Quasi/Periodic Noise Reduction in Images Using Modified Multiresolution-Convolutional Neural Networks for 3D Object Reconstructions and Comparison with Other Convolutional Neural Network Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Processing of Database Images
- An absolute phase image is obtained by an unwrapping algorithm which contains the 3D information of an object or surface in the spatial domain.
- The absolute phase image is transformed to the frequency domain using the fast Fourier transform.
- A convolution with a Laplacian kernel of size is applied to the image in the frequency domain to highlight the pixels that contain corrupted frequencies.
- A second image is created from the original frequency domain image as a mask, in order to preserve the central region which contain most of information of the image.
- After the convolution, the pixels with frequencies corrupted are replaced by the mean of their neighbors pixels, and the mask is applied to recover the original central region completing with this the process of filtering.
- An inverse fast Fourier transform is then applied to the frequency domain image filtered to obtain an image in the spatial domain.
- The filtered image in the spatial domain it is then processed by a smoothing filter in order to reduce the noise remaining.
- Finally, a filtered image from an image with quasi/periodic noise is added to a database.
2.2. Construction of Convolutional Neural Network Model
2.3. U-Net Network
2.4. FCN32s Network
2.5. Multiresolution-CNN
2.6. Modified Multiresolution-CNN Network Proposed
3. Results and Discussion
3.1. Experiment 1: Parameters Proposed by the Authors of Each CNN
3.2. Experiment 2: Best Parameters Obtained with the Proposed Convolutional Neural Network and Applied to the Other CNNs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- An, H.; Cao, Y.; Zhang, Y.; Li, H. Phase-shifting temporal phase unwrapping algorithm for high-speed fringe projection profilometry. IEEE Trans. Instrum. Meas. 2023, 72, 1–9. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, M.; Zhou, F.; You, D. Stable 3D measurement method for high dynamic range surfaces based on fringe projection profilometry. Opt. Lasers Eng. 2023, 166, 107542. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Xu, P.; Liu, J. Noise-induced phase error comparison in multi-frequency phase-shifting profilometry based on few fringes. Opt. Laser Technol. 2023, 159, 109034. [Google Scholar] [CrossRef]
- Cai, B.; Tong, C.; Wu, Q.; Chen, X. Gamma error correction algorithm for phase shift profilometry based on polar angle average. Measurement 2023, 217, 113074. [Google Scholar] [CrossRef]
- Chollet, F. Deep Learning with Python; Manning: Shelter Island, NY, USA, 2021. [Google Scholar]
- Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 604–624. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ji, X.; Ji, W.; Tian, Y.; Zhou, H. CASR: A context-aware residual network for single-image super-resolution. Neural Comput. Appl. 2020, 32, 14533–14548. [Google Scholar] [CrossRef]
- Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. The title of the cited article. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, W.; Feng, J.; Palaiahnakote, S.; Lu, T. Context-aware attention LSTM network for flood prediction. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 1301–1306. [Google Scholar]
- Naira, C.A.T.; Jos, C. Classification of people who suffer schizophrenia and healthy people by EEG signals using deep learning. Int. J. Adv. Comput. Sci. Appl. 2019, 10. [Google Scholar] [CrossRef]
- Hu, H.; Wang, H.; Bai, Y.; Liu, M. Determination of endometrial carcinoma with gene expression based on optimized Elman neural network. Appl. Math. Comput. 2019, 341, 204–214. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25. Available online: https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html (accessed on 20 May 2024). [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Computer Vision—ECCV 2014: 13th European Conference; Springer International Publishing: Zurich, Switzerland, 2014; pp. 184–199. [Google Scholar]
- Gharbi, M.; Chaurasia, G.; Paris, S.; Durand, F. Deep joint demosaicking and denoising. ACM Trans. Graph. (ToG) 2016, 35, 1–12. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Gu, S.; Zhang, L. Learning deep CNN denoiser prior for image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3929–3938. [Google Scholar]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, Y.; Wang, W. Moiré photo restoration using multiresolution convolutional neural networks. IEEE Trans. Image Process. 2018, 27, 4160–4172. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In MICCAI 2015: Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Martínez-Suárez, V.M.; Pedraza-Ortega, J.C.; Salazar-Colores, S.; Espinosa-Bernal, O.A.; Ramos-Arreguin, J.M. Environment emulation in 3d graphics software for fringe projection profilometry. In International Congress of Telematics and Computing; Springer International Publishing: Cham, Switzerland, 2022; pp. 122–138. [Google Scholar]
- Espinosa-Bernal, O.A.; Pedraza-Ortega, J.C.; Aceves-Fernández, M.A.; Martínez-Suárez, V.M.; Tovar-Arriaga, S. Adaptive Based Frequency Domain Filter for Periodic Noise Reduction in Images Acquired by Projection Fringes. In International Congress of Telematics and Computing; Springer International Publishing: Cham, Switzerland, 2022; pp. 18–32. [Google Scholar]
- Varghese, J. Adaptive threshold based frequency domain filter for periodic noise reduction. AEU-Int. J. Electron. Commun. 2016, 70, 1692–1701. [Google Scholar] [CrossRef]
- Haji, S.H.; Abdulazeez, A.M.; Darrell, T. Comparison of optimization techniques based on gradient descent algorithm: A review. PalArch’s J. Archaeol. Egypt/Egyptol. 2021, 18, 2715–2743. [Google Scholar]
- Elshamy, R.; Abu-Elnasr, O.; Elhoseny, M.; Elmougy, S. Improving the efficiency of RMSProp optimizer by utilizing Nestrove in deep learning. Sci. Rep. 2023, 13, 8814. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Jiang, J.; Bao, S.; Shi, W.; Wei, Z. Improved traffic sign recognition algorithm based on YOLO v3 algorithm. J. Comput. Appl. 2020, 40, 2472. [Google Scholar]
- Gustavo, A.M.J.; Carlos, P.O.J.; Fernández, A.; Antonio, M. Reconstrucción Tridimensional de Objetos Sintéticos Mediante Desplazamiento de Fase. Congreso Nacional de Mecatrónica. Available online: https://www.mecamex.net/revistas/LMEM/revistas/LMEM-V11-N01-03.pdf (accessed on 12 April 2024).
Parameter | U-Net | FCN32s | Multiresolution-CNN | Modified Multiresolution-CNN |
---|---|---|---|---|
Batch-size | 4 | 8 | 8 | 32 |
Initials weights | Gaussian random (Mean = 0.0, std = 0.01) | Pre-trained VGGNet | Gaussian random (Mean = 0.0, std = 0.01) | Gaussian random (Mean = 0.0, std = 0.01) |
Bias | 0.0 | 0.0 | 0.0 | 0.0 |
Learning rate | ||||
Optimizer | RMSprop() | RMSprop() | Adam() | Adam() |
Training loss | MSELoss() | BCEWithLogitsLoss() | MSELoss() | MSELoss() |
Validation loss | MSELoss() | BCEWithLogitsLoss() | MSELoss() | MSELoss() |
Test planing (train, val, test) | 70%, 10%, 20% | 70%, 10%, 20% | 70%, 10%, 20% | 70%, 10%, 20% |
Image size (width, height) | pixels | pixels | pixels | pixels |
Set train images | 276 | 276 | 276 | 276 |
Set validation images | 27 | 27 | 27 | 27 |
Set test images | 69 | 69 | 69 | 69 |
Parameter | U-Net | FCN32s | Multiresolution-CNN | Modified Multiresolution-CNN |
---|---|---|---|---|
Batch-size | 4 | 4 | 4 | 4 |
Initials weights | Gaussian random (Mean = 0.0, std = 0.01) | Gaussian random (Mean = 0.0, std = 0.01) | Gaussian random (Mean = 0.0, std = 0.01) | Gaussian random (Mean = 0.0, std = 0.01) |
Bias | 0.0 | 0.0 | 0.0 | 0.0 |
Learning rate | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Optimizer | Adam() | Adam() | Adam() | Adam() |
Training loss | MSELoss() | MSELoss() | MSELoss() | MSELoss() |
Validation loss | MSELoss() | MSELoss() | MSELoss() | MSELoss() |
Test planing (train, val, test) | 70%, 10%, 20% | 70%, 10%, 20% | 70%, 10%, 20% | 70%, 10%, 20% |
Images size (Width, Height) | pixels | pixels | pixels | pixels |
Set train images | 276 | 276 | 276 | 276 |
Set validation images | 27 | 27 | 27 | 27 |
Set test images | 69 | 69 | 69 | 69 |
Results | UNet | FCN32s | Multires-CNN | Modified Multires-CNN |
---|---|---|---|---|
Training Loss | 0.171063 | 0.000709 | 0.000598 | 0.001756 |
Validation Loss | 0.194377 | 0.000271 | 0.000676 | 0.001477 |
Training time (HH:MM:SS) | 00:47:26 | 00:31:52 | 00:19:31 | 00:21:26 |
CNN | PSNR | IMMSE | SSIM | MSE (Profile) |
---|---|---|---|---|
Modified Multiresolution-CNN | 16.9822 | 0.0200 | 0.8255 | 0.0307 |
UNET | 10.2171 | 0.0951 | 0.6544 | 0.1360 |
FCN32s | 16.6979 | 0.0214 | 0.7725 | 0.0353 |
Multiresolution-CNN | 16.7512 | 0.0211 | 0.8097 | 0.0338 |
Results | UNet | FCN32s | Multires-CNN | Modified Multires-CNN |
---|---|---|---|---|
Training Loss | 0.001115 | 0.000632 | 0.000162 | 0.000064 |
Validation Loss | 0.000557 | 0.000251 | 0.00008 | 0.000127 |
Training time (HH:MM:SS) | 00:46:46 | 00:31:00 | 00:45:18 | 00:44:48 |
CNN | PSNR | IMMSE | SSIM | MSE (Profile) |
---|---|---|---|---|
Modified Multiresolution-CNN | 16.9878 | 0.0200 | 0.8245 | 0.0304 |
UNET | 17.7704 | 0.0167 | 0.8086 | 0.0236 |
FCN32s | 16.9770 | 0.0201 | 0.8115 | 0.0315 |
Multiresolution-CNN | 16.8422 | 0.0207 | 0.8226 | 0.0313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa-Bernal, O.A.; Pedraza-Ortega, J.C.; Aceves-Fernandez, M.A.; Martínez-Suárez, V.M.; Tovar-Arriaga, S.; Ramos-Arreguín, J.M.; Gorrostieta-Hurtado, E. Quasi/Periodic Noise Reduction in Images Using Modified Multiresolution-Convolutional Neural Networks for 3D Object Reconstructions and Comparison with Other Convolutional Neural Network Models. Computers 2024, 13, 145. https://doi.org/10.3390/computers13060145
Espinosa-Bernal OA, Pedraza-Ortega JC, Aceves-Fernandez MA, Martínez-Suárez VM, Tovar-Arriaga S, Ramos-Arreguín JM, Gorrostieta-Hurtado E. Quasi/Periodic Noise Reduction in Images Using Modified Multiresolution-Convolutional Neural Networks for 3D Object Reconstructions and Comparison with Other Convolutional Neural Network Models. Computers. 2024; 13(6):145. https://doi.org/10.3390/computers13060145
Chicago/Turabian StyleEspinosa-Bernal, Osmar Antonio, Jesús Carlos Pedraza-Ortega, Marco Antonio Aceves-Fernandez, Victor Manuel Martínez-Suárez, Saul Tovar-Arriaga, Juan Manuel Ramos-Arreguín, and Efrén Gorrostieta-Hurtado. 2024. "Quasi/Periodic Noise Reduction in Images Using Modified Multiresolution-Convolutional Neural Networks for 3D Object Reconstructions and Comparison with Other Convolutional Neural Network Models" Computers 13, no. 6: 145. https://doi.org/10.3390/computers13060145
APA StyleEspinosa-Bernal, O. A., Pedraza-Ortega, J. C., Aceves-Fernandez, M. A., Martínez-Suárez, V. M., Tovar-Arriaga, S., Ramos-Arreguín, J. M., & Gorrostieta-Hurtado, E. (2024). Quasi/Periodic Noise Reduction in Images Using Modified Multiresolution-Convolutional Neural Networks for 3D Object Reconstructions and Comparison with Other Convolutional Neural Network Models. Computers, 13(6), 145. https://doi.org/10.3390/computers13060145