Automated Detection of Improper Sitting Postures in Computer Users Based on Motion Capture Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
- SK—regular working posture when using a standard keyboard;
- EK—regular working posture when using an ergonomic keyboard;
- EKC—correct working posture when using an ergonomic keyboard.
2.2. Initial Processing and Data Transformation
- World coordinate displacement X indicates the changes in the position of each sensor. A total of three results per sensor are obtained—Xx, Xy, Xz—one for each dimension. The unit in which the obtained results are measured is the meter.
- Velocity V indicates the speed with which each sensor is displaced. A total of three results per sensor are obtained—Vx, Vy, Vz—one for each dimension. The unit in which the obtained results are measured is meters per second.
- World coordinate module’s posture data Q, four results per sensor are obtained—Qs, Qx, Qy, Qz.
- Module coordinate accelerated speed A, which measures the acceleration of each of the sensors, with three results obtained per sensor—Ax, Ay, Az. The unit in which the obtained results are measured is g.
- Module coordinate accelerated speed M, which measures the acceleration of each of the sensors, with three results obtained per sensor—Mx, My, Mz. The unit in which the obtained results are measured is radian per second.
2.3. Mean Value Removal
3. Data Processing and Evaluation
3.1. Feature Extraction
- Activity-only dataset;
- Mobility-only dataset;
- Complexity-only dataset;
- Activity- and Mobility-only dataset;
- Activity- and Complexity-only dataset;
- Mobility- and Complexity-only dataset;
- Activity, Mobility and Complexity dataset.
- Hands: 8 sensors with 16 parameters calculated per sensor = 128 to 384 features;
- Back: 6 sensors with 16 parameters calculated per sensor = 96 to 288 features;
- Fingers: 38 sensors with 10 parameters calculated per sensor = 380 to 1140 features.
3.2. Feature Ranking
3.3. Classification
- Decision tree: Maximum number of splits and split criterion (Gini’s diversity index, Twoing rule, maximum deviance reduction).
- kNN: Number of neighbors (range 1–1000), distance metric (Euclidean, city block, Chebyshev, cubic, Mahalanobis, cosine, correlation, Spearman, Hamming, Jaccard), distance weight (equal, inverse, squared inverse) and data standardization.
- SVM (for both linear and Gaussian kernels): box constraint level and data standardization. The multiclass method chosen for both kernel types is “One-vs-All”.
4. Results
4.1. Average Mean Value Visualization and Analysis
4.2. Posture and Activity Classification
4.3. Feature Ranking Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Fingers | Arms | Back | |||
---|---|---|---|---|---|
Features | Number of Occurrences | Features | Number of Occurrences | Features | Number of Occurrences |
MobAzS22 | 9 | MobWyS9 | 9 | MobWxS19 | 9 |
MobAyS23 | 9 | MobXxS10 | 9 | MobWxS20 | 9 |
MobAzS25 | 9 | MobVyS10 | 9 | MobWxS21 | 9 |
MobAzS29 | 9 | MobWzS10 | 9 | MobWzS17 | 8 |
MobAzS33 | 9 | MobAyS11 | 9 | MobAxS18 | 8 |
MobAzS37 | 9 | MobAyS14 | 9 | MobAxS19 | 8 |
MobAzS41 | 9 | MobWxS14 | 9 | MobAxS20 | 8 |
MobAyS42 | 9 | MobVyS15 | 9 | MobAyS21 | 8 |
MobAzS43 | 9 | MobVyS9 | 8 | MobAzS21 | 8 |
MobWzS43 | 9 | MobVzS9 | 8 | MobWzS16 | 7 |
MobAzS44 | 9 | MobWzS9 | 8 | MobXzS17 | 7 |
MobWyS45 | 9 | MobQsS10 | 8 | MobWxS18 | 7 |
MobAzS48 | 9 | MobWxS10 | 8 | MobWyS18 | 7 |
MobAzS52 | 9 | MobWxS11 | 8 | MobWyS19 | 7 |
MobAzS56 | 9 | MobQsS13 | 8 | MobWyS20 | 7 |
MobAyS22 | 8 | MobWzS13 | 8 | MobAxS21 | 7 |
MobAzS23 | 8 | MobWzS14 | 8 | MobXzS16 | 6 |
MobWxS23 | 8 | MobXxS15 | 8 | MobVzS16 | 6 |
MobAyS24 | 8 | MobWxS15 | 8 | MobWxS16 | 6 |
MobWxS24 | 8 | MobXxS9 | 7 | MobWxS17 | 6 |
MobAxS25 | 8 | MobQsS9 | 7 | MobXzS18 | 6 |
MobAyS25 | 8 | MobAzS9 | 7 | MobAyS18 | 6 |
MobAxS29 | 8 | MobWxS9 | 7 | MobAyS19 | 6 |
MobAyS29 | 8 | MobVzS10 | 7 | MobVyS20 | 6 |
MobAzS30 | 8 | MobAyS10 | 7 | MobAyS20 | 6 |
MobAzS31 | 8 | MobXxS11 | 7 | MobVyS21 | 6 |
MobAzS32 | 8 | MobXxS13 | 7 | MobWyS21 | 6 |
MobAyS33 | 8 | MobVzS13 | 7 | MobWzS21 | 6 |
MobAzS34 | 8 | MobWxS13 | 7 | MobAxS16 | 5 |
MobAzS35 | 8 | MobWyS13 | 7 | MobAxS17 | 5 |
MobAzS36 | 8 | MobVyS14 | 7 | MobVyS19 | 5 |
MobAyS37 | 8 | MobAzS14 | 7 | MobAzS19 | 5 |
MobAyS38 | 8 | MobWyS14 | 7 | MobWzS19 | 5 |
MobAyS39 | 8 | MobAzS15 | 7 | MobVxS20 | 5 |
MobAyS40 | 8 | CmpWzS9 | 7 | MobAzS20 | 5 |
MobWxS42 | 8 | CmpXxS10 | 7 | MobWzS20 | 5 |
MobWzS42 | 8 | MobWzS8 | 6 | MobVxS21 | 5 |
MobAyS43 | 8 | MobAyS9 | 6 | CmpAyS21 | 5 |
MobWxS43 | 8 | MobAzS10 | 6 | ActAxS18 | 4 |
ActSzS45 | 7 | MobWyS10 | 6 | ActAyS18 | 4 |
MobAxS24 | 7 | MobAzS11 | 6 | ActAxS19 | 4 |
MobWzS24 | 7 | MobWyS11 | 6 | ActAyS19 | 4 |
MobAyS26 | 7 | MobVyS13 | 6 | ActAxS20 | 4 |
MobAzS26 | 7 | MobXxS14 | 6 | ActAyS20 | 4 |
MobWxS26 | 7 | MobVzS14 | 6 | MobVxS16 | 4 |
MobWzS27 | 7 | MobQsS14 | 6 | MobVyS16 | 4 |
MobWzS28 | 7 | MobWzS15 | 6 | MobAyS16 | 4 |
MobAyS30 | 7 | CmpWyS9 | 6 | MobAzS16 | 4 |
MobAyS31 | 7 | CmpVzS10 | 6 | MobWyS16 | 4 |
MobAyS32 | 7 | CmpQsS14 | 6 | MobVyS17 | 4 |
MobAxS33 | 7 | CmpWzS14 | 6 | MobAyS17 | 4 |
MobAyS34 | 7 | ActAzS9 | 5 | MobAzS17 | 4 |
MobWxS34 | 7 | ActWxS9 | 5 | MobWyS17 | 4 |
MobAyS35 | 7 | ActXyS11 | 5 | MobAzS18 | 4 |
MobWxS35 | 7 | ActXzS11 | 5 | MobWzS18 | 4 |
MobAxS36 | 7 | ActAzS13 | 5 | MobXzS19 | 4 |
MobAyS36 | 7 | ActWxS13 | 5 | MobXzS21 | 4 |
MobWxS36 | 7 | MobXxS8 | 5 | MobQsS21 | 4 |
MobAxS37 | 7 | MobVzS8 | 5 | MobQyS21 | 4 |
MobAyS41 | 7 | MobWxS8 | 5 | CmpXzS16 | 4 |
MobAxS43 | 7 | MobVyS11 | 5 | CmpXzS18 | 4 |
MobAyS44 | 7 | MobVzS11 | 5 | CmpWxS18 | 4 |
MobAxS45 | 7 | MobQsS11 | 5 | CmpWxS20 | 4 |
MobAyS46 | 7 | MobWzS11 | 5 | CmpAxS21 | 4 |
MobAyS47 | 7 | MobVzS12 | 5 | CmpWxS21 | 4 |
MobAyS48 | 7 | MobWxS12 | 5 | MobVzS17 | 3 |
MobWxS49 | 7 | MobWyS12 | 5 | MobVyS18 | 3 |
MobAyS52 | 7 | MobWzS12 | 5 | MobVxS19 | 3 |
MobAzS53 | 7 | MobQsS15 | 5 | MobXxS20 | 3 |
MobAzS54 | 7 | MobAyS15 | 5 | MobXxS21 | 3 |
MobAzS55 | 7 | CmpQsS9 | 5 | MobXyS21 | 3 |
MobAyS56 | 7 | CmpWzS10 | 5 | CmpVzS16 | 3 |
ActAxS23 | 6 | CmpXxS11 | 5 | CmpAzS16 | 3 |
ActAxS38 | 6 | CmpWzS13 | 5 | CmpWxS16 | 3 |
ActAxS39 | 6 | ActWxS15 | 4 | CmpWyS16 | 3 |
ActAxS40 | 6 | MobVyS8 | 4 | CmpAzS17 | 3 |
MobAxS22 | 6 | MobXxS12 | 4 | CmpWxS17 | 3 |
MobAzS24 | 6 | MobAzS13 | 4 | CmpAxS18 | 3 |
MobWxS25 | 6 | MobVzS15 | 4 | CmpXyS19 | 3 |
MobWyS26 | 6 | CmpVyS9 | 4 | CmpAxS19 | 3 |
MobWzS30 | 6 | CmpVyS10 | 4 | CmpWxS19 | 3 |
MobWzS31 | 6 | CmpWzS11 | 4 | CmpXyS20 | 3 |
MobAxS32 | 6 | CmpWxS13 | 4 | CmpAxS20 | 3 |
MobWzS32 | 6 | CmpWyS13 | 4 | CmpXxS21 | 3 |
MobAxS34 | 6 | CmpAyS14 | 4 | CmpXyS21 | 3 |
MobAxS35 | 6 | CmpWxS14 | 4 | CmpVxS21 | 3 |
MobWxS37 | 6 | ActAzS8 | 3 | CmpVyS21 | 3 |
MobAxS38 | 6 | ActAyS9 | 3 | CmpQxS21 | 3 |
MobAzS38 | 6 | ActSxS11 | 3 | CmpQyS21 | 3 |
MobWxS38 | 6 | ActWxS11 | 3 | CmpQzS21 | 3 |
MobAzS39 | 6 | ActSxS15 | 3 | ActXxS16 | 2 |
MobWxS39 | 6 | ActAyS15 | 3 | ActAxS16 | 2 |
MobAzS40 | 6 | MobAyS8 | 3 | ActAxS17 | 2 |
MobWxS40 | 6 | MobWyS8 | 3 | ActAyS21 | 2 |
MobWzS41 | 6 | MobVxS11 | 3 | MobXyS20 | 2 |
MobAxS42 | 6 | MobVyS12 | 3 | MobXzS20 | 2 |
MobAzS42 | 6 | MobQsS12 | 3 | MobVzS21 | 2 |
MobWyS42 | 6 | MobAyS13 | 3 | MobQxS21 | 2 |
MobWyS44 | 6 | MobWyS15 | 3 | CmpVyS16 | 2 |
MobWzS44 | 6 | CmpVzS9 | 3 | CmpAxS16 | 2 |
References
- EUROSTAT. Use of Computers and the Internet by Employees. Available online: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=isoc_ci_cm_pn2&lang=en (accessed on 20 June 2022).
- Ellahi, A.; Khalil, M.S.; Akram, F. Computer users at risk: Health disorders associated with prolonged computer use. J. Bus. Manag. Econ. 2011, 2, 171–182. [Google Scholar]
- Borhany, T.; Shahid, E.; Siddique, W.A.; Ali, H. Musculoskeletal problems in frequent computer and internet users. J. Fam. Med. Prim. Care 2018, 7, 337. [Google Scholar] [CrossRef]
- Gustafsson, E.; Thomée, S.; Grimby-Ekman, A.; Hagberg, M. Texting on mobile phones and musculoskeletal disorders in young adults: A five-year cohort study. Appl. Ergon. 2017, 58, 208–214. [Google Scholar] [CrossRef]
- Shin, G.; Zhu, X. User discomfort, work posture and muscle activity while using a touchscreen in a desktop PC setting. Ergonomics 2011, 54, 733–744. [Google Scholar] [CrossRef]
- Sundelin, G.; Hagberg, M. Effects of exposure to excessive drafts on myoelectric activity in shoulder muscles. J. Electromyogr. Kinesiol. 1992, 2, 36–41. [Google Scholar] [CrossRef]
- Carter, J.B.; Banister, E.W. Musculoskeletal problems in VDT work: A review. Ergonomics 1994, 37, 1623–1648. [Google Scholar] [CrossRef]
- Grieco, A.; Molteni, G.; Vito, G.D.; Sias, N. Epidemiology of musculoskeletal disorders due to biomechanical overload. Ergonomics 1998, 41, 1253–1260. [Google Scholar] [CrossRef]
- Swanson, N.G.; Galinsky, T.L.; Cole, L.L.; Pan, C.S.; Sauter, S.L. The impact of keyboard design on comfort and productivity in a text-entry task. Appl. Ergon. 1997, 28, 9–16. [Google Scholar] [CrossRef]
- Shein, M.M.; Hamilton-Wright, A.; Black, N.; Samson, M.; Lecanelier, M. Assessing ergonomic and postural data for pain and fatigue markers using machine learning techniques. In Proceedings of the 2015 International Conference and Workshop on Computing and Communication (IEMCON), Vancouver, BC, Canada, 15–17 October 2015; IEEE: Manhattan, NY, USA, 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Jaimes, A. Sit straight (and tell me what I did today) a human posture alarm and activity summarization system. In Proceedings of the 2nd ACM Workshop on Continuous Archival and Retrieval of Personal Experiences, Singapore, 11 November 2005; pp. 23–34. [Google Scholar]
- Mallare, J.C.T.; Pineda, D.F.G.; Trinidad, G.M.; Serafica, R.D.; Villanueva, J.B.K.; Cruz, A.R.D.; Vicerra, R.R.P.; Serrano, K.K.D.; Roxas, E.A. Sitting posture assessment using computer vision. In Proceedings of the 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Manila, Philippines, 1–3 December 2017; IEEE: Manhattan, NY, USA, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Mu, L.; Li, K.; Wu, C. A sitting posture surveillance system based on image processing technology. In Proceedings of the 2010 2nd International Conference on Computer Engineering and Technology, Chengdu, China, 16–18 April 2010; IEEE: Manhattan, NY, USA, 2010; Volume 1, p. V1-692. [Google Scholar] [CrossRef]
- Prueksanusak, B.; Rujivipatand, P.; Wongpatikaseree, K. An ergonomic chair with Internet of thing technology using SVM. In Proceedings of the 2019 4th Technology Innovation Management and Engineering Science International Conference (TIMES-iCON), Bangkok, Thailand, 11–13 December 2019; IEEE: Manhattan, NY, USA, 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Chopra, S.; Kumar, M.; Sood, S. Wearable posture detection and alert system. In Proceedings of the 2016 International Conference System Modeling & Advancement in Research Trends (SMART), Moradabad, India, 25–27 November 2016; IEEE: Manhattan, NY, USA, 2017; pp. 130–134. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Zhang, S.; Ye, X. Healthy human sitting posture estimation in RGB-D scenes using object context. Multimed. Tools Appl. 2017, 76, 10721–10739. [Google Scholar] [CrossRef]
- Kulikajevas, A.; Maskeliunas, R.; Damaševičius, R. Detection of sitting posture using hierarchical image composition and deep learning. PeerJ Comput. Sci. 2021, 7, e442. [Google Scholar] [CrossRef]
- Lin, P.C.; Chen, Y.J.; Chen, W.S.; Lee, Y.J. Automatic real-time occupational posture evaluation and select corresponding ergonomic assessments. Sci. Rep. 2022, 12, 2139. [Google Scholar] [CrossRef] [PubMed]
- Patalas-Maliszewska, J.; Halikowski, D.; Damaševičius, R. An automated recognition of work activity in industrial manufacturing using convolutional neural networks. Electronics 2021, 10, 2946. [Google Scholar] [CrossRef]
- Zhao, J.; Obonyo, E. Applying incremental Deep Neural Networks-based posture recognition model for ergonomics risk assessment in construction. Adv. Eng. Inform. 2021, 50, 101374. [Google Scholar] [CrossRef]
- Li, M.; Jiang, Z.; Liu, Y.; Chen, S.; Wozniak, M.; Scherer, R.; Damasevicius, R.; Wei, W.; Li, Z.; Li, Z. Sitsen: Passive sitting posture sensing based on wireless devices. Int. J. Distrib. Sens. Netw. 2021, 17, 15501477211024846. [Google Scholar] [CrossRef]
- Zemp, R.; Tanadini, M.; Plüss, S.; Schnüriger, K.; Singh, N.B.; Taylor, W.R.; Lorenzetti, S. Application of machine learning approaches for classifying sitting posture based on force and acceleration sensors. BioMed Res. Int. 2016, 2016, 5978489. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.; Arnrich, B.; Schumm, J.; Troster, G. Design and modeling of a textile pressure sensor for sitting posture classification. IEEE Sens. J. 2010, 10, 1391–1398. [Google Scholar] [CrossRef]
- Ma, C.; Li, W.; Gravina, R.; Fortino, G. Posture detection based on smart cushion for wheelchair users. Sensors 2017, 17, 719. [Google Scholar] [CrossRef]
- Ma, S.; Cho, W.H.; Quan, C.H.; Lee, S. A sitting posture recognition system based on 3 axis accelerometer. In Proceedings of the 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Chiang Mai, Thailand, 5–7 October 2016; IEEE: Manhattan, NY, USA, 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Ma, S.Y.; Shim, H.M.; Lee, S.M. Classification of sitting position by IMU built in neckband for preventing imbalance posture. J. Rehabil. Welf. Eng. Assist. Technol. 2015, 9, 285–291. [Google Scholar]
- Nakaseko, M.; Grandjean, E.; Hüunting, W.; Gierer, R. Studies on ergonomically designed alphanumeric keyboards. Hum. Factors 1985, 27, 175–187. [Google Scholar] [CrossRef]
- Honan, M.; Serina, E.; Tal, R.; Rempel, D. Wrist postures while typing on a standard and split keyboard. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting; Sage: Los Angeles, CA, USA, 1995; Volume 39, pp. 366–368. [Google Scholar] [CrossRef]
- Rempel, D.; Barr, A.; Brafman, D.; Young, E. The effect of six keyboard designs on wrist and forearm postures. Appl. Ergon. 2007, 38, 293–298. [Google Scholar] [CrossRef]
- Baker, N.A.; Cham, R.; Hale, E.; Cook, J.; Redfern, M.S. Digit kinematics during typing with standard and ergonomic keyboard configurations. Int. J. Ind. Ergon. 2007, 37, 345–355. [Google Scholar] [CrossRef]
- Szeto, G.P.; Lee, R. An ergonomic evaluation comparing desktop, notebook, and subnotebook computers. Arch. Phys. Med. Rehabil. 2002, 83, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Hjorth, B. EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 1970, 29, 306–310. [Google Scholar] [CrossRef]
- Feradov, F.; Ganchev, T.; Markova, V. Automated detection of cognitive load from peripheral physiological signals based on Hjorth’s parameters. In Proceedings of the 2020 International Conference on Biomedical Innovations and Applications (BIA), Varna, Bulgaria, 24–27 September 2020; pp. 85–88. [Google Scholar] [CrossRef]
- Feradov, F.; Ganchev, T.; Markova, V.; Kalcheva, N. EMD-based features for cognitive load and stress assessment from PPG signals. In Proceedings of the International Conference on Biomedical Innovations and Applications—BIA-2021, Varna, Bulgaria, 2–4 June 2022. [Google Scholar]
- Kira, K.; Rendell, L.A. A practical approach to feature selection. In Proceedings of the Ninth International Machine Learning Conference (ML92), Aberdeen, UK, 1–3 July 1992; pp. 249–256. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E. Data mining: Practical machine learning tools and techniques with Java implementations. ACM Sigmod Rec. 2002, 31, 76–77. [Google Scholar] [CrossRef]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 3rd ed.; Routledge: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
Subset | Dec. Tree | SVM (Lin) | SVM (rbf) | kNN | Sub. Mean |
---|---|---|---|---|---|
A | 94.1% | 95.5% | 89.7% | 91.7% | 92.7% |
M | 74.7% | 88.2% | 90.2% | 84.1% | 84.3% |
C | 71.5% | 86.8% | 88.1% | 81.1% | 81.9% |
AM | 97.4% | 97.8% | 96.3% | 96.9% | 97.1% |
AC | 94.3% | 95.5% | 93.2% | 86.9% | 92.5% |
MC | 89.3% | 95.6% | 95.4% | 90.9% | 92.8% |
AMC | 97.0% | 98.4% | 96.5% | 96.7% | 97.1% |
Class. Mean | 88.3% | 94.0% | 92.8% | 89.8% | 91.2% |
Subset | Dec. Tree | SVM (Lin) | SVM (rbf) | kNN | Sub. Mean |
---|---|---|---|---|---|
A | 95.8% | 92.8% | 88.5% | 91.9% | 92.2% |
M | 72.0% | 77.3% | 80.0% | 74.9% | 76.0% |
C | 69.3% | 78.0% | 79.4% | 72.7% | 74.8% |
AM | 96.0% | 94.6% | 92.5% | 92.7% | 93.9% |
AC | 95.9% | 93.7% | 88.6% | 91.6% | 92.4% |
MC | 72.6% | 83.1% | 82.9% | 75. 3% | 79.5% |
AMC | 95.8% | 94.6% | 89.9% | 86.3% | 91.6% |
Class. Mean | 85.3% | 87.7% | 86.0% | 85.0% | 86.0% |
Subset | Dec. Tree | SVM (Lin) | SVM (rbf) | kNN | Sub. Mean |
---|---|---|---|---|---|
A | 92.3% | 90.8% | 87.1% | 83.9% | 88.5% |
M | 71.7% | 84.3% | 85.8% | 77.6% | 79.8% |
C | 70.2% | 81.8% | 82.8% | 74.5% | 77.3% |
AM | 92.8% | 92.7% | 91.6% | 83.4% | 90.1% |
AC | 92.0% | 91.8% | 90.5% | 78.0% | 88.1% |
MC | 71.4% | 86.0% | 86.8% | 78.0% | 80.5% |
AMC | 92.2% | 92.2% | 91.5% | 80.6% | 89.1% |
Class. Mean | 83.2% | 88.5% | 88.0% | 79.4% | 84.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feradov, F.; Markova, V.; Ganchev, T. Automated Detection of Improper Sitting Postures in Computer Users Based on Motion Capture Sensors. Computers 2022, 11, 116. https://doi.org/10.3390/computers11070116
Feradov F, Markova V, Ganchev T. Automated Detection of Improper Sitting Postures in Computer Users Based on Motion Capture Sensors. Computers. 2022; 11(7):116. https://doi.org/10.3390/computers11070116
Chicago/Turabian StyleFeradov, Firgan, Valentina Markova, and Todor Ganchev. 2022. "Automated Detection of Improper Sitting Postures in Computer Users Based on Motion Capture Sensors" Computers 11, no. 7: 116. https://doi.org/10.3390/computers11070116
APA StyleFeradov, F., Markova, V., & Ganchev, T. (2022). Automated Detection of Improper Sitting Postures in Computer Users Based on Motion Capture Sensors. Computers, 11(7), 116. https://doi.org/10.3390/computers11070116