iDMaTraj: Improved Diffusion Mamba Model for Stochastic Pedestrian Trajectory Prediction
Abstract
1. Introduction
- 1.
- Our iDMa framework introduces a new dual-parameter learning method during the diffusion process that fundamentally extends conventional diffusion models through simultaneous mean-variance optimization. This paradigm shift enables (1) probabilistically tighter trajectory bounds via KL-optimal noise matching, and (2) physically plausible prediction spaces through variance-constrained sampling;
- 2.
- We design a hybrid denoising network for the denoising process that combines Transformer encoders with Mamba blocks, specifically engineered to capture both the fine-grained local details within the data and the broader, global connections between all points in a trajectory. The two components work together to create a more powerful representation of the path data.
2. Related Works
2.1. Stochastic Trajectory Prediction
2.2. Denoising Diffusion Probabilistic Models
2.3. Mamba in Trajectory Prediction
3. Method
3.1. Architecture
3.2. Training Objective
| Algorithm 1 The Algorithm for Training |
| Input: and ; Output: , ; 1: Compute Encoded vector ; 2: repeat 3: ; 4: ; 5: ; 6: ; 7: Compute according to Equation (7); 8: Take gradient descent step on . 9: until convered |
3.3. Inference Phase
| Algorithm 2 The Algorithm for Inference |
| Input: ; Output: ; 1: Compute Encoded vector ; 2: for do 3: ; 4: for do 5: if then 6: ; 7: else 8: ; 9: end if 10: ; 11: ; 12: end for, return ; 13: end for, return . |
3.4. Denoising Module
4. Experiments
4.1. Experimental Setup
4.1.1. Datasets
4.1.2. Evaluation Metrics
4.1.3. Implementation Details
4.2. Ablation Studies
4.3. Quantitative Evaluation
4.4. Qualitative Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bera, A.; Kim, S.; Randhavane, T.; Pratapa, S.; Manocha, D. GLMP-realtime Pedestrian Path Prediction Using Global and Local Movement Patterns. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 5528–5535. [Google Scholar] [CrossRef]
- Rudenko, A.; Palmieri, L.; Herman, M.; Kitani, K.M.; Gavrila, D.M.; Arras, K.O. Human Motion Trajectory Prediction: A Survey. Int. J. Robot. Res. 2020, 39, 895–935. [Google Scholar] [CrossRef]
- Messaoud, K.; Yahiaoui, I.; Verroust-Blondet, A.; Nashashibi, F. Attention Based Vehicle Trajectory Prediction. IEEE Trans. Intell. Veh. 2021, 6, 175–185. [Google Scholar] [CrossRef]
- Zhou, W.; Jiang, K.; Cao, Z.; Deng, N.; Yang, D. Integrating Deep Reinforcement Learning with Optimal Trajectory Planner for Automated Driving. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Floreano, D.; Wood, R.J. Science, Technology and the Future of Small Autonomous Drones. Nature 2015, 521, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.C.; Huang, D.A.; Lee, N.; Kitani, K.M. Forecasting Interactive Dynamics of Pedestrians with Fictitious Play. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE Computer Society: Piscataway, NJ, USA, 2017; pp. 4636–4644. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Paolo, G.; Sommer, H.; Nieto, J.; Siegwart, R.; Cadena, C. A Data-Driven Model for Interaction-Aware Pedestrian Motion Prediction in Object Cluttered Environments. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 5921–5928. [Google Scholar]
- Schöller, C.; Aravantinos, V.; Lay, F.; Knoll, A. What the Constant Velocity Model Can Teach Us about Pedestrian Motion Prediction. IEEE Robot. Autom. Lett. 2020, 5, 1696–1703. [Google Scholar] [CrossRef]
- Salzmann, T.; Ivanovic, B.; Chakravarty, P.; Pavone, M. Trajectron++: Dynamically-feasible Trajectory Forecasting with Heterogeneous Data. In Computer Vision—ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer: Cham, Switzerland, 2020; pp. 683–700. [Google Scholar]
- Ahmadi, A.M.S.; Semnani, S.H. Human Trajectory Prediction Using LSTM with Attention Mechanism. arXiv 2023, arXiv:2309.00331. [Google Scholar] [CrossRef]
- Slaughter, I.; Charla, J.L.; Siderius, M.; Lipor, J. Vessel Trajectory Prediction with Recurrent Neural Networks: An Evaluation of Datasets, Features, and Architectures. J. Ocean Eng. Sci. 2025, 10, 229–238. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar] [CrossRef]
- Yuan, Y.; Weng, X.; Ou, Y.; Kitani, K. AgentFormer: Agent-aware Transformers for Socio-Temporal Multi-Agent Forecasting. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 9793–9803. [Google Scholar] [CrossRef]
- Peng, X.; Shen, Y.; Wang, H.; Nie, B.; Wang, Y.; Wu, Z. SoMoFormer: Social-aware Motion Transformer for Multi-Person Motion Prediction. arXiv 2022, arXiv:2208.09224. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, H.; Chen, L.; Broszio, H.; Li, J.; Zhao, R.; Sester, M.; Yang, M.Y. LAformer: Trajectory Prediction for Autonomous Driving with Lane-Aware Scene Constraints. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 17–18 June 2024; pp. 2039–2049. [Google Scholar] [CrossRef]
- Yu, C.; Ma, X.; Ren, J.; Zhao, H.; Yi, S. Spatio-Temporal Graph Transformer Networks for Pedestrian Trajectory Prediction. In Computer Vision—ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer: Cham, Switzerland, 2020; pp. 507–523. [Google Scholar] [CrossRef]
- Bae, I.; Park, J.H.; Jeon, H.G. Learning Pedestrian Group Representations for Multi-Modal Trajectory Prediction. In Computer Vision—ECCV 2022, Proceedings of the 17th European Conference, Tel Aviv, Israel, 23–27 October 2022; Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T., Eds.; Springer: Cham, Switzerland, 2022; pp. 270–289. [Google Scholar]
- Shi, L.; Wang, L.; Long, C.; Zhou, S.; Zhou, M.; Niu, Z.; Hua, G. SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory Prediction. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 8990–8999. [Google Scholar] [CrossRef]
- Xu, C.; Li, M.; Ni, Z.; Zhang, Y.; Chen, S. GroupNet: Multiscale Hypergraph Neural Networks for Trajectory Prediction with Relational Reasoning. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 6488–6497. [Google Scholar] [CrossRef]
- Mohamed, A.; Qian, K.; Elhoseiny, M.; Claudel, C. Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; IEEE Computer Society: Piscataway, NJ, USA, 2020; pp. 14412–14420. [Google Scholar] [CrossRef]
- Zhang, K.; Feng, X.; Wu, L.; He, Z. Trajectory Prediction for Autonomous Driving Using Spatial-Temporal Graph Attention Transformer. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22343–22353. [Google Scholar] [CrossRef]
- Yang, R.; Wang, W.; Gui, P. Predicting Pedestrian Trajectories in Architectural Spaces: A Graph Neural Network Approach. In Proceedings of the 29th Annual Conference for Computer-Aided Architectural Design Research, Singapore, 20–26 April 2024; pp. 251–260. [Google Scholar]
- Gupta, A.; Johnson, J.; Fei-Fei, L.; Savarese, S.; Alahi, A. Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 2255–2264. [Google Scholar] [CrossRef]
- Sadeghian, A.; Kosaraju, V.; Sadeghian, A.; Hirose, N.; Rezatofighi, H.; Savarese, S. SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 15–20 June 2019; pp. 1349–1358. [Google Scholar] [CrossRef]
- Labaca-Castro, R. Generative Adversarial Nets. In Machine Learning Under Malware Attack; Springer Fachmedien: Wiesbaden, Germany, 2023; pp. 73–76. [Google Scholar] [CrossRef]
- Lao, L.; Du, D.; Chen, P. Predicting Pedestrian Trajectories with Deep Adversarial Networks Considering Motion and Spatial Information. Algorithms 2023, 16, 566. [Google Scholar] [CrossRef]
- Yang, B.; He, C.; Wang, P.; Chan, C.Y.; Liu, X.; Chen, Y. TPPO: A Novel Trajectory Predictor With Pseudo Oracle. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 2846–2859. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2022, arXiv:1312.6114. [Google Scholar] [PubMed]
- Xu, P.; Hayet, J.B.; Karamouzas, I. SocialVAE: Human Trajectory Prediction Using Timewise Latents. In Computer Vision—ECCV 2022, Proceedings of the 17th European Conference, Tel Aviv, Israel, 23–27 October 2022; Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T., Eds.; Springer: Cham, Switzerland, 2022; pp. 511–528. [Google Scholar] [CrossRef]
- Xiang, W.; YIN, H.; Wang, H.; Jin, X. SocialCVAE: Predicting Pedestrian Trajectory via Interaction Conditioned Latents. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 26–27 February 2024; Volume 38, pp. 6216–6224. [Google Scholar] [CrossRef]
- Rasul, K.; Seward, C.; Schuster, I.; Vollgraf, R. Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting. arXiv 2021, arXiv:2101.12072. [Google Scholar] [CrossRef]
- Tashiro, Y.; Song, J.; Song, Y.; Ermon, S. CSDI: Conditional Score-Based Diffusion Models for Probabilistic Time Series Imputation. arXiv 2021, arXiv:2107.03502. [Google Scholar] [CrossRef]
- Gu, T.; Chen, G.; Li, J.; Lin, C.; Rao, Y.; Zhou, J.; Lu, J. Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 17092–17101. [Google Scholar] [CrossRef]
- Mao, W.; Xu, C.; Zhu, Q.; Chen, S.; Wang, Y. Leapfrog Diffusion Model for Stochastic Trajectory Prediction. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 5517–5526. [Google Scholar] [CrossRef]
- Wu, W.; Deng, X. Motion Latent Diffusion for Stochastic Trajectory Prediction. In Proceedings of the ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 6665–6669. [Google Scholar] [CrossRef]
- Gu, A.; Dao, T. Mamba: Linear-time Sequence Modeling with Selective State Spaces. arXiv 2023, arXiv:2312.00752. [Google Scholar] [CrossRef]
- Lerner, A.; Chrysanthou, Y.; Lischinski, D. Crowds by Example. Comput. Graph. Forum 2007, 26, 655–664. [Google Scholar] [CrossRef]
- Pellegrini, S.; Ess, A.; Van Gool, L. Improving Data Association by Joint Modeling of Pedestrian Trajectories and Groupings. In Computer Vision—ECCV 2010, Proceedings of the 11th European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6311, pp. 452–465. [Google Scholar] [CrossRef]
- Robicquet, A.; Sadeghian, A.; Alahi, A.; Savarese, S. Learning Social Etiquette: Human Trajectory Understanding in Crowded Scenes. In Computer Vision—ECCV 2016, Proceedings of the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 549–565. [Google Scholar]
- Mangalam, K.; An, Y.; Girase, H.; Malik, J. From Goals, Waypoints & Paths to Long Term Human Trajectory Forecasting. arXiv 2020, arXiv:2012.01526. [Google Scholar] [CrossRef]
- Pool, E. Context-Based Cyclist Path Prediction: Crafted and Learned Models for Intelligent Vehicles. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Archana, M.; Viji, R.; Ganapathy, S. A CNN-GRU Based Hybrid Approach for Pedestrian Trajectory Prediction. In Proceedings of the 2024 10th International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 12–14 April 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1611–1616. [Google Scholar] [CrossRef]
- Shi, L.; Wang, L.; Zhou, S.; Hua, G. Trajectory Unified Transformer for Pedestrian Trajectory Prediction. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; pp. 9641–9650. [Google Scholar] [CrossRef]
- Sohl-Dickstein, J.; Weiss, E.A.; Maheswaranathan, N.; Ganguli, S. Deep Unsupervised Learning Using Nonequilibrium Thermodynamics. arXiv 2015, arXiv:1503.03585. [Google Scholar] [CrossRef]
- Ho, J.; Jain, A.; Abbeel, P. Denoising Diffusion Probabilistic Models. In Proceedings of the 34th International Conference on Neural Information Processing Systems (Nips ’20), Red Hook, NY, USA, 6–12 December 2020. [Google Scholar]
- Song, J.; Meng, C.; Ermon, S. Denoising Diffusion Implicit Models. arXiv 2020, arXiv:2010.02502. [Google Scholar] [CrossRef]
- Bae, I.; Park, Y.J.; Jeon, H.G. SingularTrajectory: Universal Trajectory Predictor Using Diffusion Model. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 17890–17901. [Google Scholar] [CrossRef]
- Nichol, A.; Dhariwal, P. Improved Denoising Diffusion Probabilistic Models. arXiv 2021, arXiv:2102.09672. [Google Scholar] [CrossRef]
- Gu, A.; Goel, K.; Ré, C. Efficiently Modeling Long Sequences with Structured State Spaces. arXiv 2021, arXiv:2111.00396. [Google Scholar] [CrossRef]
- Gu, A.; Dao, T.; Ermon, S.; Rudra, A.; Re, C. HiPPO: Recurrent Memory with Optimal Polynomial Projections. Adv. Neural Inf. Process. Syst. 2020, 33, 1474–1487. [Google Scholar] [CrossRef]
- Ali, A.; Zimerman, I.; Wolf, L. The Hidden Attention of Mamba Models. arXiv 2024, arXiv:2403.01590. [Google Scholar] [CrossRef]
- Ahamed, M.A.; Cheng, Q. TimeMachine: A Time Series Is Worth 4 Mambas for Long-Term Forecasting. arXiv 2024, arXiv:2403.09898. [Google Scholar] [CrossRef]
- Wang, Z.; Kong, F.; Feng, S.; Wang, M.; Yang, X.; Zhao, H.; Wang, D.; Zhang, Y. Is Mamba Effective for Time Series Forecasting? Neurocomputing 2025, 619, 129178. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, Y.; Wang, K. Trajectory Mamba: Efficient Attention-Mamba Forecasting Model Based on Selective SSM. arXiv 2024, arXiv:2503.10898. [Google Scholar]
- Yuan, D.; Xue, J.; Su, J.; Xu, W.; Zhou, H. ST-Mamba: Spatial-Temporal Mamba for Traffic Flow Estimation Recovery using Limited Data. In Proceedings of the 2024 IEEE/CIC International Conference on Communications in China (ICCC), Hangzhou, China, 7–9 August 2024; pp. 1928–1933. [Google Scholar] [CrossRef]
- Bae, I.; Oh, J.; Jeon, H.G. EigenTrajectory: Low-rank Descriptors for Multi-Modal Trajectory Forecasting. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; IEEE Computer Society: Piscataway, NJ, USA, 2023; pp. 9983–9995. [Google Scholar] [CrossRef]
- Chai, Y.; Sapp, B.; Bansal, M.; Anguelov, D. MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Prediction. In Proceedings of the Conference on Robot Learning; Kaelbling, L.P., Kragic, D., Sugiura, K., Eds.; Proceedings of Machine Learning Research; PMLR: Cambridge, MA, USA, 2020; Volume 100, pp. 86–99. [Google Scholar]
- Hu, Y.; Chen, S.; Zhang, Y.; Gu, X. Collaborative Motion Prediction via Neural Motion Message Passing. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 6318–6327. [Google Scholar] [CrossRef]
- Ruan, K.; Di, X. InfoSTGCAN: An Information-Maximizing Spatial-Temporal Graph Convolutional Attention Network for Heterogeneous Human Trajectory Prediction. Computers 2024, 13, 151. [Google Scholar] [CrossRef]
- Maeda, T.; Ukita, N. Fast Inference and Update of Probabilistic Density Estimation on Trajectory Prediction. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; pp. 9761–9771. [Google Scholar] [CrossRef]
- Yang, B.; Fan, F.; Ni, R.; Wang, H.; Jafaripournimchahi, A.; Hu, H. A Multi-Task Learning Network with a Collision-Aware Graph Transformer for Traffic-Agents Trajectory Prediction. IEEE Trans. Intell. Transp. Syst. 2024, 25, 6677–6690. [Google Scholar] [CrossRef]
- Bae, I.; Park, J.H.; Jeon, H.G. Non-Probability Sampling Network for Stochastic Human Trajectory Prediction. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 18–24 June 2022; pp. 6467–6477. [Google Scholar] [CrossRef]
- Chen, J.; Cao, J.; Lin, D.; Kitani, K.; Pang, J. Mgf: Mixed Gaussian Flow for Diverse Trajectory Prediction. Adv. Neural Inf. Process. Syst. 2024, 37, 57539–57563. [Google Scholar] [CrossRef]





| Variance Learing | Mamba Block | Parameters | Inference (ms) | ETH | HOTEL | UNIV | ZARA1 | ZARA2 | SDD |
|---|---|---|---|---|---|---|---|---|---|
| ✗ | ✗ | 6.5 M | ~914 | 0.43/0.75 | 0.15/0.28 | 0.22/0.44 | 0.21/0.38 | 0.15/0.28 | 8.24/15.63 |
| ✓ | ✗ | 6.5 M | ~914 | 0.41/0.64 | 0.14/0.24 | 0.21/0.42 | 0.20/0.35 | 0.14/0.27 | 8.01/14.10 |
| ✗ | ✓ | 4.0 M | ~621 | 0.39/0.62 | 0.14/0.22 | 0.23/0.42 | 0.19/0.32 | 0.15/0.27 | 7.99/13.69 |
| ✓ | ✓ | 4.0 M | ~621 | 0.37/0.59 | 0.12/0.20 | 0.22/0.40 | 0.18/0.31 | 0.14/0.25 | 7.95/13.01 |
| Baseline | S | ETH | HOTEL | UNIV | ZARA1 | ZARA2 | SDD | Inference (ms) |
|---|---|---|---|---|---|---|---|---|
| TF-O | 10 | 1.02/1.72 | 0.62/1.40 | 0.71/1.50 | 0.49/0.88 | 0.52/1.22 | 31.50/46.20 | ~92 |
| 20 | 0.68/1.30 | 0.47/0.88 | 0.49/0.70 | 0.36/0.58 | 0.26/0.65 | 22.10/35.50 | ~179 | |
| 50 | 0.45/0.80 | 0.16/0.31 | 0.24/0.57 | 0.22/0.39 | 0.18/0.32 | 11.80/16.95 | ~461 | |
| 100 | 0.42/0.75 | 0.15/0.28 | 0.22/0.45 | 0.20/0.38 | 0.15/0.28 | 8.23/15.28 | ~914 | |
| M-O | 10 | 1.15/2.22 | 0.83/1.93 | 0.94/2.10 | 0.57/1.12 | 0.55/1.38 | 36.90/52.87 | ~61 |
| 20 | 0.75/1.58 | 0.55/1.17 | 0.51/0.92 | 0.39/0.68 | 0.29/0.88 | 26.20/46.10 | ~125 | |
| 50 | 0.48/0.85 | 0.18/0.36 | 0.28/0.63 | 0.27/0.50 | 0.21/0.36 | 12.33/19.76 | ~306 | |
| 100 | 0.45/0.82 | 0.19/0.32 | 0.24/0.55 | 0.23/0.42 | 0.17/0.33 | 9.02/16.94 | ~613 | |
| T-Mamba | 10 | 0.97/1.65 | 0.59/1.37 | 0.68/1.45 | 0.47/0.84 | 0.50/1.12 | 30.34/44.63 | ~62 |
| 20 | 0.63/1.24 | 0.44/0.63 | 0.46/0.64 | 0.34/0.56 | 0.24/0.61 | 20.28/33.73 | ~124 | |
| 50 | 0.42/0.66 | 0.14/0.22 | 0.23/0.49 | 0.20/0.36 | 0.16/0.29 | 10.16/15.77 | ~311 | |
| 100 | 0.37/0.59 | 0.12/0.20 | 0.22/0.40 | 0.18/0.31 | 0.14/0.25 | 7.95/13.01 | ~621 |
| Methods | ETH | HOTEL | UNIV | ZARA1 | ZARA2 | AVG | SDD |
|---|---|---|---|---|---|---|---|
| SSA-GAN [26] | 0.68/1.44 | 0.69/1.55 | 0.55/1.22 | 0.30/0.63 | 0.36/0.75 | 0.52/1.12 | - |
| NMMP [58] | 0.67/1.24 | 0.34/0.64 | 0.52/1.12 | 0.33/0.66 | 0.30/0.62 | 0.43/0.86 | 21.14/37.17 |
| Social STGCNN [20] | 0.78/1.31 | 0.44/0.75 | 0.47/0.85 | 0.37/0.61 | 0.36/0.59 | 0.48/0.82 | - |
| TPPO [27] | 0.75/1.27 | 0.36/0.70 | 0.39/0.74 | 0.22/0.37 | 0.23/0.45 | 0.39/0.71 | - |
| InfoSTGCNN [59] | 0.61/0.82 | 0.48/0.71 | 0.40/0.64 | 0.33/0.51 | 0.30/0.44 | 0.42/0.62 | - |
| PECNet [40] | 0.63/1.12 | 0.25/0.42 | 0.37/0.66 | 0.28/0.52 | 0.19/0.36 | 0.34/0.62 | 9.97/15.89 |
| FlowChain [60] | 0.55/0.99 | 0.20/0.35 | 0.29/0.54 | 0.22/0.40 | 0.20/0.34 | 0.29/0.52 | 9.93/17.71 |
| Trajectron++[9] | 0.54/0.95 | 0.18/0.28 | 0.28/0.55 | 0.21/0.41 | 0.16/0.31 | 0.27/0.50 | 10.00/17.15 |
| GroupNet [19] | 0.46/0.73 | 0.15/0.25 | 0.26/0.49 | 0.21/0.39 | 0.17/0.33 | 0.25/0.44 | 9.31/16.11 |
| MID [33] | 0.42/0.75 | 0.15/0.28 | 0.22/0.45 | 0.20/0.38 | 0.15/0.28 | 0.23/0.43 | 8.23/15.28 |
| AgentFormer [13] | 0.44/0.78 | 0.13/0.21 | 0.25/0.45 | 0.19/0.30 | 0.14/0.24 | 0.23/0.40 | - |
| TP-EGT [61] | 0.41/0.68 | 0.13/0.21 | 0.29/0.50 | 0.18/0.30 | 0.16/0.27 | 0.23/0.39 | - |
| NPSN [62] | 0.39/0.59 | 0.16/0.26 | 0.23/0.39 | 0.19/0.33 | 0.14/0.25 | 0.22/0.36 | 8.63/11.75 |
| SocialVAE [29] | 0.44/0.67 | 0.14/0.21 | 0.24/0.41 | 0.19/0.32 | 0.14/0.26 | 0.23/0.37 | 8.10/11.72 |
| MGF [63] | 0.40/0.59 | 0.15/0.25 | 0.23/0.41 | 0.17/0.29 | 0.14/0.24 | 0.22/0.35 | 9.13/15.42 |
| EigenTraj [56] | 0.38/0.61 | 0.12/0.19 | 0.26/0.46 | 0.20/0.36 | 0.14/0.25 | 0.22/0.37 | 8.12/13.10 |
| LED [34] | 0.39/0.58 | 0.11/0.17 | 0.26/0.43 | 0.18/0.26 | 0.13/0.27 | 0.21/0.34 | 8.48/11.66 |
| SingularTraj [47] | 0.35/0.44 | 0.13/0.22 | 0.25/0.44 | 0.19/0.33 | 0.15/0.26 | 0.21/0.33 | - |
| Ours (iDMa) | 0.37/0.59 | 0.12/0.20 | 0.22/0.40 | 0.18/0.31 | 0.14/0.25 | 0.20/0.35 | 7.95/13.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, Y.; Fu, F.; Fang, M.; Feng, J.; Deng, L.; Ren, Z.; Gu, Y. iDMaTraj: Improved Diffusion Mamba Model for Stochastic Pedestrian Trajectory Prediction. Computers 2026, 15, 12. https://doi.org/10.3390/computers15010012
Wang Y, Fu F, Fang M, Feng J, Deng L, Ren Z, Gu Y. iDMaTraj: Improved Diffusion Mamba Model for Stochastic Pedestrian Trajectory Prediction. Computers. 2026; 15(1):12. https://doi.org/10.3390/computers15010012
Chicago/Turabian StyleWang, Yin, Feiran Fu, Ming Fang, Junlong Feng, Lijin Deng, Zhengwei Ren, and Yuejianan Gu. 2026. "iDMaTraj: Improved Diffusion Mamba Model for Stochastic Pedestrian Trajectory Prediction" Computers 15, no. 1: 12. https://doi.org/10.3390/computers15010012
APA StyleWang, Y., Fu, F., Fang, M., Feng, J., Deng, L., Ren, Z., & Gu, Y. (2026). iDMaTraj: Improved Diffusion Mamba Model for Stochastic Pedestrian Trajectory Prediction. Computers, 15(1), 12. https://doi.org/10.3390/computers15010012

