Risks, Benefits, and Molecular Targets of Fenugreek Administration in the Treatment of Hepatocellular Carcinoma
Simple Summary
Abstract
1. Introduction
2. Botanical and Phytochemical Profile of Fenugreek
3. Extraction Methods and Standardisation of Fenugreek Preparations
4. Key Bioactive Compounds Relevant to Liver Cancer: Therapeutic Effects
5. Pharmacokinetics and Metabolism of Fenugreek Constituents in Hepatic Tissue
6. Molecular Targets of Fenugreek in Hepatocellular Carcinoma
7. Risks and Safety Profile of Fenugreek Use in Liver Cancer Patients
8. Proposed Preclinical-to-Clinical Translational Roadmap for Fenugreek in HCC
- (a)
- Preclinical stage: Extraction/standardisation → in vitro functional validation (HepG2/Hep3B cytotoxicity, apoptosis/ferroptosis assays) → in vivo hepatoprotective/antitumor efficacy (DEN-induced HCC models, xenograft models) with candidate pharmacodynamic (PD) biomarkers (tissue levels of Bax/Bcl-2 ratio, cleaved caspase-3, NRF2 downregulation, ROS generation, or phospho-STAT3 reduction).
- (b)
- Translational/early clinical stage: Phase I dose-escalation studies in advanced HCC patients (focus on safety, pharmacokinetics, and PD biomarker modulation in liver biopsies or blood).
- (c)
- Clinical validation stage: Phase II proof-of-concept trials assessing objective response rate (ORR), progression-free survival (PFS), and biomarker correlates; eventual Phase III adjuvant/combinatorial designs.
9. Beneficial Effects of Fenugreek on HCC-Associated Comorbidities: Oxidative Injury and Microbial Infections
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, W.; Xiang, S.; Zhang, J.; Yuan, J.; Wang, Y.; Liang, S.; Lin, W.; Zhai, X.; Shang, Y.; Ling, C.; et al. Jiedu Recipe, a Compound Chinese Herbal Medicine, Suppresses Hepatocellular Carcinoma Metastasis by Inhibiting the Release of Tumor-Derived Exosomes in a Hypoxic Microenvironment. J. Integr. Med. 2024, 22, 696–708. [Google Scholar] [CrossRef]
- Zhong, M.; Luo, Y.; Guo, Y.; Xiang, S.; Lin, W. Jiedu Fang Inhibits Hypoxia-Induced Angiogenesis in Hepatocellular Carcinoma by Targeting Aurora A/STAT3/IL-8 Signaling Pathway. J. Integr. Med. 2025, 23, 683–693. [Google Scholar] [CrossRef] [PubMed]
- El Bairi, K.; Ouzir, M.; Agnieszka, N.; Khalki, L. Anticancer Potential of Trigonella foenum graecum: Cellular and Molecular Targets. Biomed. Pharmacother. 2017, 90, 479–491. [Google Scholar] [CrossRef]
- Khalil, M.I.M.; Ibrahim, M.M.; El-Gaaly, G.A.; Sultan, A.S. Trigonella foenum (Fenugreek) Induced Apoptosis in Hepatocellular Carcinoma Cell Line, HepG2, Mediated by Upregulation of P53 and Proliferating Cell Nuclear Antigen. BioMed Res. Int. 2015, 2015, 914645. [Google Scholar] [CrossRef] [PubMed]
- Ouzir, M.; El Bairi, K.; Amzazi, S. Toxicological Properties of Fenugreek (Trigonella foenum graecum). Food Chem. Toxicol. 2016, 96, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Liu, Z.; Wang, H.; Mou, S.; Li, Y.; Ma, J.; Li, X. Risk Assessment of Fenpropathrin: Cause Hepatotoxicity and Nephrotoxicity in Common Carp (Cyprinus carpio L.). Int. J. Mol. Sci. 2024, 25, 9822. [Google Scholar] [CrossRef]
- Alves-Silva, J.M.; Romane, A.; Efferth, T.; Salgueiro, L. North African Medicinal Plants Traditionally Used in Cancer Therapy. Front. Pharmacol. 2017, 8, 383. [Google Scholar] [CrossRef]
- Alsemari, A.; Alkhodairy, F.; Aldakan, A.; Al-Mohanna, M.; Bahoush, E.; Shinwari, Z.; Alaiya, A. The Selective Cytotoxic Anti-Cancer Properties and Proteomic Analysis of Trigonella foenum-graecum. BMC Complement. Altern. Med. 2014, 14, 114. [Google Scholar] [CrossRef]
- Varshney, H.; Siddique, Y.H. Pharmacological Attributes of Fenugreek with Special Reference to Alzheimer’s Disease. Curr. Alzheimer Res. 2023, 20, 71–79. [Google Scholar] [CrossRef]
- Ahmad, A.; Alghamdi, S.S.; Mahmood, K.; Afzal, M. Fenugreek a Multipurpose Crop: Potentialities and Improvements. Saudi J. Biol. Sci. 2016, 23, 300–310. [Google Scholar] [CrossRef]
- Ahmad, R.; Alqathama, A.; Al-Maimani, R.; Al-Said, H.M.; Ashgar, S.S.; Althubiti, M.; Jalal, N.A.; Khan, M.; Algarzai, M. Exploring the Role of Phytochemical Classes in the Biological Activities of Fenugreek (Trigonella feonum graecum): A Comprehensive Analysis Based on Statistical Evaluation. Foods 2025, 14, 933. [Google Scholar] [CrossRef]
- Khorrami, M.; Samsampour, D.; Badi, H.N.; Qaderi, A. Genetic and Phytochemical Evaluation of M2 Generation Mutants of Fenugreek (Trigonella foenum-graecum L.) Induced by Gamma Rays and Ethyl Methane Sulphonate (EMS). Mol. Biol. Rep. 2024, 51, 1154. [Google Scholar] [CrossRef] [PubMed]
- Ayvazyan, A.; Stegemann, T.; Galarza Pérez, M.; Pramsohler, M.; Çiçek, S.S. Phytochemical Profile of Trigonella Caerulea (Blue fenugreek) Herb and Quantification of Aroma-Determining Constituents. Plants 2023, 12, 1154. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Xu, Y.; Hua, C.; Li, C.; Zhang, Y. Molecular Cloning and Functional Characterization of a Sterol 3-O-Glucosyltransferase Involved in Biosynthesis of Steroidal Saponins in Trigonella foenum-graecum. Front. Plant Sci. 2021, 12, 809579. [Google Scholar] [CrossRef]
- Alghamdi, S.S.; Suliman, R.S.; Alsaeed, A.S.; Almutairi, K.K.; Aljammaz, N.A.; Altolayyan, A.; Ali, R.; Alhallaj, A. Novel Anti-Tubulin Compounds from Trigonella foenum-graecum Seeds; Insights into In-Vitro and Molecular Docking Studies. Drug Des. Devel. Ther. 2021, 15, 4195–4211. [Google Scholar] [CrossRef] [PubMed]
- Aylanc, V.; Eskin, B.; Zengin, G.; Dursun, M.; Cakmak, Y.S. In Vitro Studies on Different Extracts of Fenugreek (Trigonella spruneriana BOISS.): Phytochemical Profile, Antioxidant Activity, and Enzyme Inhibition Potential. J. Food Biochem. 2020, 44, e13463. [Google Scholar] [CrossRef]
- Fuller, S.; Stephens, J.M. Diosgenin, 4-Hydroxyisoleucine, and Fiber from Fenugreek: Mechanisms of Actions and Potential Effects on Metabolic Syndrome. Adv. Nutr. 2015, 6, 189–197. [Google Scholar] [CrossRef]
- Singh, K.; Singh, N.; Chandy, A.; Manigauha, A. In Vivo Antioxidant and Hepatoprotective Activity of Methanolic Extracts of Daucus Carota Seeds in Experimental Animals. Asian Pac. J. Trop. Biomed. 2012, 2, 385–388. [Google Scholar] [CrossRef]
- Almalki, D.A. Hepatorenal Protective Effect of Fenugreek Aqueous Extract Against Lead Toxicity in Experimental Rats. Dokl. Biochem. Biophys. 2022, 507, 318–325. [Google Scholar] [CrossRef]
- Hfaiedh, N.; Alimi, H.; Murat, J.-C.; Elfeki, A. Protective Effects of Fenugreek (Trigonella foenum graecum L.) upon Dieldrin-Induced Toxicity in male Rat. Gen. Physiol. Biophys. 2012, 31, 423–430. [Google Scholar] [CrossRef]
- Sakr, S.A.; Abo-El-Yazid, S.M. Effect of Fenugreek Seed Extract on Adriamycin-Induced Hepatotoxicity and Oxidative Stress in Albino Rats. Toxicol. Ind. Health 2012, 28, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Gáspár, L.; Szmrtyka, A.; Turi, J.; Tóth, B.Z.; Suri, C.; Vágó, P.; Sefer, A.; al Haj, C. Clinical Experience with the Use of Benzylalcohol and Amyl-m-Cresol (Strepsils) in Stomatological Diseases. Fogorvosi Szle. 2000, 93, 83–90. [Google Scholar]
- Tewari, D.; Jóźwik, A.; Łysek-Gładysińska, M.; Grzybek, W.; Adamus-Białek, W.; Bicki, J.; Strzałkowska, N.; Kamińska, A.; Horbańczuk, O.K.; Atanasov, A.G. Fenugreek (Trigonella foenum-graecum L.) Seeds Dietary Supplementation Regulates Liver Antioxidant Defense Systems in Aging Mice. Nutrients 2020, 12, 2552. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.A.; Richard, A.J.; Salbaum, J.M.; Newman, S.; Carmouche, R.; Webb, S.; Bruce-Keller, A.J.; Stephens, J.M.; Campagna, S.R. Cross-Omics Analysis of Fenugreek Supplementation Reveals Beneficial Effects Are Caused by Gut Microbiome Changes Not Mammalian Host Physiology. Int. J. Mol. Sci. 2022, 23, 3654. [Google Scholar] [CrossRef]
- Nagulapalli Venkata, K.C.; Swaroop, A.; Bagchi, D.; Bishayee, A. A Small Plant with Big Benefits: Fenugreek (Trigonella Foenum-Graecum Linn.) for Disease Prevention and Health Promotion. Mol. Nutr. Food Res. 2017, 61, 1600950. [Google Scholar] [CrossRef]
- Huang, Z.; Liang, C.; Wu, Z.; Chen, S.; Li, F.; Cho, K.; Maeng, W.; Lee, Y.; Park, S.A.; Choi, Y.; et al. In Vitro Free Implantation of Stem Cells from Apical Papilla Using Injectable Hydrogel-Laden 3D-Printed Scaffold to Enhance Tissue Organization and Vascular Infiltration In Vivo. Adv. NanoBiomed Res. 2025, 5, e202500006. [Google Scholar] [CrossRef]
- Gong, J.; Fang, K.; Dong, H.; Wang, D.; Hu, M.; Lu, F. Effect of Fenugreek on Hyperglycaemia and Hyperlipidemia in Diabetes and Prediabetes: A Meta-Analysis. J. Ethnopharmacol. 2016, 194, 260–268. [Google Scholar] [CrossRef]
- Sarwar, S.; Hanif, M.A.; Ayub, M.A.; Boakye, Y.D.; Agyare, C. Fenugreek. In Medicinal Plants of South Asia; Elsevier: Amsterdam, The Netherlands, 2020; pp. 257–271. [Google Scholar]
- Kumar, S.; Praveen, B.M.; Sudhakara, A.; Sherugar, P.; Puttaiahgowda, Y.M. Extraction of Diosgenin Using Different Techniques from Fenugreek Seeds—A Review. Steroids 2025, 214, 109543. [Google Scholar] [CrossRef]
- Arya, P.; Kumar, P. Comparison of Ultrasound and Microwave Assisted Extraction of Diosgenin from Trigonella foenum graceum Seed. Ultrason. Sonochem. 2021, 74, 105572. [Google Scholar] [CrossRef]
- Dhull, S.B.; Kaur, M.; Sandhu, K.S. Antioxidant Characterization and in Vitro DNA Damage Protection Potential of Some Indian Fenugreek (Trigonella foenum-graecum) Cultivars: Effect of Solvents. J. Food Sci. Technol. 2020, 57, 3457–3466. [Google Scholar] [CrossRef]
- Gavahian, M.; Bannikoppa, A.M.; Majzoobi, M.; Hsieh, C.-W.; Lin, J.; Farahnaky, A. Fenugreek Bioactive Compounds: A Review of Applications and Extraction Based on Emerging Technologies. Crit. Rev. Food Sci. Nutr. 2024, 64, 10187–10203. [Google Scholar] [CrossRef]
- Ben Abdennebi, A.; Chaabani, E.; Ben Jemaa, M.; Hammami, M.; Khammassi, S.; Nait Mohamed, S.; Aidi Wannes, W.; Hamrouni Sellami, I.; Fabiano Tixier, A.-S.; Bettaieb Rebey, I. Assessment of CPME as Sustainable Low VOC Alternative to Hexane: Optimization of Extraction Efficiency and Bioactive Compound Yield from Fenugreek Seed Oil Using Computational and Experimental Methods. Foods 2024, 13, 3899. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.-B.; Liu, X.-N.; Liu, H.-M.; Pang, H.-L.; Qin, G.-Y. Extraction of Fenugreek (Trigonella foenum-graceum L.) Seed Oil Using Subcritical Butane: Characterization and Process Optimization. Molecules 2017, 22, 228. [Google Scholar] [CrossRef] [PubMed]
- Benayad, Z.; Gómez-Cordovés, C.; Es-Safi, N. Characterization of Flavonoid Glycosides from Fenugreek (Trigonella foenum-graecum) Crude Seeds by HPLC–DAD–ESI/MS Analysis. Int. J. Mol. Sci. 2014, 15, 20668–20685. [Google Scholar] [CrossRef] [PubMed]
- Isleroglu, H.; Olgun, G.N. Effects of the Extraction Conditions on Functional and Structural Characteristics of Proteins from Fenugreek Seeds. Acta Chim. Slov. 2024, 71, 204–214. [Google Scholar] [CrossRef]
- Srinivasa, U.M.; Naidu, M.M. Selective Extraction of Galactomannan from Fenugreek (Trigonella foenum-graecum L.) Seed Husk and Its Enzyme In-Hibitory Potential Associated with Hyperglycaemia. J. Sci. Food Agric. 2021, 101, 4751–4759. [Google Scholar] [CrossRef]
- Sakhare, S.D.; Inamdar, A.A.; Prabhasankar, P. Roller Milling Process for Fractionation of Fenugreek Seeds (Trigonella foenumgraecum) and Characterization of Milled Fractions. J. Food Sci. Technol. 2015, 52, 2211–2219. [Google Scholar] [CrossRef]
- SatheeshKumar, N.; Mukherjee, P.K.; Bhadra, S.; Saha, B.P. Acetylcholinesterase Enzyme Inhibitory Potential of Standardized Extract of Trigonella foenum graecum L and Its Constituents. Phytomedicine 2010, 17, 292–295. [Google Scholar] [CrossRef]
- Stefanowicz-Hajduk, J.; Król-Kogus, B.; Sparzak-Stefanowska, B.; Kimel, K.; Ochocka, J.R.; Krauze-Baranowska, M. Cytotoxic Activity of Standardized Extracts, a Fraction, and Individual Secondary Metabolites from Fenugreek Seeds Against SKOV-3, HeLa and MOLT-4 Cell Lines. Pharm. Biol. 2021, 59, 422–435. [Google Scholar] [CrossRef]
- Tura, A.M.; Debisa, M.D.; Tulu, E.D.; Tilinti, B.Z. Evaluation of Proximate, Phytochemical, and Heavy Metal Content in Black Cumin and Fenugreek Cultivated in Gamo Zone, Ethiopia. Int. J. Food Sci. 2023, 2023, 3404674. [Google Scholar] [CrossRef]
- Aldholmi, M.; Ahmad, R.; Hago, S.; Alabduallah, A. A Validated Trigonelline-Based Method for the Standardization and Quality Control of Trigonella foenum-graecum L. F1000Research 2024, 13, 1350. [Google Scholar] [CrossRef] [PubMed]
- Sinka, D.; Doma, E.; Szendi, N.; Páll, J.; Kósa, D.; Pető, Á.; Fehér, P.; Ujhelyi, Z.; Fenyvesi, F.; Váradi, J.; et al. Formulation, Characterization and Permeability Studies of Fenugreek (Trigonella foenum-graecum) Containing Self-Emulsifying Drug Delivery System (SEDDS). Molecules 2022, 27, 2846. [Google Scholar] [CrossRef] [PubMed]
- Jesus, M.; Martins, A.P.J.; Gallardo, E.; Silvestre, S. Diosgenin: Recent Highlights on Pharmacology and Analytical Methodology. J. Anal. Methods Chem. 2016, 2016, 4156293. [Google Scholar] [CrossRef] [PubMed]
- Mohamadi, N.; Pournamdari, M.; Sharififar, F.; Ansari, M. Simultaneous Spectrophotometric Determination of Trigonelline, Diosgenin and Nicotinic Acid in Dosage Forms Prepared from Fenugreek Seed Extract. Iran. J. Pharm. Res. 2020, 19, 153–159. [Google Scholar] [CrossRef]
- Vadivel, D.; Djemal, R.; García, J.; Pagano, A.; Trabelsi, R.; Gdoura-Ben Amor, M.; Charfeddine, S.; Ghanmi, S.; Khalifa, I.; Rekik, M.; et al. Exploring Seed Characteristics and Performance through Advanced Physico-Chemical Techniques. Sci. Rep. 2024, 14, 24162. [Google Scholar] [CrossRef]
- Blidisel, A.; Marcovici, I.; Coricovac, D.; Hut, F.; Dehelean, C.A.; Cretu, O.M. Experimental Models of Hepatocellular Carcinoma—A Preclinical Perspective. Cancers 2021, 13, 3651. [Google Scholar] [CrossRef]
- Valente, L.C.; Bacil, G.P.; Riechelmann-Casarin, L.; Barbosa, G.C.; Barbisan, L.F.; Romualdo, G.R. Exploring in Vitro Modeling in Hepatocarcinogenesis Research: Morphological and Molecular Features and Similarities to the Corresponding Human Disease. Life Sci. 2024, 351, 122781. [Google Scholar] [CrossRef]
- Sun, L.; Cui, Z.-G.; Feng, Q.; Muhammad, J.S.; Jin, Y.-J.; Zhao, S.; Zhou, L.; Wu, C.-A. Fenvalerate Exposure Induces AKT/AMPK-Dependent Alterations in Glucose Metabolism in Hepatoma Cells. Front. Pharmacol. 2025, 16, 1540567. [Google Scholar] [CrossRef]
- Morshidi, N.A.A.B. Anticancer Activity of Trigonella Foenumgraecum (Fenugreek) Seed Extract by Inducing Apoptosis in Pancreatic Cancer Cell. Am. J. Transl. Res. 2025, 17, 832–843. [Google Scholar] [CrossRef]
- Kandhare, A.; Bodhankar, S.; Mohan, V.; Thakurdesai, P. Glycosides Based Standardized Fenugreek Seed Extract Ameliorates Bleomycin-Induced Liver Fibrosis in Rats via Modulation of Endogenous Enzymes. J. Pharm. Bioallied Sci. 2017, 9, 185. [Google Scholar] [CrossRef]
- Mbarki, S.; Alimi, H.; Bouzenna, H.; Elfeki, A.; Hfaiedh, N. Phytochemical Study and Protective Effect of Trigonella foenum graecum (Fenugreek Seeds) Against Carbon Tetrachloride-Induced Toxicity in Liver and Kidney of Male Rat. Biomed. Pharmacother. 2017, 88, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Mehmood, A.; Yuan, D.; Usman, M.; Murtaza, M.A.; Yaqoob, S.; Wang, C. Protective Mechanism of Edible Food Plants against Alcoholic Liver Disease with Special Mention to Polyphenolic Compounds. Nutrients 2021, 13, 1612. [Google Scholar] [CrossRef] [PubMed]
- Reddy, R.R.L.; Srinivasan, K. Effect of Dietary Fenugreek Seeds on Biliary Proteins That Influence Nucleation of Cholesterol Crystals in Bile. Steroids 2011, 76, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Babaei, A.; Taghavi, S.; Mohammadi, A.; Mahdiyar, M.; Iranpour, P.; Ejtehadi, F.; Mohagheghzadeh, A. Comparison of the Efficacy of Oral Fenugreek Seeds Hydroalcoholic Extract versus Placebo in Nonalcoholic Fatty Liver Disease; a Randomized, Triple-Blind Controlled Pilot Clinical Trial. Indian J. Pharmacol. 2020, 52, 86–93. [Google Scholar] [CrossRef]
- Kim, D.S.; Jeon, B.K.; Lee, Y.E.; Woo, W.H.; Mun, Y.J. Diosgenin Induces Apoptosis in HepG2 Cells Through Generation of Reactive Oxygen Species and Mitochondrial Pathway. Evid.-Based Complement. Altern. Med. 2012, 2012, 981675. [Google Scholar]
- Li, F.; Fernandez, P.P.; Rajendran, P.; Hui, K.M.; Sethi, G. Diosgenin, a Steroidal Saponin, Inhibits STAT3 Signaling Pathway Leading to Suppression of Proliferation and Chemosensitization of Human Hepatocellular Carcinoma Cells. Cancer Lett. 2010, 292, 197–207. [Google Scholar] [CrossRef]
- Fahmideh, H.; Shapourian, H.; Moltafeti, R.; Tavakol, C.; Forghaniesfidvajani, R.; Zalpoor, H.; Nabi-Afjadi, M. The Role of Natural Products as Inhibitors of JAK/STAT Signaling Pathways in Glioblastoma Treatment. Oxid. Med. Cell. Longev. 2022, 2022, 7838583. [Google Scholar] [CrossRef]
- da Silva, M.F.; de Lima, L.V.A.; Zanetti, T.A.; Felicidade, I.; Favaron, P.O.; Lepri, S.R.; Lirio Rondina, D.B.; Mantovani, M.S. Diosgenin Increases BBC3 Expression in HepG2/C3A Cells and Alters Cell Communication in a 3D Spheroid Model. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022, 879–880, 503512. [Google Scholar] [CrossRef]
- Rabha, B.; Bharadwaj, K.K.; Baishya, D.; Sarkar, T.; Edinur, H.A.; Pati, S. Synthesis and Characterization of Diosgenin Encapsulated Poly-ε-Caprolactone-Pluronic Nanoparticles and Its Effect on Brain Cancer Cells. Polymers 2021, 13, 1322. [Google Scholar] [CrossRef]
- Sethi, G.; Shanmugam, M.; Warrier, S.; Merarchi, M.; Arfuso, F.; Kumar, A.; Bishayee, A. Pro-Apoptotic and Anti-Cancer Properties of Diosgenin: A Comprehensive and Critical Review. Nutrients 2018, 10, 645. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, J.; Wu, Y.; Lei, S.; Liu, H.; Meng, Q.; Xia, Z. Diosgenin Inhibited the Expression of TAZ in Hepatocellular Carcinoma. Biochem. Biophys. Res. Commun. 2018, 503, 1181–1185. [Google Scholar] [CrossRef] [PubMed]
- Mohseni-Moghaddam, P.; Khanmohammadi, M.; Roghani, M. Literature Review on Hepatoprotective Effects of Diosgenin: Possible Mechanisms of Action. Front. Pharmacol. 2023, 14, 1226548. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-T.; Wang, Z.-H.; Hsu, C.-C.; Lin, H.-H.; Chen, J.-H. In Vivo Protective Effects of Diosgenin Against Doxorubicin-Induced Cardiotoxicity. Nutrients 2015, 7, 4938–4954. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, M.; Xin, G.; Wei, Z.; Li, S.; Xing, Z.; Ji, C.; Du, J.; Niu, H.; Huang, W. Dihydrodiosgenin Inhibits Endothelial Cell-Derived Factor VIII and Platelet-Mediated Hepatocellular Carcinoma Metastasis. Cancer Manag. Res. 2019, 11, 4871–4882. [Google Scholar] [CrossRef]
- Liao, J.C.; Lee, K.T.; You, B.J.; Lee, C.L.; Chang, W.T.; Wu, Y.C.; Lee, H.-Z. Raf/ERK/Nrf2 Signaling Pathway and MMP-7 Expression Involvement in the Trigonelline-Mediated Inhibition of Hepatocarcinoma Cell Migration. Food Nutr. Res. 2015, 59, 29884. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, C.; Luo, M.; Cen, C.; Qiu, J.; Zhang, S.; Hu, K. Ferroptosis in Cancer Treatment: Another Way to Rome. Front. Oncol. 2020, 10, 571127. [Google Scholar] [CrossRef]
- Wang, R.-N.; Fu, Y.-Y.; Tie, F.-F.; Hu, N.; Wang, H.-L.; He, Y.-F. Preparation and Characterization of Fenugreek Leaf Flavonoids and Their Protective Effects Against Oxidative Damage to Hepatocytes. China J. Chin. Mater. Medica 2022, 47, 2178–2186. [Google Scholar] [CrossRef]
- Muraki, E.; Hayashi, Y.; Chiba, H.; Tsunoda, N.; Kasono, K. Dose-Dependent Effects, Safety and Tolerability of Fenugreek in Diet-Induced Metabolic Disorders in Rats. Lipids Health Dis. 2011, 10, 240. [Google Scholar] [CrossRef]
- Al-Jenoobi, F.I.; Al-Thukair, A.A.; Alam, M.A.; Abbas, F.A.; Al-Mohizea, A.M.; Alkharfy, K.M.; Al-Suwayeh, S.A. Effect of Trigonella foenum-graecum L. on Metabolic Activity of CYP2D6 and CYP3A4. Complement. Med. Res. 2015, 22, 180–184. [Google Scholar] [CrossRef]
- Manda, V.; Avula, B.; Ali, Z.; Wong, Y.-H.; Smillie, T.; Khan, I.; Khan, S. Characterization of In Vitro ADME Properties of Diosgenin and Dioscin from Dioscorea Villosa. Planta Med. 2013, 79, 1421–1428. [Google Scholar] [CrossRef]
- Liu, P.; Xu, L.; Guo, J.; Chang, J.; Liu, X.; Xue, H.; Wang, R.; Li, Z.; Miao, G.; Liu, C.; et al. Pharmacokinetic Analysis of Diosgenin in Rat Plasma by a UPLC-MS/MS Approach. J. Anal. Methods Chem. 2022, 2022, 5607347. [Google Scholar] [CrossRef]
- Okawara, M.; Hashimoto, F.; Todo, H.; Sugibayashi, K.; Tokudome, Y. Effect of Liquid Crystals with Cyclodextrin on the Bioavailability of a Poorly Water-Soluble Compound, Diosgenin, After Its Oral Administration to Rats. Int. J. Pharm. 2014, 472, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Zi, X.; Song, J.; Zhao, Q.; Liu, J.; Bao, H.; Li, L. Molecular Mechanistic Pathways Targeted by Natural Compounds in the Prevention and Treatment of Diabetic Kidney Disease. Molecules 2022, 27, 6221. [Google Scholar] [CrossRef] [PubMed]
- Hamden, K.; Mnafgui, K.; Amri, Z.; Aloulou, A.; Elfeki, A. Inhibition of Key Digestive Enzymes-Related to Diabetes and Hyperlipidemia and Protection of Liver-Kidney Functions by Trigonelline in Diabetic Rats. Sci. Pharm. 2013, 81, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-F.; Zhang, F.; Zhang, J.; Zhang, R.-M.; Li, R. Protection Effect of Trigonelline on Liver of Rats with Non-Alcoholic Fatty Liver Diseases. Asian Pac. J. Trop. Med. 2015, 8, 651–654. [Google Scholar] [CrossRef]
- Szczesny, D.; Bartosińska, E.; Jacyna, J.; Patejko, M.; Siluk, D.; Kaliszan, R. Quantitative Determination of Trigonelline in Mouse Serum by Means of Hydrophilic Interaction Liquid Chromatography–MS/MS Analysis: Application to a Pharmacokinetic Study. Biomed. Chromatogr. 2018, 32, e4054. [Google Scholar] [CrossRef]
- Ahmmed, S.; Mukherjee, P.; Bahadur, S.; Kar, A.; Mukherjee, K.; Karmakar, S.; Bandyopadhyay, A. Interaction Potential of Trigonella foenum graceum Through Cytochrome P450 Mediated Inhibition. Indian J. Pharmacol. 2015, 47, 530. [Google Scholar] [CrossRef]
- Konstantinidis, N.; Franke, H.; Schwarz, S.; Lachenmeier, D.W. Risk Assessment of Trigonelline in Coffee and Coffee By-Products. Molecules 2023, 28, 3460. [Google Scholar] [CrossRef]
- Kandhare, A.D.; Bodhankar, S.L.; Mohan, V.; Thakurdesai, P.A. Pharmacokinetics, Tissue Distribution and Excretion Study of a Furostanol Glycoside-Based Standardized Fenugreek Seed Extract in Rats. Ren. Fail. 2015, 37, 1208–1218. [Google Scholar] [CrossRef][Green Version]
- Xiao, J.; Högger, P. Metabolism of Dietary Flavonoids in Liver Microsomes. Curr. Drug Metab. 2013, 14, 381–391. [Google Scholar] [CrossRef]
- Gutierrez-Merino, C.; Lopez-Sanchez, C.; Lagoa, R.; Samhan-Arias, A.K.; Bueno, C.; Garcia-Martinez, V. Neuroprotective Actions of Flavonoids. Curr. Med. Chem. 2011, 18, 1195–1212. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, K. Dietary Spices as Beneficial Modulators of Lipid Profile in Conditions of Metabolic Disorders and Diseases. Food Funct. 2013, 4, 503–521. [Google Scholar] [CrossRef] [PubMed]
- Almuzaini, N.A.M.; Sulieman, A.M.E.; Alanazi, N.A.; Badraoui, R.; Abdallah, E.M. Mass Spectrometric Based Metabolomics of the Saudi Cultivar of Fenugreek (Trigonella foenum-graecum L.): A Combined GC-MS, Antimicrobial and Computational Approach. Pharmaceuticals 2024, 17, 1733. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.E.; Bandara, M.; Lee, E.L.; Driedger, D.; Acharya, S. Biochemical Monitoring in Fenugreek to Develop Functional Food and Medicinal Plant Variants. New Biotechnol. 2011, 28, 110–117. [Google Scholar] [CrossRef]
- Neelakantan, N.; Narayanan, M.; de Souza, R.J.; van Dam, R.M. Effect of Fenugreek (Trigonella foenum-graecum L.) Intake on Glycemia: A Meta-Analysis of Clinical Trials. Nutr. J. 2014, 13, 7. [Google Scholar] [CrossRef]
- Salam, S.G.A.; Rashed, M.M.; Ibrahim, N.A.; Rahim, E.A.A.; Alsufiani, H.M.; Mansouri, R.A.; Afifi, M.; Al-Farga, A. Cell Growth Inhibition, DNA Fragmentation and Apoptosis-Inducing Properties of Household-Processed Leaves and Seeds of Fenugreek (Trigonella foenum-graecum Linn.) Against HepG2, HCT-116, and MCF-7 Cancerous Cell Lines. Curr. Issues Mol. Biol. 2023, 45, 936–953. [Google Scholar] [CrossRef]
- Al-Oqail, M.M.; Farshori, N.N.; Al-Sheddi, E.S.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. In Vitro Cytotoxic Activity of Seed Oil of Fenugreek Against Various Cancer Cell Lines. Asian Pac. J. Cancer Prev. 2013, 14, 1829–1832. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Alokail, M.S.; Alkharfy, K.M.; Mohammed, A.K.; Abd-Alrahman, S.H.; Yakout, S.M.; Amer, O.E.; Krishnaswamy, S. Fenugreek Extract as an Inducer of Cellular Death via Autophagy in Human T Lymphoma Jurkat Cells. BMC Complement. Altern. Med. 2012, 12, 202. [Google Scholar] [CrossRef]
- Faisal, Z.; Irfan, R.; Akram, N.; Manzoor, H.M.I.; Aabdi, M.A.; Anwar, M.J.; Khawar, S.; Saif, A.; Shah, Y.A.; Afzaal, M.; et al. The Multifaceted Potential of Fenugreek Seeds: From Health Benefits to Food and Nanotechnology Applications. Food Sci. Nutr. 2024, 12, 2294–2310. [Google Scholar] [CrossRef]
- Varshney, H.; Siddique, Y.H. Medicinal Properties of Fenugreek: A Review. Open Biol. J. 2023, 11, e187503622302220. [Google Scholar] [CrossRef]
- Al Harrak, Y.; Lkhoyaali, S.; Lamsyah, O.; Tine, M.M.; Bechar, H.; Benabdallah, G.; Sefiani, H.; Boutayeb, S.; Errihani, H. Ribociclib-Induced Hepatotoxicity Exacerbated by Fenugreek Supplement Use: A Case Report. J. Oncol. Pharm. Pract. 2025, 31, 1018–1023. [Google Scholar] [CrossRef]
- Al-Jenoobi, F.I.; Alam, M.A.; Alkharfy, K.M.; Al-Suwayeh, S.A.; Korashy, H.M.; Al-Mohizea, A.M.; Iqbal, M.; Ahad, A.; Raish, M. Pharmacokinetic Interaction Studies of Fenugreek with CYP3A Substrates Cyclosporine and Carbamazepine. Eur. J. Drug Metab. Pharmacokinet. 2014, 39, 147–153. [Google Scholar] [CrossRef]
- Fernàndez-Bernal, A.; Sol, J.; Galo-Licona, J.D.; Mota-Martorell, N.; Mas-Bargues, C.; Belenguer-Varea, Á.; Obis, È.; Viña, J.; Borrás, C.; Jové, M.; et al. Phenotypic Upregulation of Hexocylceramides and Ether-Linked Phosphocholines as Markers of Human Extreme Longevity. Aging Cell 2025, 24, e14429. [Google Scholar] [CrossRef] [PubMed]
- Khalki, L.; Ba M’hamed, S.; Sokar, Z.; Bennis, M.; Vinay, L.; Bras, H.; Viemari, J.-C. Prenatal Exposure to Fenugreek Impairs Sensorimotor Development and the Operation of Spinal Cord Networks in Mice. PLoS ONE 2013, 8, e80013. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bentele-Jaberg, N.; Guenova, E.; Mehra, T.; Nägeli, M.; Chang, Y.-T.; Cozzio, A.; French, L.E.; Hoetzenecker, W. The Phytotherapeutic Fenugreek as Trigger of Toxic Epidermal Necrolysis. Dermatology 2015, 231, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Kandhare, A.D.; Thakurdesai, P.A.; Wangikar, P.; Bodhankar, S.L. A Systematic Literature Review of Fenugreek Seed Toxicity by Using ToxRTool: Evidence from Preclinical and Clinical Studies. Heliyon 2019, 5, e01536. [Google Scholar] [CrossRef]
- Sureshkumar, D.; Begum, S.; Johannah, N.M.; Maliakel, B.; Krishnakumar, I.M. Toxicological Evaluation of a Saponin-Rich Standardized Extract of Fenugreek Seeds (FenuSMART®): Acute, Sub-Chronic and Genotoxicity Studies. Toxicol. Rep. 2018, 5, 1060–1068. [Google Scholar] [CrossRef]
- Deshpande, P.O.; Mohan, V.; Thakurdesai, P.A. Preclinical Toxicological Evaluation of IDM01: The Botanical Composition of 4-Hydroxyisoleucine- and Trigonelline-Based Standardized Fenugreek Seed Extract. Pharmacogn. Res. 2017, 9, 138–150. [Google Scholar] [CrossRef]
- Shanmugham, V.; Subban, R. Ninety-Day Repeated Oral Toxicity Study of Saponified Capsicum Annum Fruit Extract with 50% Capsanthin in Sprague-Dawley Rats with a 28-Day Recovery Period. Toxicol. Rep. 2022, 9, 323–336. [Google Scholar] [CrossRef]
- Swaroop, A.; Bagchi, M.; Kumar, P.; Preuss, H.G.; Tiwari, K.; Marone, P.A.; Bagchi, D. Safety, Efficacy and Toxicological Evaluation of a Novel, Patented Anti-Diabetic Extract of Trigonella foenum-graecum Seed Extract (Fenfuro). Toxicol. Mech. Methods 2014, 24, 495–503. [Google Scholar] [CrossRef]
- Clairet, A.-L.; Boiteux-Jurain, M.; Curtit, E.; Jeannin, M.; Gérard, B.; Nerich, V.; Limat, S. Interaction between Phytotherapy and Oral Anticancer Agents: Prospective Study and Literature Review. Med. Oncol. 2019, 36, 45. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.M.; El Safadi, M.; Hayat, M.F.; Al-Emam, A. Prevention of Fenitrothion Induced Hepatic Toxicity by Saponarin via Modulating TLR4/MYD88, JAK1/STAT3 and NF-ΚB Signaling Pathways. Int. J. Biochem. Cell Biol. 2025, 179, 106716. [Google Scholar] [CrossRef] [PubMed]
- Albaker, W.I. Fenugreek and Its Effects on Muscle Performance: A Systematic Review. J. Pers. Med. 2023, 13, 427. [Google Scholar] [CrossRef] [PubMed]
- Visuvanathan, T.; Than, L.T.L.; Stanslas, J.; Chew, S.Y.; Vellasamy, S. Revisiting Trigonella foenum-graecum L.: Pharmacology and Therapeutic Potentialities. Plants 2022, 11, 1450. [Google Scholar] [CrossRef]
- Semwal, P.; Painuli, S.; Abu-Izneid, T.; Rauf, A.; Sharma, A.; Daştan, S.D.; Kumar, M.; Alshehri, M.M.; Taheri, Y.; Das, R.; et al. Diosgenin: An Updated Pharmacological Review and Therapeutic Perspectives. Oxid. Med. Cell. Longev. 2022, 2022, 1035441. [Google Scholar] [CrossRef]
- Al-Dabbagh, B.; Elhaty, I.A.; Al Hrout, A.; Al Sakkaf, R.; El-Awady, R.; Ashraf, S.S.; Amin, A. Antioxidant and Anticancer Activities of Trigonella foenum-graecum, Cassia Acutifolia and Rhazya Stricta. BMC Complement. Altern. Med. 2018, 18, 240. [Google Scholar] [CrossRef]
- Pickering, E.; Steels, E.; Rao, A.; Steadman, K.J. An Exploratory Study of the Safety and Efficacy of a Trigonella foenum-graecum Seed Extract in Early Glucose Dysregulation: A Double-Blind Randomized Placebo-Controlled Trial. Pharmaceutics 2022, 14, 2453. [Google Scholar] [CrossRef]
- Coban, F.; Ozer, H.; Yilmaz, B.; Lan, Y. Characterization of Bioactive Compounds in Fenugreek Genotypes in Varying Environments: Diosgenin, Trigonelline, and 4-Hydroxyisoleucine. Front. Plant Sci. 2025, 16, 1562931. [Google Scholar] [CrossRef]
- Kaviarasan, S.; Viswanathan, P.; Anuradha, C.V. Fenugreek Seed (Trigonella foenum graecum) Polyphenols Inhibit Ethanol-Induced Collagen and Lipid Accumulation in Rat Liver. Cell Biol. Toxicol. 2007, 23, 373–383. [Google Scholar] [CrossRef]
- Gjorgieva Ackova, D.; Maksimova, V.; Smilkov, K.; Buttari, B.; Arese, M.; Saso, L. Alkaloids as Natural NRF2 Inhibitors: Chemoprevention and Cytotoxic Action in Cancer. Pharmaceuticals 2023, 16, 850. [Google Scholar] [CrossRef]
- Akhtar, H.; Ali, Y.A.; Wei, C.R.; Albassam, R.S.; Ahmed, F.; Yasmin, A.; Rasheed, M.; Naseer, M.S.; Islam, F.; Zahra, S.M.; et al. Bioactive Potential and Health Benefits of Trigonella foenum-graecum L.: A Comprehensive Review. Food Sci. Nutr. 2025, 13, e70887. [Google Scholar] [CrossRef]
- Yadav, U.C.S.; Baquer, N.Z. Pharmacological Effects of Trigonella Foenum-Graecum L. in Health and Disease. Pharm. Biol. 2014, 52, 243–254. [Google Scholar] [CrossRef]
- Damle, M.; Anandapandian, P.A.; Eswaran, B.; Pradhan, S.; C J, S.J.; Dhumke, S. Antifungal Efficacy of Chitosan-Mediated Fenugreek Nanocomposite Incorporated in Tissue Conditioner. J. Oral Biol. Craniofacial Res. 2025, 15, 271–276. [Google Scholar] [CrossRef]
- Su, Q. Phytochemicals in Fenugreek Seed Prevent High Fat Diet Induced Metabolic Inflammation and NAFLD via the Mediation of Akkermansia muciniphila. Proc. Nutr. Soc. 2020, 79, E485. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, R.; Geng, Y.; Chen, K.; Wang, L.; Imam, M.U. The Regulatory Effects and the Signaling Pathways of Natural Bioactive Compounds on Ferroptosis. Foods 2021, 10, 2952. [Google Scholar] [CrossRef]

| Research Domain | Current State of Evidence | Key Limitations/Unresolved Questions | Proposed Future Directions | Key References |
|---|---|---|---|---|
| Clinical efficacy in HCC | Strong in vitro evidence (HepG2, Hep3B); limited in vivo tumour models | No randomised clinical trials in HCC patients; unclear clinical benefit | Phase I/II trials evaluating safety, dosing, and efficacy in HCC patients | [105] |
| Dose standardisation | Wide variability in extracts, solvents, and bioactive content | Lack of consensus on therapeutic dose; batch-to-batch inconsistency | Development of marker-based standardised extracts (e.g., diosgenin, trigonelline) | [106] |
| Long-term safety | Generally safe in short-term animal and human studies | Limited chronic toxicity data; reproductive and teratogenic risks | Long-term toxicity and reproductive safety studies under clinically relevant dosing | [4] |
| Herb–drug interactions | In vitro CYP3A4 and CYP2D6 inhibition reported | Clinical relevance unclear; rare but serious hepatotoxicity cases reported | Dedicated interaction studies with sorafenib, ribociclib, and immunotherapies | [107] |
| Tumour microenvironment effects | Antioxidant and anti-inflammatory actions are demonstrated | Impact on immune cells, fibrosis, and angiogenesis is poorly defined | Studies on immune modulation, macrophage polarisation, and stromal interactions | [78] |
| Resistance mechanisms | Diosgenin and dioscin reverse multidrug resistance in vitro | Limited evidence in HCC-specific resistance models | Evaluation in sorafenib-resistant and ferroptosis-resistant HCC models | [28] |
| Bioavailability and delivery | Poor oral bioavailability of diosgenin | Clinical translation is limited by low systemic exposure | Nanoparticles, niosomes, and SEDDS-based delivery systems | [28] |
| Molecular target specificity | Multiple pathways affected (STAT3, NF-κB, NRF2, Hippo) | Difficult to define primary vs. secondary targets | Multi-omics and target validation studies (CRISPR, phosphoproteomics) | [108] |
| Population variability | Ecotype- and region-dependent phytochemical variation | Inconsistent biological activity between preparations | Chemotype classification and geographic standardisation | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Vittal, M.; Menegassi, B.; Vinciguerra, M. Risks, Benefits, and Molecular Targets of Fenugreek Administration in the Treatment of Hepatocellular Carcinoma. Cancers 2026, 18, 458. https://doi.org/10.3390/cancers18030458
Vittal M, Menegassi B, Vinciguerra M. Risks, Benefits, and Molecular Targets of Fenugreek Administration in the Treatment of Hepatocellular Carcinoma. Cancers. 2026; 18(3):458. https://doi.org/10.3390/cancers18030458
Chicago/Turabian StyleVittal, Maanya, Bruna Menegassi, and Manlio Vinciguerra. 2026. "Risks, Benefits, and Molecular Targets of Fenugreek Administration in the Treatment of Hepatocellular Carcinoma" Cancers 18, no. 3: 458. https://doi.org/10.3390/cancers18030458
APA StyleVittal, M., Menegassi, B., & Vinciguerra, M. (2026). Risks, Benefits, and Molecular Targets of Fenugreek Administration in the Treatment of Hepatocellular Carcinoma. Cancers, 18(3), 458. https://doi.org/10.3390/cancers18030458

