; 13(3):44. https://doi.org/10.3390/g13030044
Chicago/Turabian StyleUshioda, Yuto, Masato Tanaka, and Tomomi Matsui. 2022. "Monte Carlo Methods for the Shapley–Shubik Power Index" Games 13, no. 3: 44. https://doi.org/10.3390/g13030044
APA StyleUshioda, Y., Tanaka, M., & Matsui, T. (2022). Monte Carlo Methods for the Shapley–Shubik Power Index. Games, 13(3), 44. https://doi.org/10.3390/g13030044