FPGA Modular Scalability Framework for Real-Time Noise Reduction in Images
Abstract
1. Introduction
2. Analysis of Existing Image Filters
2.1. Previous Work
2.2. Median Filter
3. Proposed Architecture of FPGA Implementation of Filter
3.1. Scalability of the Proposed Architecture
3.1.1. Modular Components
3.1.2. Memory Management
3.1.3. Processing Block
4. Results and Discussion
4.1. Result
4.2. Performance Comparison
4.2.1. Performance of FPGA
4.2.2. Performance of General-Purpose CPU
4.2.3. Comparison Across Platforms
4.2.4. Extended Comparative Evaluation
- i.
- CPU Baselines
- ii.
- GPU Implementations
- iii.
- FPGA Literature
- iv.
- Metrics Beyond Latency
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2009. [Google Scholar]
- Gómez-Moreno, H.; Gil-Jiménez, P.; Lafuente-Arroyo, S.; López-Sastre, R.; Maldonado-Bascón, S. A “Salt and Pepper” Noise Reduction Scheme for Digital Images Based on Support Vector Machines Classification and Regression. Sci. World J. 2014, 1, 826405. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Liu, B.; Chen, S.; Wu, Y.; Wang, F.; Liu, X.; Wei, R. Adaptive median filter salt and pepper noise suppression approach for common path coherent dispersion spectrometer. Sci. Rep. 2024, 14, 17445. [Google Scholar] [CrossRef]
- Baboshina, V.A.; Orazaev, A.R.; Shalugin, E.D.; Sinitca, A.M. Combined Use of a Bilateral and Median Filter to Suppress Gaussian Noise in Images. In Proceedings of the 11th Mediterranean Conference on Embedded Computing (MECO) 2022, Budva, Montenegro, 7–10 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, D.; Dezert, J.; Yang, Y. A new adaptive switching median filter for impulse noise reduction with pre-detection based on evidential reasoning. Signal Process. 2018, 147, 173–189. [Google Scholar] [CrossRef]
- Abreu, E.; Lightstone, M.; Mitra, S.K.; Arakawa, K. A new efficient approach for the removal of impulse noise from highly corrupted images. IEEE Trans. Image Process. 1996, 5, 1012–1025. [Google Scholar] [CrossRef]
- Toprak, A.; Güler, I. Impulse noise reduction in medical images with the use of switch mode fuzzy adaptive median filter. Digit. Signal Process. 2007, 17, 711–723. [Google Scholar] [CrossRef]
- Shah, A.; Bangash, J.I.; Khan, A.W.; Ahmad, I.; Khan, A. Comparative analysis of median filter and its variants for removal of impulse noise from gray scale images. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 505–519. [Google Scholar] [CrossRef]
- Ullah, F.; Kumar, K.; Rahim, T.; Khan, J.; Jung, Y. A new hybrid image denoising algorithm using adaptive and modified decision-based filters for enhanced image quality. Sci. Rep. 2025, 15, 8971. [Google Scholar] [CrossRef]
- Sadeghi, S. Classifying FPGA Technology in Digital Signal Processing: A review. Int. J. Eng. Technol. Sci. 2024, 2024, 1–10. [Google Scholar]
- Gon, A.; Mukherjee, A. Design and FPGA Implementation of an Efficient Architecture for Noise Removal in ECG Signals Using Lifting-Based Wavelet Denoising. In Proceedings of the 11th International Symposium on Electronic Systems Devices and Computing (ESDC) 2023, Sri City, India, 4–6 May 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Vasile, C.-E.; Ulmamei, A.-A.; Bira, C. Image Processing Hardware Acceleration—A Review of Operations Involved and Current Hardware Approaches. J. Imaging 2024, 10, 298. [Google Scholar] [CrossRef]
- Bakshi, A.; Panigrahy, M.; Das, J.K. FPGA Based Digital Filters Design to Remove Noise from ECG Signal. In Proceedings of the IEEE International Symposium on Smart Electronic Systems (iSES) 2021, Jaipur, India, 18–22 December 2021; pp. 236–239. [Google Scholar] [CrossRef]
- Kamarujjaman; Mukherjee, M.; Maitra, M. An efficient FPGA based de-noising architecture for removal of high-density impulse noise in images. In Proceedings of the IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN) 2015, Kolkata, India, 20–22 November 2015; pp. 262–266. [Google Scholar] [CrossRef]
- Matsubara, T.; Moshnyaga, V.G.; Hashimoto, K. A FPGA implementation of low-complexity noise removal. In Proceedings of the 17th IEEE International Conference on Electronics, Circuits and Systems 2010, Athens, Greece, 12–15 December 2010; pp. 255–258. [Google Scholar] [CrossRef]
- Oliveira, D.L.; Garcia, K.; Santana, L.; Faria, L.A. FPGA implementation of high-performance asynchronous pipelines with robust control. In Proceedings of the IEEE 9th Latin American Symposium on Circuits & Systems (LASCAS) 2018, Puerto Vallarta, Mexico, 25–28 February 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Jeon, B.; Lee, S.; Jin, J.; Nguyen, D.D.; Jeon, J.W. Design and Implementation of Hardware Architecture for Denoising Using FPGA. In Proceedings of the IEEE 9th International Colloquium on Signal Processing and Its Applications 2013, Kuala Lumpur, Malaysia, 8–10 March 2013; pp. 83–88. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Tomasz Kryjak, T. Hardware Architecture for High Throughput Event Visual Data Filtering with Matrix of IIR Filters Algorithm. In Proceedings of the 25th Euromicro Conference on Digital System Design (DSD) 2022, Maspalomas, Spain, 31 August–2 September 2022; pp. 284–291. [Google Scholar] [CrossRef]
- Sambamurthy, N.; Kamaraju, M. FPGA implementation of high-performance image de-noising filter. Analog Integr. Circuits Signal Process. 2024, 118, 387–398. [Google Scholar] [CrossRef]
- Isik, M.; Oldland, M.; Zhou, L. An Energy-Efficient Reconfigurable Autoencoder Implementation on FPGA. In Intelligent Systems and Applications, Proceedings of the SAI Intelligent Systems Conference, Amsterdam, The Netherlands, 7–8 September 2023; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2024; Volume 822, pp. 212–222. [Google Scholar] [CrossRef]
- Cao, N.; Liu, Y. High-Noise Grayscale Image Denoising Using an Improved Median Filter for the Adaptive Selection of a Threshold. Appl. Sci. 2024, 14, 635. [Google Scholar] [CrossRef]
- Liang, H.; Li, N.; Zhao, S. Salt and Pepper Noise Removal Method Based on a Detail-Aware Filter. Symmetry 2021, 13, 515. [Google Scholar] [CrossRef]
- Zhou, Y.; Ren, C.; Zhang, S.; Xue, X.; Liu, Y.; Lu, J.; Ding, C. A Second-Order Method for Removing Mixed Noise from Remote Sensing Images. Sensors 2023, 23, 7543. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, T.M.; Berriri, K.; Albekairi, M.; Ben Atitallah, A.; Sahbani, A.; Kaaniche, K. New Real-Time High-Density Impulsive Noise Removal Method Applied to Medical Images. Diagnostics 2023, 13, 1709. [Google Scholar] [CrossRef]
- Rahman, Z.; Aamir, M.; Bhutto, J.A.; Hu, Z.; Guan, Y. Innovative Dual-Stage Blind Noise Reduction in Real-World Images Using Multi-Scale Convolutions and Dual Attention Mechanisms. Symmetry 2023, 15, 2073. [Google Scholar] [CrossRef]
- Chen, J.; Zhan, Y.; Cao, H. Adaptive sequentially weighted median filter for image highly corrupted by impulse noise. IEEE Access 2019, 7, 158545–158556. [Google Scholar] [CrossRef]
- Arias-Castro, E.; Donoho, D.L. Does median filtering truly preserve edges better than linear filtering? Ann. Stat. 2009, 37, 1172–1206. [Google Scholar] [CrossRef]
- Li, Y. An Improved Median Filtering Image Denoising Algorithm. In Proceedings of the 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) 2018, Xi’an, China, 25–27 May 2018; pp. 2707–2710. [Google Scholar] [CrossRef]
- Sun, M. Comparison of processing results of median filter and mean filter on Gaussian noise. Appl. Comput. Eng. 2023, 5, 779–785. [Google Scholar] [CrossRef]
- Taha, T.B.; Mahmood, R.Z.; Altaher, E.G.S. Efficient Implementation of Smoothing Filters Using FPGA. In Proceedings of the 7th International Engineering Conference “Research & Innovation amid Global Pandemic” (IEC) 2021, Erbil, Iraq, 24–25 February 2021; pp. 73–77. [Google Scholar] [CrossRef]
- Xu, J.; Geng, J.; Yan, X.; Wang, H.; Xia, H. Implementing Real Time Image Processing Algorithm on FPGA. In Proceedings of the 12th International Conference on Digital Image Processing (ICDIP) 2020, Osaka, Japan, 19–22 May 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Sambamurthy, N.; Kamaraju, M. Scalable intelligent median filter core with adaptive impulse detector. Analog. Integr. Circuits Signal Process. 2024, 118, 425–435. [Google Scholar] [CrossRef]
- Djemal, R.; Demigny, D.; Tourki, R. A Real-Time Image Processing with a Compact FPGA-Based Architecture. J. Comput. Sci. 2005, 1, 207–214. [Google Scholar] [CrossRef]
- Alanazi, T.M. Accelerated FPGA-Based Vector Directional Filter for Real-Time Color Image Denoising with Enhanced Performance. Trans. Sci. 2023, 40, 1251–1257. [Google Scholar] [CrossRef]
- Christudhas, C.; Fathima, A. VLSI implementation of a modified min-max median filter using an area and power competent tritonic sorter for image denoising. Sci. Rep. 2024, 14, 28628. [Google Scholar] [CrossRef] [PubMed]
- Ng, B.K.; Raof, R.A.A.; Mahrom, N.; Eh Kan, P.; Zakaria, F.F. Comparative analysis of pipelining architectures in FPGAs and CPUs. In Proceedings of the Advances in Artificial Intelligence and Electronic Design Technologies, Perlis, Malaysia, 1–2 September 2024; Springer Nature Switzerland: Cham, Switzerland, 2025; pp. 481–491. [Google Scholar]
- Schneider, J. FPGA vs. GPU: Which One is Better for Deep Learning? IBM Think. Available online: http://www.ibm.com/think/topics/fpga-vs-gpu? (accessed on 8 December 2025).
- Sun, L.; Guo, H.; Ren, B.; Van Gool, L.; Timofte, R.; Li, Y.; Kong, X.; Park, H.; Yu, X.; Han, S.; et al. The Tenth NTIRE 2025 Image Denoising Challenge Report. arXiv 2025, arXiv:2504.12276. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, Y.; Gong, Y.; Yuan, H.; Liu, S. FPGA-based Acceleration for Convolutional Neural Networks: A Comprehensive Review. arXiv 2025, arXiv:2505.13461. [Google Scholar] [CrossRef]









| Salt and Pepper Noise (%) | Time Taken to Complete the Noise Filtering (ms) | |||
|---|---|---|---|---|
| FPGA (166 MHz) | FPGA (500 MHz) | FPGA (800 MHz) | CPU Intel Core i7-4720 2/6 GHz 12 GB RAM | |
| 10 | 8.275 | 2.758 | 1.724 | 0.0188 |
| 20 | 8.349 | 2.783 | 1.739 | 0.0161 |
| 30 | 8.418 | 2.806 | 1.754 | 0.0153 |
| 40 | 8.510 | 2.837 | 1.773 | 0.0153 |
| 50 | 8.569 | 2.857 | 1.785 | 0.0153 |
| Salt-and-Pepper Noise (%) | FPGA (166 MHz) | Python OpenCV Library | ||||
|---|---|---|---|---|---|---|
| Barbara | Boats | Cameraman | Barbara | Boats | Cameraman | |
| 10 | 9.7364 | 9.3900 | 9.1568 | 0.0319 | 0.0272 | 0.0307 |
| 20 | 9.7404 | 9.4105 | 9.1989 | 0.0171 | 0.0198 | 0.0150 |
| 30 | 9.7457 | 9.4234 | 9.2262 | 0.0154 | 0.0166 | 0.0158 |
| 40 | 9.7279 | 9.4374 | 9.2439 | 0.0195 | 0.0157 | 0.0160 |
| 50 | 9.7413 | 9.4596 | 9.2542 | 0.0165 | 0.0206 | 0.0160 |
| Resource Type | Available on Cyclone V | Used by Proposed Design | Utilization (%) | Remarks |
|---|---|---|---|---|
| Adaptive Logic Modules (ALMs) | 113,560 | 491 | <1% | Efficient pipelined implementation |
| Block Memory Bits | 12,492,800 | 524,288 | 4.2% | |
| Memory Blocks (M10K RAM) | 1220 | 64 | 5.2% | Input/output RAM buffers and pixel windows |
| Total Register | - | 121 | - | |
| Total Pins | 224 | 13 | 5.8% |
| Platform | Device | Algorithm | Resolution | Latency (ms) | FPS |
|---|---|---|---|---|---|
| Proposed FPGA | Intel Cyclone V @800 MHz | Median (this work) | 512 × 512 | 1.724 | 580 |
| FPGA [35] | Xilinx Zynq UltraScale+ | MMM filter | 512 × 512 | 2.5 | 400 |
| FPGA [20] | Intel Stratix 10 | Adaptive hybrid | 512 × 512 | 2.1 | 476 |
| CPU (optimized) [37] | Intel i9-13900K | C++/OpenMP Median | 512 × 512 | 12.3 | 81 |
| GPU (CUDA) [38] | NVIDIA RTX 4090 | CUDA Median/CNN | 512 × 512 | 2.1 | 476 |
| FPGA (CNN-based) [39] | Xilinx ZCU102 | CNN denoiser | 512 × 512 | 10 | 333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Boon Khai, N.; Mahrom, N.; Raof, R.A.A.; Sje Yin, T.; Ehkan, P. FPGA Modular Scalability Framework for Real-Time Noise Reduction in Images. Computers 2026, 15, 13. https://doi.org/10.3390/computers15010013
Boon Khai N, Mahrom N, Raof RAA, Sje Yin T, Ehkan P. FPGA Modular Scalability Framework for Real-Time Noise Reduction in Images. Computers. 2026; 15(1):13. https://doi.org/10.3390/computers15010013
Chicago/Turabian StyleBoon Khai, Ng, Norfadila Mahrom, Rafikha Aliana A. Raof, Teo Sje Yin, and Phaklen Ehkan. 2026. "FPGA Modular Scalability Framework for Real-Time Noise Reduction in Images" Computers 15, no. 1: 13. https://doi.org/10.3390/computers15010013
APA StyleBoon Khai, N., Mahrom, N., Raof, R. A. A., Sje Yin, T., & Ehkan, P. (2026). FPGA Modular Scalability Framework for Real-Time Noise Reduction in Images. Computers, 15(1), 13. https://doi.org/10.3390/computers15010013

