Detection of Circulating Tumour Cells from Blood of Breast Cancer Patients via RT-qPCR
Abstract
:1. Breast Cancer
2. Circulating Tumour Cells
3. CTC-Detection Methods
4. Real-Time PCR
5. CTC-Detection via Real-Time PCR
6. Conclusions and Future Prospective
Acknowledgments
Conflicts of Interest
References
- Key Facts: Breast Cancer. Available online: http://www.who.int/ (accessed on 23 May 2013).
- SEER Stat Fact Sheets: Breast. Available online: http://www.cancer.gov/ (accessed on 23 May 2013).
- Breast Cancer Statistics. Available online: http://www.cancerresearchuk.org/ (accessed on 23 May 2013).
- Pantel, K.; Brakenhoff, R.H. Dissecting the metastatic cascade. Nat. Rev. Cancer 2004, 4, 448–456. [Google Scholar] [CrossRef]
- Franken, B.; de Groot, M.R.; Mastboom, W.J.; Vermes, I.; van der Palen, J.; Tibbe, A.G.; Terstappen, L.W. Circulating tumor cells, disease recurrence and survival in newly diagnosed breast cancer. Breast Cancer Res. 2012, 14, R133. [Google Scholar] [CrossRef]
- Bragado, P.; Sosa, M.S.; Keely, P.; Condeelis, J.; Aguirre-Ghiso, J.A. Microenvironments dictating tumor cell dormancy. Recent Results Cancer Res. 2012, 195, 25–39. [Google Scholar] [CrossRef]
- Riethdorf, S.; Pantel, K. Disseminated tumor cells in bone marrow and circulating tumor cells in blood of breast cancer patients: Current state of detection and characterization. Pathobiology 2008, 75, 140–148. [Google Scholar] [CrossRef]
- Pantel, K.; Woelfle, U. Micrometastasis in breast cancer and other solid tumors. J. Biol. Regul. Homeost. Agents 2004, 18, 120–125. [Google Scholar]
- Ring, A.; Smith, I.E.; Dowsett, M. Circulating tumour cells in breast cancer. Lancet Oncol. 2004, 5, 79–88. [Google Scholar] [CrossRef]
- Smerage, J.B.; Hayes, D.F. The measurement and therapeutic implications of circulating tumour cells in breast cancer. Br. J. Cancer 2006, 94, 8–12. [Google Scholar] [CrossRef]
- Diel, I.J.; Solomayer, E.F.; Costa, S.D.; Gollan, C.; Goerner, R.; Wallwiener, D.; Kaufmann, M.; Bastert, G. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N. Engl. J. Med. 1998, 339, 357–363. [Google Scholar] [CrossRef]
- Asworth, T. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust. Med. J. 1869, 14, 146–147. [Google Scholar]
- Graves, H.; Czerniecki, B.J. Circulating tumor cells in breast cancer patients: An evolving role in patient prognosis and disease progression. Patholog. Res. Int. 2011, 2011. Article ID 621090. [Google Scholar]
- Hermanek, P.; Sobin, L.H.; Wittekind, C. How to improve the present TNM staging system. Cancer 1999, 86, 2189–2191. [Google Scholar] [CrossRef]
- Singletary, S.E.; Patel-Parekh, L.; Bland, K.I. Treatment trends in early-stage invasive lobular carcinoma: A report from the National Cancer Data Base. Ann. Surg. 2005, 242, 281–289. [Google Scholar] [CrossRef]
- Edge, S.B.; Compton, C.C. Breast Cancer Staging(AJCC), 7th ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Ghossein, R.A.; Bhattacharya, S.; Rosai, J. Molecular detection of micrometastases and circulating tumor cells in solid tumors. Clin. Cancer Res. 1999, 5, 1950–1960. [Google Scholar]
- Veridex LLC: Cell Search. Available online: http://www.cellsearchctc.com/ (accessed on 28 May 2010).
- Lianidou, E.S.; Markou, A. Circulating tumor cells in breast cancer: Detection systems, molecular characterization, and future challenges. Clin. Chem. 2011, 57, 1242–1255. [Google Scholar] [CrossRef]
- Parkinson, D.R.; Dracopoli, N.; Petty, B.G.; Compton, C.; Cristofanilli, M.; Deisseroth, A.; Hayes, D.F.; Kapke, G.; Kumar, P.; Lee, J.S.; et al. Considerations in the development of circulating tumor cell technology for clinical use. J. Transl. Med. 2012, 10, 138. [Google Scholar] [CrossRef]
- Ozkumur, E.; Shah, A.M.; Ciciliano, J.C.; Emmink, B.J.; Miyamoto, D.T.; Brachtel, E.; Yu, M.; Chen, P.I.; Morgan, B.; Trautwein, J.; et al. Intertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci. Transl. Med. 2013, 5, 147–149. [Google Scholar]
- Alix-Panabieres, C.; Pantel, K. Circulating tumor cells: Liquid biopsy of cancer. Clin. Chem. 2013, 59, 110–118. [Google Scholar]
- Dawson, S.J.; Tsui, D.W.; Murtaza, M.; Biggs, H.; Rueda, O.M.; Chin, S.F.; Dunning, M.J.; Gale, D.; Forshew, T.; Mahler-Araujo, B.; et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 2013, 368, 1199–1209. [Google Scholar] [CrossRef]
- Pantel, K.; Diaz, L.A., Jr.; Polyak, K. Tracking tumor resistance using “liquid biopsies”. Nat. Med. 2013, 19, 676–677. [Google Scholar] [CrossRef]
- Andreopoulou, E.; Yang, L.Y.; Rangel, K.M.; Reuben, J.M.; Hsu, L.; Krishnamurthy, S.; Valero, V.; Fritsche, H.A.; Cristofanilli, M. Comparison of assay methods for detection of circulating tumor cells in metastatic breast cancer: AdnaGen adnatest breast cancer select/detect versus veridex cellsearch system. Int. J. Cancer 2012, 130, 1590–1597. [Google Scholar] [CrossRef]
- Devlin, T. Regulation of Gene Expression. In Textbook of Biochemistry with Clinical Correlations; Devlin, T., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2010; p. 257. [Google Scholar]
- Vandesompele, J.; de Preter, K.; Pattyn, F.; Poppe, B.; van Roy, N.; da Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Holland, P.M.; Abramson, R.D.; Watson, R.; Gelfand, D.H. Detection of specific polymerase chain reaction product by utilizing the 5'–3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 1991, 88, 7276–7280. [Google Scholar] [CrossRef]
- Zebisch, M.; Kölbl, A.; Andergassen, U.; Hutter, S.; Neugebauer, J.; Engelstädter, V.; Günthner-Biller, M.; Jeschke, U.; Friese, K. Detection of circulating tumour cells on mRNA levels with established breast cancer cell lines. Biomed. Rep. 2013. [Google Scholar] [CrossRef]
- Kurec, A.S.; Baltrucki, L.; Mason, D.Y.; Davey, F.R. Use of the APAAP method in the classification and diagnosis of hematologic disorders. Clin. Lab. Med. 1988, 8, 223–236. [Google Scholar]
- Noack, F.; Schmitt, M.; Bauer, J.; Helmecke, D.; Kruger, W.; Thorban, S.; Sandherr, M.; Kuhn, W.; Graeff, H.; Harbeck, N. A new approach to phenotyping disseminated tumor cells: Methodological advances and clinical implications. Int. J. Biol. Markers 2000, 15, 100–104. [Google Scholar]
- Ignatiadis, M.; Kallergi, G.; Ntoulia, M.; Perraki, M.; Apostolaki, S.; Kafousi, M.; Chlouverakis, G.; Stathopoulos, E.; Lianidou, E.; Georgoulias, V. Prognostic value of the molecular detection of circulating tumor cells using a multimarker reverse transcription-PCR assay for cytokeratin 19, mammaglobin A, and HER2 in early breast cancer. Clin. Cancer Res. 2008, 14, 2593–2600. [Google Scholar] [CrossRef]
- Ignatiadis, M.; Xenidis, N.; Perraki, M.; Apostolaki, S.; Politaki, E.; Kafousi, M.; Stathopoulos, E.N.; Stathopoulos, A.; Lianidou, E.; Chlouverakis, G.; et al. Different prognostic value of cytokeratin-19 mRNA positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. J. Clin. Oncol. 2007, 25, 5194–5202. [Google Scholar] [CrossRef]
- Daskalaki, A.; Agelaki, S.; Perraki, M.; Apostolaki, S.; Xenidis, N.; Stathopoulos, E.; Kontopodis, E.; Hatzidaki, D.; Mavroudis, D.; Georgoulias, V. Detection of cytokeratin-19 mRNA-positive cells in the peripheral blood and bone marrow of patients with operable breast cancer. Br. J. Cancer 2009, 101, 589–597. [Google Scholar] [CrossRef]
- De Albuquerque, A.; Kaul, S.; Breier, S.; Krabisch, P.; Fersis, N. Multimarker analysis of circulating tumor cells in peripheral blood of metastatic breast cancer patients: A step forward in personalized medicine. Breast Care 2012, 7, 7–12. [Google Scholar] [CrossRef]
- De Albuquerque, A.; Kubisch, I.; Ernst, D.; Breier, G.; Stamminger, G.; Fersis, N.; Stolzel, U.; Boese-Landgraf, J.; Eichler, A.; Kaul, S. Development of a molecular multimarker assay for the analysis of circulating tumor cells in adenocarcinoma patients. Clin. Lab. 2012, 58, 373–384. [Google Scholar]
- Saloustros, E.; Mavroudis, D. CTCs in primary breast cancer (II). Recent Results Cancer Res. 2012, 195, 187–192. [Google Scholar] [CrossRef]
- Androulakis, N.; Agelaki, S.; Perraki, M.; Apostolaki, S.; Bozionelou, V.; Pallis, A.; Kalbakis, K.; Mavroudis, D.; Georgoulias, V. Clinical relevance of circulating CK-19mRNA-positive tumour cells before front-line treatment in patients with metastatic breast cancer. Br. J. Cancer 2012, 106, 1917–1925. [Google Scholar] [CrossRef]
- Joosse, S.A.; Hannemann, J.; Spotter, J.; Bauche, A.; Andreas, A.; Müller, V.; Pantel, K. Changes in keratin expression during metastatic progression of breast cancer: Impact on the detection of circulating tumor cells. Clin. Cancer Res. 2012, 18, 993–1003. [Google Scholar] [CrossRef]
- Zebisch, M.; Kolbl, A.C.; Schindlbeck, C.; Neugebauer, J.; Heublein, S.; Illmer, M.; Rack, B.; Friese, K.; Jeschke, U.; Andergassen, U. Quantification of breast cancer cells in peripheral blood samples by real-time rt-PCR. Anticancer Res. 2012, 32, 5387–5391. [Google Scholar]
- Iakovlev, V.V.; Goswami, R.S.; Vecchiarelli, J.; Arneson, N.C.; Done, S.J. Quantitative detection of circulating epithelial cells by Q-RT-PCR. Breast Cancer Res. Treat. 2008, 107, 145–154. [Google Scholar]
- Zippelius, A.; Pantel, K. RT-PCR-based detection of occult disseminated tumor cells in peripheral blood and bone marrow of patients with solid tumors: An overview. Ann. NY Acad. Sci. 2000, 906, 110–123. [Google Scholar] [CrossRef]
- Cen, P.; Ni, X.; Yang, J.; Graham, D.Y.; Li, M. Circulating tumor cells in the diagnosis and management of pancreatic cancer. Biochim. Biophys. Acta 2012, 1826, 350–356. [Google Scholar]
- Young, R.; Pailler, E.; Billiot, F.; Drusch, F.; Barthelemy, A.; Oulhen, M.; Besse, B.; Soria, J.C.; Farace, F.; Vielh, P. Circulating tumor cells in lung cancer. Acta Cytol. 2012, 56, 655–660. [Google Scholar] [CrossRef]
- Bruggemann, M.; Gokbuget, N.; Kneba, M. Acute lymphoblastic leukemia: Monitoring minimal residual disease as a therapeutic principle. Semin. Oncol. 2012, 39, 47–57. [Google Scholar] [CrossRef]
- Dinardo, C.D.; Luger, S.M. Beyond morphology: Minimal residual disease detection in acute myeloid leukemia. Curr. Opin. Hematol. 2012, 19, 82–88. [Google Scholar]
- Venuti, A.; Paolini, F. HPV detection methods in head and neck cancer. Head Neck Pathol. 2012, 6, S63–S74. [Google Scholar] [CrossRef]
- Van Der Auwera, I.; Peeters, D.; Benoy, I.H.; Elst, H.J.; van Laere, S.J.; Prove, A.; Maes, H.; Huget, P.; van Dam, P.; Vermeulen, P.B.; et al. Circulating tumour cell detection: A direct comparison between the CellSearch System, the AdnaTest and CK-19/mammaglobin RT-PCR in patients with metastatic breast cancer. Br. J. Cancer 2010, 102, 276–284. [Google Scholar] [CrossRef]
- Muller, V.; Riethdorf, S.; Rack, B.; Janni, W.; Fasching, P.A.; Solomayer, E.; Aktas, B.; Kasimir-Bauer, S.; Pantel, K.; Fehm, T. Prognostic impact of circulating tumor cells assessed with the CellSearch System and AdnaTest Breast in metastatic breast cancer patients: The DETECT study. Breast Cancer Res. 2012, 14, R118. [Google Scholar] [CrossRef]
- Quintela-Fandino, M.; Lopez, J.M.; Hitt, R.; Gamarra, S.; Jimeno, A.; Ayala, R.; Hornedo, J.; Guzman, C.; Gilsanz, F.; Cortes-Funes, H. Breast cancer-specific mRNA transcripts presence in peripheral blood after adjuvant chemotherapy predicts poor survival among high-risk breast cancer patients treated with high-dose chemotherapy with peripheral blood stem cell support. J. Clin. Oncol. 2006, 24, 3611–3618. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wu, C.H.; Lu, C.Y.; Hsieh, J.S.; Wu, D.C.; Huang, S.Y.; Lin, S.R. Molecular detection of circulating tumor cells in the peripheral blood of patients with colorectal cancer using RT-PCR: Significance of the prediction of postoperative metastasis. World J. Surg. 2006, 30, 1007–1013. [Google Scholar] [CrossRef]
- Chang, H.J.; Yang, M.J.; Yang, Y.H.; Hou, M.F.; Hsueh, E.J.; Lin, S.R. MMP13 is potentially a new tumor marker for breast cancer diagnosis. Oncol. Rep. 2009, 22, 1119–1127. [Google Scholar]
- Nikseresht, M.; Seghatoleslam, A.; Monabati, A.; Talei, A.; Ghalati, F.B.; Owji, A.A. Overexpression of the novel human gene, UBE2Q2, in breast cancer. Cancer Genet. Cytogenet. 2010, 197, 101–106. [Google Scholar] [CrossRef]
- Fabre-Lafay, S.; Garrido-Urbani, S.; Reymond, N.; Goncalves, A.; Dubreuil, P.; Lopez, M. Nectin-4, a new serological breast cancer marker, is a substrate for tumor necrosis factor-alpha-converting enzyme (TACE)/ADAM-17. J. Biol. Chem. 2005, 280, 19543–19550. [Google Scholar]
- Dontu, G. Breast cancer stem cell markers—The rocky road to clinical applications. Breast Cancer Res. 2008, 10, 110. [Google Scholar] [CrossRef]
- Bolke, E.; Orth, K.; Gerber, P.A.; Lammering, G.; Mota, R.; Peiper, M.; Matuschek, C.; Budach, W.; Rusnak, E.; Shaikh, S.; et al. Gene expression of circulating tumour cells and its correlation with tumour stage in breast cancer patients. Eur. J. Med. Res. 2009, 14, 359–363. [Google Scholar]
- Shanmuganathan, R.; Basheer, N.B.; Amirthalingam, L.; Muthukumar, H.; Kaliaperumal, R.; Shanmugam, K. Conventional and nanotechniques for DNA methylation profiling. J. Mol. Diagn. 2013, 15, 17–26. [Google Scholar] [CrossRef]
- Loewe, R.P. Combinational usage of next generation sequencing and qPCR for the analysis of tumor samples. Methods 2013, 59, 126–131. [Google Scholar] [CrossRef]
- Devonshire, A.S.; Sanders, R.; Wilkes, T.M.; Taylor, M.S.; Foy, C.A.; Huggett, J.F. Application of next generation qPCR and sequencing platforms to mRNA biomarker analysis. Methods 2013, 59, 89–100. [Google Scholar] [CrossRef]
- Azim, H.A., Jr.; Michiels, S.; Zagouri, F.; Delaloge, S.; Filipits, M.; Namer, M.; Neven, P.; Symmans, W.F.; Thompson, A.; Andre, F.; et al. Utility of prognostic genomic tests in breast cancer practice: The impakt 2012 working group consensus statement. Ann. Oncol. 2013, 24, 647–654. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Andergassen, U.; Kölbl, A.C.; Hutter, S.; Friese, K.; Jeschke, U. Detection of Circulating Tumour Cells from Blood of Breast Cancer Patients via RT-qPCR. Cancers 2013, 5, 1212-1220. https://doi.org/10.3390/cancers5041212
Andergassen U, Kölbl AC, Hutter S, Friese K, Jeschke U. Detection of Circulating Tumour Cells from Blood of Breast Cancer Patients via RT-qPCR. Cancers. 2013; 5(4):1212-1220. https://doi.org/10.3390/cancers5041212
Chicago/Turabian StyleAndergassen, Ulrich, Alexandra C. Kölbl, Stefan Hutter, Klaus Friese, and Udo Jeschke. 2013. "Detection of Circulating Tumour Cells from Blood of Breast Cancer Patients via RT-qPCR" Cancers 5, no. 4: 1212-1220. https://doi.org/10.3390/cancers5041212
APA StyleAndergassen, U., Kölbl, A. C., Hutter, S., Friese, K., & Jeschke, U. (2013). Detection of Circulating Tumour Cells from Blood of Breast Cancer Patients via RT-qPCR. Cancers, 5(4), 1212-1220. https://doi.org/10.3390/cancers5041212