Exploring the Moderating Role of Personality Traits in Technology Acceptance: A Study on SAP S/4 HANA Learning Among University Students
Abstract
1. Introduction
1.1. The Importance of Technology Acceptance Theories in Contemporary IS Research
1.2. Innovative ERP Learning for Students Using SAP S/4HANA
1.3. Student Adoption of Technology: The Role of Personal Differences and the TAM Framework
1.4. Hypothesys Development
2. Research Method
3. Results
3.1. Descriptive Statistics and Reliability Analysis of Variables
3.2. Analysis of Interrelationships Among Variables
4. Discussion
5. Practical Implications
6. Conclusions
7. Limitations
8. Recommendations for Future Studies
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TAM | Technology Acceptance Model |
TRA | Theory of Reasoned Action |
TPB | Theory of Planned Behavior |
TIB | Theory of Interpersonal Behavior |
ETAM | Extension of TAM |
IM | Igbaria’s Model |
SCT | Social Cognitive Theory |
PCIT | Perceived Characteristics of Innovating Theory |
MM | Motivational Model |
U&G | Uses and Gratification Theory |
MPCU | Model of PC Utilization |
UTAUT | Unified Theory of Acceptance and Use of Technology |
C-UTAUT | Compatibility UTAUT |
PU | Perceived Usefulness |
BI | Behavioral Intention |
RU | Real Use |
PeU | Perceived Ease of Use |
IDT | Innovation Diffusion Theory |
BFI | Big Five Inventory |
BFF | Big Five Factor |
ERP | Enterprise Resource Planning |
References
- Taiwo, A.A.; Downe, A.G. The theory of user acceptance and use of technology (UTAUT): A meta-analytic review of empirical findings. J. Theor. Appl. Inf. Technol. 2013, 49, 48–59. [Google Scholar]
- Chaudhry, B.M.; Shafeie, S.; Mohamed, M. Theoretical models for acceptance of human implantable technologies: A narrative review. Informatics 2023, 10, 69. [Google Scholar] [CrossRef]
- Momani, A.M.; Jamous, M.M.; Hilles, S.M. Technology Acceptance Theories: Review and Classification. Int. J. Cyber Behav. Psychol. Learn. 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Taherdoost, H. A review of technology acceptance and adoption models and theories. Procedia Manuf. 2018, 22, 960–967. [Google Scholar] [CrossRef]
- King, W.R.; He, J. A meta-analysis of the technology acceptance model. Inf. Manag. 2006, 43, 740–755. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.M.; Olson, D.L.; Chung, S.H. The effect of organizational support on ERP implementation. Ind. Manag. Data Syst. 2010, 110, 269–283. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef]
- Lu, J.; Yu, C.; Liu, C.; Yao, J.E. Technology acceptance model for wireless Internet. Internet Res. 2003, 13, 206–222. [Google Scholar] [CrossRef]
- Alomary, A.; Woollard, J. How is technology accepted by users? A review of technology acceptance models and theories. In Proceedings of the IRES 17th International Conference, London, UK, 21 November 2015; pp. 1–4. [Google Scholar]
- Zheng, J.; Li, S.; Zheng, Y. Students’ technology acceptance, motivation and self-efficacy towards the eSchoolbag: An exploratory study. Int. J. Inform. 2017, 10, 1350–1358. [Google Scholar] [CrossRef]
- Devaraj, S.; Easley, R.F.; Crant, J.M. Research note—How does personality matter? Relating the five-factor model to technology acceptance and use. Inf. Syst. Res. 2008, 19, 93–105. [Google Scholar] [CrossRef]
- Ramírez-Correa, P.; Grandón, E.E.; Alfaro-Pérez, J.; Painén-Aravena, G. Personality types as moderators of the acceptance of information technologies in organizations: A multi-group analysis in PLS-SEM. Sustainability 2019, 11, 3987–4002. [Google Scholar] [CrossRef]
- Klaus, H.; Rosemann, M.; Gable, G.G. What is ERP? Inf. Syst. Front. 2000, 2, 141–162. [Google Scholar] [CrossRef]
- Gillis, A.S.; Jim, O. What Is SAP S/4HANA Cloud? TechTarget, 4 February 2025. Available online: https://www.techtarget.com/searchSAP/resources/SAP-S4HANA-Cloud/969435@ (accessed on 27 September 2025).
- O’Sullivan, J. Validating academic training versus organizational training: An analysis in the enterprise resource planning (ERP) field. J. Commun. Comput. 2013, 10, 1261–1270. [Google Scholar]
- Charland, P.; Léger, P.M.; Cronan, T.P.; Robert, J. Developing and Accessing ERP Competencies: Basic and Complex Knowledge. J. Comput. Inform. Syst. 2016, 56, 31–39. [Google Scholar] [CrossRef]
- Boyle, T.A.; Strong, S.E. Skill requirements of ERP graduates. J. Inf. Syst. Educ. 2006, 17, 403–412. [Google Scholar]
- Hawking, P.; Foster, S.; Bassett, P. An applied approach to teaching HR concepts using an ERP system. In Proceedings of the Informing Science and IT Education Conference, Cork, Ireland, 19–21 June 2002. Informing Science.org. [Google Scholar]
- Blount, Y.; Abedin, B.; Vatanasakdakul, S.; Erfani, S. Integrating Enterprise Resource Planning (SAP) in the Accounting Curriculum: A Systematic Literature Review and Case Study. Account. Educ. 2016, 25, 185–202. [Google Scholar]
- McCann, D.K.; Grey, D. SAP/ERP Technology in a Higher Education Curriculum and the University Alliance Program. Issues Inf. Syst. 2009, 10, 176–182. [Google Scholar]
- SAP UCC Magdeburg. Introduction to SAP S/4HANA. Next Generation Business Suite; PowerPoint presentation; University Competence Center Magdeburg, SAP University Alliances: Magdeburg, Germany, 2023. [Google Scholar]
- Wagner, B.; Weidner, S. SAP S/4HANA 2022: Global Bike—Sales and Distribution Case Study; Version 4.2, Beginner Level, Fiori 3.0 Interface; SAP University Alliances: Walldorf, Germany, 2023. [Google Scholar]
- Redwood Software. SAP S/4HANA Architecture: A Complete Guide. Redwood: Carson City, Nevada, 2025. Available online: https://www.redwood.com/resource/sap-s-4hana-architecture-guide/ (accessed on 27 September 2025).
- Garača, Ž. Factors related to the intended use of ERP systems. Manag.-J. Contemp. Manag. Issues 2011, 16, 23–42. [Google Scholar]
- Lea, B.-R.; Mirchandani, D.; Sumner, M.; Yu, K. Personality types in learning enterprise resource planning (ERP) systems. J. Comput. Inf. Syst. 2022, 62, 359–371. [Google Scholar] [CrossRef]
- Özbek, V.; Alnıaçık, Ü.; Koc, F.; Akkılıç, M.E.; Kaş, E. The impact of personality on technology acceptance: A study on smart phone users. Procedia-Soc. Behav. Sci. 2014, 150, 541–551. [Google Scholar] [CrossRef]
- Fink, M.; Bäuerle, A.; Schmidt, K.; Rheindorf, N.; Musche, V.; Dinse, H.; Moradian, S.; Weismüller, B.; Schweda, A.; Teufel, M.; et al. COVID-19-Fear Affects Current Safety Behavior Mediated by Neuroticism—Results of a Large Cross-Sectional Study in Germany. Front. Psychol. 2021, 12, 671768. [Google Scholar] [CrossRef]
- Soto, C.J.; John, O.P. The Next Big Five Inventory (BFI-2): Developing and Assessing a Hierarchical Model with 15 Facets to Enhance Bandwidth, Fidelity, and Predictive Power. J. Personal. Soc. Psychol. 2017, 113, 117–143. [Google Scholar] [CrossRef]
- Laidra, K.; Pullmann, H.; Allik, J. Personality and Intelligence as Predictors of Academic Achievement: A Cross-Sectional Study from Elementary to Secondary School. Personal. Individ. Differ. 2007, 42, 441–451. [Google Scholar] [CrossRef]
- Poropat, A.E. A Meta-Analysis of the Five-Factor Model of Personality and Academic Performance. Psychol. Bull. 2009, 135, 322–338. [Google Scholar] [CrossRef]
- Komarraju, M.; Karau, S.J.; Schmeck, R.R.; Avdic, A. The Big Five personality traits, learning styles, and academic achievement. Personal. Individ. Differ. 2011, 51, 472–477. [Google Scholar] [CrossRef]
- Grehan, P.M.; Flanagan, R.; Malgady, R.G. Successful graduate students: The roles of personality traits and emotional intelligence. Psychol. Sch. 2011, 48, 317–331. [Google Scholar] [CrossRef]
- O’cOnnor, M.C.; Paunonen, S.V. Big Five Personality Predictors of Post-Secondary Academic Performance. Personal. Individ. Differ. 2007, 43, 971–990. [Google Scholar] [CrossRef]
- Thompson, E. Development and validation of an international english big-five mini-markers. Personal. Individ. Differ. 2008, 45, 542–548. [Google Scholar] [CrossRef]
- Svendsen, G.B.; Johnsen, J.-A.K.; Almås-Sørensen, L.; Vittersø, J. Personality and Technology Acceptance: The Influence of Personality Factors on the Core Constructs of the Technology Acceptance Model. Behav. Inf. Technol. 2011, 32, 323–334. [Google Scholar] [CrossRef]
- Lin, M.Y.C.; Ong, C.S. Understanding information systems continuance intention: A five-factor model of personality perspective. In Proceedings of the Fourteenth Pacific Asia Conference on Information Systems, Taipei, China, 9–12 July 2010; p. 367. [Google Scholar]
- Terzis, V.; Moridis, C.N.; Economides, A.A. How Student’s Personality Traits Affect Computer-Based Assessment Acceptance: Integrating BFI with CBAAM. Comput. Hum. Behav. 2010, 28, 1985–1996. [Google Scholar] [CrossRef]
- Major, D.A.; Turner, J.E.; Fletcher, T.D. Linking Proactive Personality and the Big Five to Motivation to Learn and Development Activity. J. Appl. Psychol. 2006, 91, 927–935. [Google Scholar] [CrossRef]
- Anglim, J.; Horwood, S.; Smillie, L.D.; Marrero, R.J.; Wood, J.K. Predicting Psychological and Subjective Well-Being from Personality: A Meta-Analysis. Psychol. Bull. 2020, 146, 279–323. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Kappe, R.; van der Flier, H. Using Multiple and Specific Criteria to Assess the Predictive Validity of the Big Five Personality Factors on Academic Performance. J. Res. Personal. 2010, 44, 142–145. [Google Scholar] [CrossRef]
- Barrick, M.R.; Mount, M.K. The big five personality dimensions and job performance: A meta-analysis. Pers. Psychol. 1991, 44, 1–26. [Google Scholar] [CrossRef]
- Roberts, B.W.; Chernyshenko, O.S.; Stark, S.; Goldberg, L.R. The Structure of Conscientiousness: An Empirical Investigation Based on Seven Major Personality Questionnaires. Pers. Psychol. 2005, 58, 103–139. [Google Scholar] [CrossRef]
- Bagherian, M.; Mojambari, A.K. The relationship between Big Five personality traits and assertiveness. Tendenzen 2016, 25, 111–119. [Google Scholar]
- Judge, T.A.; Ilies, R. Relationship of personality to performance motivation: A meta-analytic review. J. Appl. Psychol. 2002, 87, 797. [Google Scholar] [CrossRef]
- McAdams, D.P. Three Lines of Personality Development: A Conceptual Itinerary. Eur. Psychol. 2015, 20, 252–264. [Google Scholar] [CrossRef]
- Lepine, J.A.; Colquitt, J.A.; Erez, A. Adaptability to Changing Task Contexts: Effects of General Cognitive Ability, Conscientiousness, and Openness to Experience. Pers. Psychol. 2000, 53, 563–593. [Google Scholar] [CrossRef]
- Gollwitzer, P.M. Implementation Intentions: Strong Effects of Simple Plans. Am. Psychol. 1999, 54, 493–503. [Google Scholar] [CrossRef]
- Gollwitzer, P.M.; Parks-Stamm, E.J.; Jaudas, A.; Sheeran, P. Flexible Tenacity in Goal Pursuit. In Handbook of Motivation Science; James, Y.S., Wendi, L.G., Eds.; Guilford Press: New York, NY, USA, 2008; pp. 325–341. [Google Scholar]
- Gollwitzer, P.M.; Gabriele, O. Goal Pursuit. In The Oxford Handbook of Human Motivation; Ryan, R.M., Ed.; Oxford University Press: Oxford, UK, 2012; pp. 208–231. [Google Scholar]
- DeYoung, C.G.; Peterson, J.B.; Higgins, D.M. Higher-Order Factors of the Big Five Predict Conformity: Are There Neuroses of Health? Personal. Individ. Differ. 2002, 33, 533–552. [Google Scholar] [CrossRef]
- Kline, R.; Bankert, A.; Levitan, L.; Kraft, P. Personality and Prosocial Behavior: A Multilevel Meta-Analysis. Political Sci. Res. Methods 2019, 7, 125–142. [Google Scholar] [CrossRef]
- McCrae, R.R.; Greenberg, D.M. Openness to Experience and Its Social Consequences. In Handbook of Individual Differences in Social Behavior; Leary, M.R., Hoyle, R.H., Eds.; Guilford Press: New York, NY, USA, 2009; pp. 257–273. [Google Scholar]
- Sánchez-Prieto, J.C.; Olmos-Migueláñez, S.; García-Peñalvo, F.J. MLearning and pre-service teachers: An assessment of the behavioral intention using an expanded TAM model. Comput. Hum. Behav. 2017, 72, 644–654. [Google Scholar] [CrossRef]
- Kang, D.; Santhanam, R. A Longitudinal Field Study of Training Practices in a Collaborative Application Environment. J. Manag. Inf. Syst. 2003, 20, 257–281. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Chen, Y.-C.; Wu, H.-C.; Chiu, T. Exploring the Difficulties in Learning ERP Systems from Students’ Perspective: The Case of Oracle E-Business Suite ERP. Int. J. Data Netw. Sci. 2022, 6, 1201–1214. [Google Scholar] [CrossRef]
- Stone, D.; Caroline, J.; Mark, W.; Shailey, M. User Interface Design and Evaluation; Morgan Kaufmann Publishers: Burlington, MA, USA, 2005. [Google Scholar]
- John, O.P.; Naumann, L.P.; Soto, C.J. Paradigm shift to the integrative big five trait taxonomy. In Handbook of Personality: Theory and Research; Guilford Press: New York, NY, USA, 2008; pp. 114–158. [Google Scholar]
- Bošković, D. Model prihvatanja tehnologije i primena na komunikacione platforme. In Doctoral Dissertation; University of Novi Sad: Novi Sad, Serbia, 2021. [Google Scholar]
- DeCoster, J.; Gallucci, M.; Iselin, A.M.R. Best Practices for Using Median Splits, Artificial Categorization, and Their Continuous Alternatives. J. Exp. Psychopathol. 2011, 2, 197–209. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics, 7th ed.; Pearson: Boston, MA, USA, 2019. [Google Scholar]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Publications: New York, NY, USA, 2017. [Google Scholar]
- McElroy, J.C.; Hendrickson, A.; Townsend, A.M.; DeMarie, S.M. Dispositional factors in internet use: Personality versus cognitive style. MIS Q. 2007, 31, 809–820. [Google Scholar] [CrossRef]
- Venkatesh, V.; Speier, C. Computer Technology Training in the Workplace: A Longitudinal Investigation of the Effect of Mood. Organ. Behav. Hum. Decis. Process. 1999, 79, 1–28. [Google Scholar] [CrossRef]
- Compeau, D.; Marcolin, B.; Kelley, H.; Higgins, C. Research Commentary—Generalizability of Information Systems Research Using Student Subjects: A Reflection on Our Practices and Recommendations for Future Research. Inf. Syst. Res. 2012, 23, 1093–1109. [Google Scholar] [CrossRef]
- Chen, C.C.; Law, C.C.; Yang, S.C. Managing ERP Implementation Failure: A Project Management Perspective. IEEE Trans. Eng. Manag. 2009, 56, 157–170. [Google Scholar] [CrossRef]
- Rouhani, S.; Mehri, M. Empowering Benefits of ERP Systems Implementation: Empirical Study of Industrial Firms. J. Syst. Inf. Technol. 2018, 20, 54–72. [Google Scholar] [CrossRef]
Variable | M | SD | min | max | Sk | Ku | α |
---|---|---|---|---|---|---|---|
SAP L.P. Index | 1.64 | 1.15 | 0.00 | 6.00 | 0.72 | 0.74 | 0.86 |
Perceived Usefulness (TAM) | 4.57 | 1.15 | 1.00 | 7.00 | 0.09 | 0.03 | 0.90 |
Perceived Ease of Use (TAM) | 4.38 | 0.93 | 1.00 | 7.00 | 0.44 | 1.87 | 0.84 |
Behavioral Intention (TAM) | 4.50 | 1.06 | 1.00 | 7.00 | 0.02 | 1.23 | 0.70 |
Actual Use (TAM) | 4.45 | 1.04 | 1.00 | 7.00 | 0.14 | 1.32 | 0.85 |
Extraversion (BFI) | 3.36 | 0.72 | 1.13 | 5.00 | −0.12 | −0.22 | 0.87 |
Neuroticism (BFI) | 3.09 | 0.60 | 1.50 | 5.00 | 0.12 | −0.01 | 0.84 |
Agreeableness (BFI) | 3.70 | 0.64 | 1.67 | 5.00 | −0.10 | −0.59 | 0.81 |
Conscientiousness (BFI) | 3.52 | 0.67 | 1.33 | 5.00 | −0.09 | −0.28 | 0.72 |
Openness (BFI) | 3.48 | 0.60 | 1.50 | 4.70 | 0.11 | −0.41 | 0.88 |
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SAP l.p.index | - | |||||||||||||||
PU (TAM) | 0.01 | 0.05 | - | |||||||||||||
PeU(TAM) | 0.09 * | −0.01 | 0.52 ** | - | ||||||||||||
BI (TAM) | −0.02 | 0.01 | 0.62 ** | 0.56 ** | - | |||||||||||
AU (TAM) | 0.01 | −0.05 | 0.68 ** | 0.54 ** | 0.74 ** | - | ||||||||||
Extraversion | −0.08 | 0.05 | 0.06 | 0.05 | 0.04 | 0.07 | 0.01 | 0.03 | −0.01 | 0.04 | −0.03 | −0.02 | - | |||
Neuroticism | −0.04 | 0.02 | 0.02 | −0.08 | 0.12 * | 0.02 | −0.01 | −0.03 | −0.03 | 0.01 | 0.01 | 0.03 | −0.09 | - | ||
Agreeableness | −0.17 ** | 0.02 | 0.06 | −0.02 | 0.01 | −0.02 | 0.09 | 0.06 | 0.05 | 0.09 | −0.01 | 0.05 | 0.40 ** | −0.02 | - | |
Conscientiousness | 0.15 ** | −0.09 * | 0.01 | 0.03 | 0.01 | −0.02 | 0.01 | −0.02 | 0.02 | 0.02 | −0.02 | 0.01 | 0.32 ** | 0.17 ** | 0.49 ** | - |
Openness | −0.05 | 0.13 ** | −0.01 | −0.04 | −0.05 | 0.10 * | 0.11 * | 0.07 | 0.01 | 0.10 * | 0.02 | 0.06 | 0.35 ** | 0.03 | 0.35 ** | 0.24 ** |
SAP Learning Performance Index | |||
---|---|---|---|
β | T | p | |
Extraversion | −0.02 | −0.33 | 0.74 |
Neuroticism | −0.08 | −1.51 | 0.13 |
Agreeableness | −0.13 | −2.01 | 0.04 |
Conscientiousness | 0.10 | 1.66 | 0.09 |
Openness | 0.03 | 0.50 | 0.61 |
Model Significance | F(5, 359) = 3.10, p < 0.01, R = 0.20, R2 = 0.04 |
Moderator | Lower Scores | Highers Scores |
---|---|---|
Perceived Usefulness (PU) | 50.5% participants | 49.5% participants |
Perceived Ease of Use (PeU) | 54.9% participants | 45.1% participants |
Behavioral Intention (BI) | 53.5% participants | 46.7% participants |
Actual Use (AU) | 53.3% participants | 46.7% participants |
Extraversion | Model Significance Parameters | Interaction Significance |
Perceived Usefulness (PU) | F = 1.17; R2 = 0.01; p = 0.32 | ΔR2 = 0.00; F = 1.32; p = 0.25 |
Perceived Ease of Use (PeU) | F = 2.35; R2 = 0.02; p = 0.07 | ΔR2 = 0.01; F = 4.14; p = 0.04 |
Behavioral Intention (BI) | F = 2.29; R2 = 0.02, p = 0.08 | ΔR2 = 0.01; F = 3.67; p = 0.05 |
Actual Use (AU) | F = 1.33; R2 = 0.01, p = 0.26 | ΔR2 = 0.01; F = 2.08; p = 0.15 |
Neuroticism | Model Significance Parameters | Interaction Significance |
Perceived Usefulness (PU) | F = 0.17; R2 = 0.00; p = 0.92 | ΔR2 = 0.00; F = 0.00; p = 0.98 |
Perceived Ease of Use (PeU) | F = 1.19; R2 = 0.01; p = 0.31 | ΔR2 = 0.00; F = 1.22; p = 0.27 |
Behavioral Intention (BI) | F = 0.62; R2 = 0.00, p = 0.60 | ΔR2 = 0.00; F = 0.57; p = 0.45 |
Actual Use (AU) | F = 0.28; R2 = 0.00, p = 0.84 | ΔR2 = 0.00; F = 0.27; p = 0.60 |
Agreeableness | Model Significance Parameters | Interaction Significance |
Perceived Usefulness (PU) | F = 4.67; R2 = 0.03; p = 0.00 | ΔR2 = 0.00; F = 0.18; p = 0.67 |
Perceived Ease of Use (PeU) | F = 5.79; R2 = 0.04; p = 0.00 | ΔR2 = 0.00; F = 1.99; p = 0.16 |
Behavioral Intention (BI) | F = 4.84; R2 = 0.04, p = 0.00 | ΔR2 = 0.00; F = 1.02; p = 0.31 |
Actual Use (AU) | F = 4.33; R2 = 0.03, p = 0.01 | ΔR2 = 0.00; F = 0.03; p = 0.86 |
Openness | Model Significance Parameters | Interaction Significance |
Perceived Usefulness (PU) | F = 0.66; R2 = 0.01; p = 0.57 | ΔR2 = 0.00; F = 0.56; p = 0.45 |
Perceived Ease of Use (PeU) | F = 1.37; R2 = 0.01; p = 0.25 | ΔR2 = 0.00; F = 1.33; p = 0.25 |
Behavioral Intention (BI) | F = 0.82; R2 = 0.04, p = 0.48 | ΔR2 = 0.00; F = 0.59; p = 0.44 |
Actual Use (AU) | F = 0.43; R2 = 0.00, p = 0.73 | ΔR2 = 0.00; F = 0.03; p = 0.86 |
Conscientiousness | Model Significance Parameters | Interaction Significance |
Perceived Usefulness (PU) | F = 5.17; R2 = 0.04; p = 0.00 | ΔR2 = 0.01; F = 4.97; p = 0.03 |
Perceived Ease of Use (PeU) | F = 4.71; R2 = 0.03; p = 0.00 | ΔR2 = 0.01; F = 2.52; p = 0.11 |
Behavioral Intention (BI) | F = 3.85; R2 = 0.03, p = 0.01 | ΔR2 = 0.00; F = 0.97; p = 0.32 |
Actual Use (AU) | F = 4.70; R2 = 0.03, p = 0.00 | ΔR2 = 0.01; F = 4.03; p = 0.05 |
Information Systems | M | SD | min | max | Sk | Ku |
SAP Learning Performance Index | 1.68 | 1.13 | 0.00 | 6.00 | 0.54 | 0.27 |
Perceived Usefulness (PU) (TAM) | 4.45 | 1.13 | 1.00 | 7.00 | 0.20 | 0.21 |
Perceived Ease of Use (TAM) | 4.34 | 0.88 | 1.00 | 7.00 | 0.49 | 2.34 |
Behavioral Intention (TAM) | 4.33 | 1.02 | 1.00 | 7.00 | −0.05 | 1.92 |
Actual Use (TAM) | 4.30 | 0.99 | 1.00 | 7.00 | −0.02 | 1.98 |
Extraversion (BFI) | 3.25 | 0.73 | 1.13 | 5.00 | −0.01 | 0.02 |
Neuroticism (BFI) | 3.07 | 0.60 | 1.50 | 5.00 | 0.09 | 0.15 |
Agreeableness (BFI) | 3.65 | 0.66 | 1.67 | 5.00 | −0.05 | −0.47 |
Conscientiousness (BFI) | 3.45 | 0.67 | 1.33 | 5.00 | −0.01 | −0.04 |
Openness (BFI) | 3.44 | 0.61 | 1.50 | 4.70 | 0.03 | 0.27 |
Management | M | SD | min | max | Sk | Ku |
SAP Learning Performance Index | 1.57 | 1.19 | 0.00 | 6.00 | 1.01 | 1.52 |
Perceived Usefulness (PU) (TAM) | 4.80 | 1.16 | 1.00 | 7.00 | −0.12 | 0.04 |
Perceived Ease of Use (TAM) | 4.47 | 1.00 | 1.00 | 7.00 | 0.32 | 1.33 |
Behavioral Intention (TAM) | 4.66 | 1.13 | 1.00 | 7.00 | 0.09 | 0.24 |
Actual Use (TAM) | 4.71 | 1.08 | 1.00 | 7.00 | 0.26 | 0.43 |
Extraversion (BFI) | 3.56 | 0.66 | 1.75 | 4.75 | −0.26 | −0.62 |
Neuroticism (BFI) | 3.13 | 0.59 | 1.63 | 4.63 | 0.18 | −0.32 |
Agreeableness (BFI) | 3.79 | 0.60 | 2.56 | 5.00 | −0.15 | −0.94 |
Conscientiousness (BFI) | 3.64 | 0.67 | 1.78 | 5.00 | −0.04 | −0.64 |
Openness (BFI) | 3.55 | 0.58 | 1.80 | 4.60 | −0.38 | −0.32 |
Extraversion | Model Significance Parameters | Interaction Significance |
Perceived Usefulness × Group | F = 1.12; R2 = 0.02; p = 0.35 | ΔR2 = 0.00; F = 0.10; p = 0.75 |
Perceived Ease of Use × Group | F = 2.19; R2 = 0.04; p = 0.03 | ΔR2 = 0.01; F = 3.44; p = 0.06 |
Intention to Use × Group | F = 1.53; R2 = 0.03, p = 0.16 | ΔR2 = 0.00; F = 0.26; p = 0.61 |
Actual Use × Group | F = 1.34; R2 = 0.02, p = 0.33 | ΔR2 = 0.00; F = 0.29; p = 0.59 |
Neuroticism | Model Significance Parameters | Interaction Significance |
Perceived Usefulness × Group | F = 0.66; R2 = 0.01; p = 0.77 | ΔR2 = 0.00; F = 0.00; p = 0.96 |
Perceived Ease of Use × Group | F = 1.33; R2 = 0.02; p = 0.24 | ΔR2 = 0.00; F = 0.61; p = 0.43 |
Intention to Use × Group | F = 0.91; R2 = 0.02, p = 0.50 | ΔR2 = 0.00; F = 0.00; p = 0.99 |
Actual Use × Group | F = 0.87; R2 = 0.02, p = 0.53 | ΔR2 = 0.00; F = 0.00; p = 0.95 |
Agreeableness | Model Significance Parameters | Interaction Significance |
Perceived Usefulness × Group | F = 2.72; R2 = 0.05; p = 0.01 | ΔR2 = 0.00; F = 0.03; p = 0.86 |
Perceived Ease of Use × Group | F = 3.45; R2 = 0.06; p = 0.00 | ΔR2 = 0.00; F = 1.12; p = 0.29 |
Intention to Use × Group | F = 2.80; R2 = 0.05, p = 0.01 | ΔR2 = 0.00; F = 0.02; p = 0.89 |
Actual Use × Group | F = 2.86; R2 = 0.05, p = 0.01 | ΔR2 = 0.00; F = 0.15; p = 0.70 |
Conscientiousness | Model Significance Parameters | Interaction Significance |
Perceived Usefulness × Group | F = 3.04; R2 = 0.05; p = 0.00 | ΔR2 = 0.00; F = 0.01; p = 0.92 |
Perceived Ease of Use × Group | F = 3.31; R2 = 0.06; p = 0.00 | ΔR2 = 0.01; F = 3.24; p = 0.07 |
Intention to Use × Group | F = 2.28; R2 = 0.04, p = 0.03 | ΔR2 = 0.00; F = 0.08; p = 0.78 |
Actual Use × Group | F = 3.16; R2 = 0.05, p = 0.00 | ΔR2 = 0.00; F = 0.00; p = 0.99 |
Openness | Model Significance Parameters | Interaction Significance |
Perceived Usefulness × Group | F = 1.58; R2 = 0.03; p = 0.14 | ΔR2 = 0.00; F = 0.79; p = 0.37 |
Perceived Ease of Use × Group | F = 1.97; R2 = 0.03; p = 0.06 | ΔR2 = 0.00; F = 0.78; p = 0.38 |
Intention to Use × Group | F = 1.48; R2 = 0.03, p = 0.17 | ΔR2 = 0.00; F = 0.62; p = 0.43 |
Actual Use × Group | F = 1.42; R2 = 0.03, p = 0.20 | ΔR2 = 0.00; F = 0.33; p = 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barjaktarovic, S.; Kovacevic, I.; Pantelic, O. Exploring the Moderating Role of Personality Traits in Technology Acceptance: A Study on SAP S/4 HANA Learning Among University Students. Computers 2025, 14, 445. https://doi.org/10.3390/computers14100445
Barjaktarovic S, Kovacevic I, Pantelic O. Exploring the Moderating Role of Personality Traits in Technology Acceptance: A Study on SAP S/4 HANA Learning Among University Students. Computers. 2025; 14(10):445. https://doi.org/10.3390/computers14100445
Chicago/Turabian StyleBarjaktarovic, Sandra, Ivana Kovacevic, and Ognjen Pantelic. 2025. "Exploring the Moderating Role of Personality Traits in Technology Acceptance: A Study on SAP S/4 HANA Learning Among University Students" Computers 14, no. 10: 445. https://doi.org/10.3390/computers14100445
APA StyleBarjaktarovic, S., Kovacevic, I., & Pantelic, O. (2025). Exploring the Moderating Role of Personality Traits in Technology Acceptance: A Study on SAP S/4 HANA Learning Among University Students. Computers, 14(10), 445. https://doi.org/10.3390/computers14100445