Optimal α/β Ratio for Biologically Effective Dose-Based Prediction of Radiation-Induced Peritumoral Brain Edema in Meningioma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Imaging and Clinical Assessment
2.3. Radiation Technique and Treatment Planning
2.4. Statistical Methods
3. Results
3.1. Characteristics of the Study Patients
3.2. Predictors of PTBE After Radiotherapy
3.3. Determination of Optimal BED Cutoffs for Predicting PTBE
3.4. Optimal BED Threshold with an α/β Ratio of 14 for Predicting Radiation-Induced PTBE
3.5. PTV and Age Thresholds for Predicting Radiation-Induced PTBE
3.6. Subgroup Analysis in Patients with Pre-Existing PTBE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BED | Biologically effective dose |
| PTBE | Peritumoral brain edema |
| LINAC | Linear accelerator |
| SRS | Stereotactic radiosurgery |
| hf-SRS | Hypofractionated stereotactic radiosurgery |
| hf-SRT | Hypofractionated stereotactic radiotherapy |
| GTV | Gross tumor volume |
| CTV | Clinical target volume |
| PTV | Planning target volume |
| ROC | Receiver operating characteristic |
| AUC | Area under the curve |
| HR | Hazard ratio |
| CI | Confidence interval |
| WHO | World Health Organization |
| BBB | Blood–brain barrier |
| MRI | Magnetic resonance imaging |
| CT | Computed tomography |
| ANOVA | Analysis of variance |
References
- Conti, A.; Pontoriero, A.; Siddi, F.; Iatì, G.; Cardali, S.; Angileri, F.F.; Granata, F.; Pergolizzi, S.; Germanò, A.; Tomasello, F. Post-Treatment Edema after Meningioma Radiosurgery Is a Predictable Complication. Cureus 2016, 8, e605. [Google Scholar] [CrossRef] [PubMed]
- Stefini, R.; Peron, S.; La Camera, A.; Cividini, A.; Fiaschi, P.; Sicuri, G.M. The positive effects of surgery on symptomatic stereotactic radiation-induced peritumoral brain edema: A report of three cases. Surg. Neurol. Int. 2021, 12, 358. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-H.; Chuang, C.-C.; Wang, C.-C.; Wei, K.-C.; Chen, H.-C.; Hsu, P.-W. Risk Factors for Peritumoral Edema after Radiosurgery for Intracranial Benign Meningiomas: A Long-Term Follow-up in a Single Institution. Neurosurg. Focus 2022, 53, E7. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.-H.; Kim, J.M.; Cheong, J.H.; Ryu, J.I.; Kim, Y.S.; Han, M.-H. Significance of Skull Osteoporosis to the Development of Peritumoral Brain Edema after LINAC-Based Radiation Treatment in Patients with Intracranial Meningioma. PLoS ONE 2020, 15, e0226312. [Google Scholar] [CrossRef]
- Vernimmen, F.J.A.I.; Slabbert, J.P. Assessment of the Alpha/Beta Ratios for Arteriovenous Malformations, Meningiomas, Acoustic Neuromas, and the Optic Chiasma. Int. J. Radiat. Biol. 2010, 86, 486–498. [Google Scholar] [CrossRef]
- Alfredo, C.; Carolin, S.; Güliz, A.; Anne, K.; Antonio, P.; Alberto, C.; Stefano, P.; Antonino, G.; Harun, B.; Markus, K.; et al. Normofractionated Stereotactic Radiotherapy versus CyberKnife-Based Hypofractionation in Skull Base Meningioma: A German and Italian Pooled Cohort Analysis. Radiat. Oncol. 2019, 14, 201. [Google Scholar] [CrossRef]
- Milano, M.T.; Sharma, M.; Soltys, S.G.; Sahgal, A.; Usuki, K.Y.; Saenz, J.-M.; Grimm, J.; El Naqa, I. Radiation-Induced Edema After Single-Fraction or Multifraction Stereotactic Radiosurgery for Meningioma: A Critical Review. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 344–357. [Google Scholar] [CrossRef]
- Sheehan, J.P.; Lee, C.-C.; Xu, Z.; Przybylowski, C.J.; Melmer, P.D.; Schlesinger, D. Edema Following Gamma Knife Radiosurgery for Parasagittal and Parafalcine Meningiomas. J. Neurosurg. 2015, 123, 1287–1293. [Google Scholar] [CrossRef]
- Kang, S.M.; Kim, J.M.; Cheong, J.H.; Ryu, J.I.; Won, Y.D.; Kim, Y.S.; Han, M.-H. Effect of Osteoporotic Conditions on the Development of Peritumoral Brain Edema after LINAC-Based Radiation Treatment in Patients with Intracranial Meningioma. Radiat. Oncol. 2021, 16, 160. [Google Scholar] [CrossRef]
- Laajava, J.; Niemelä, M.; Korja, M. Peritumoral Edema Resolves Infrequently in Surgically Treated Patients with Intracranial Meningioma—A Retrospective Study of 279 Meningioma Patients. J. Neuro-Oncol. 2025, 173, 83–94. [Google Scholar] [CrossRef]
- Park, H.R.; Lee, J.M.; Park, K.-W.; Kim, J.H.; Jeong, S.S.; Kim, J.W.; Chung, H.-T.; Kim, D.G.; Paek, S.H. Fractionated Gamma Knife Radiosurgery as Initial Treatment for Large Skull Base Meningioma. Exp. Neurobiol. 2018, 27, 245–255. [Google Scholar] [CrossRef]
- Minniti, G.; Filippi, A.R.; Osti, M.F.; Ricardi, U. Radiation Therapy for Older Patients with Brain Tumors. Radiat. Oncol. 2017, 12, 101. [Google Scholar] [CrossRef]
- Perry, J.R.; Laperriere, N.; O’Callaghan, C.J.; Brandes, A.A.; Menten, J.; Phillips, C.; Fay, M.; Nishikawa, R.; Cairncross, J.G.; Roa, W.; et al. Short-Course Radiation plus Temozolomide in Elderly Patients with Glioblastoma. N. Engl. J. Med. 2017, 376, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Dudas, D.; Dilling, T.J.; Naqa, I.E. A Deep Learning-Informed Interpretation of Why and When Dose Metrics Outside the PTV Can Affect the Risk of Distant Metastasis in SBRT NSCLC Patients. Radiat. Oncol. 2024, 19, 127. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G.F.; Brügge, D.; Andratschke, N.; Baumert, B.G.; Bosetti, D.G.; Caparrotti, F.; Herrmann, E.; Papachristofilou, A.; Rogers, S.; Schwyzer, L.; et al. Postoperative Radiotherapy for Meningiomas—A Decision-Making Analysis. BMC Cancer 2022, 22, 492. [Google Scholar] [CrossRef] [PubMed]
- Shrieve, D.C.; Hazard, L.; Boucher, K.; Jensen, R.L. Dose Fractionation in Stereotactic Radiotherapy for Parasellar Meningiomas: Radiobiological Considerations of Efficacy and Optic Nerve Tolerance. J. Neurosurg. 2004, 101, 390–395. [Google Scholar] [CrossRef]
- Park, K.-J.; Kang, S.-H.; Chae, Y.-S.; Yu, M.-O.; Cho, T.-H.; Suh, J.-K.; Lee, H.-K.; Chung, Y.-G. Influence of Interleukin-6 on the Development of Peritumoral Brain Edema in Meningiomas. J. Neurosurg. 2010, 112, 73–80. [Google Scholar] [CrossRef]
- Meningiomas and Brain Edema|Clinical Gate. Available online: https://clinicalgate.com/meningiomas-and-brain-edema (accessed on 26 March 2015).
- Fiani, B.; Jarrah, R.; Bhandarkar, A.R.; De Stefano, F.; Amare, A.; Aljameey, U.A.; Reardon, T. Peritumoral Edema in Meningiomas: Pathophysiology, Predictors, and Principles for Treatment. Clin. Transl. Oncol. 2023, 25, 866–872. [Google Scholar] [CrossRef]
- Hoe, Y.; Choi, Y.J.; Kim, J.H.; Kwon, D.H.; Kim, C.J.; Cho, Y.H. Peritumoral Brain Edema after Stereotactic Radiosurgery for Asymptomatic Intracranial Meningiomas: Risks and Pattern of Evolution. J. Korean Neurosurg. Soc. 2015, 58, 379–384. [Google Scholar] [CrossRef]
- Walker, A.J.; Ruzevick, J.; Malayeri, A.A.; Rigamonti, D.; Lim, M.; Redmond, K.J.; Kleinberg, L. Postradiation Imaging Changes in the CNS: How Can We Differentiate between Treatment Effect and Disease Progression? Future Oncol. 2014, 10, 1277–1297. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, Y.; Li, M.; Yu, C.; Tong, Y.; Xu, X. Protective Effects of AER-271 in Acute-Phase Radiation-Induced Brain Injury in Rats: Reduction of Brain Edema, Inflammation, Apoptosis and Maintenance of Blood-Brain Barrier Integrity. Front. Pharmacol. 2025, 16, 1534729. [Google Scholar] [CrossRef]
- Johnson, B.J.; Andrews, R.N.; Olson, J.D.; Cline, J.M. Radiation-Induced Brain Injury and the Radiation Late Effects Cohort (RLEC) of Rhesus Macaques (Macaca Mulatta). Radiat. Res. 2025, 204, 369–383. [Google Scholar] [CrossRef]
- Fowler, J.F. 21 Years of Biologically Effective Dose. Br. J. Radiol. 2010, 83, 554–568. [Google Scholar] [CrossRef]
- Joiner, M.C.; van der Kogel, A.J. (Eds.) Basic Clinical Radiobiology, 5th ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Shin, C.; Kim, J.M.; Cheong, J.H.; Ryu, J.I.; Won, Y.D.; Ko, Y.; Han, M.-H. Association between Tumor Size and Peritumoral Brain Edema in Patients with Convexity and Parasagittal Meningiomas. PLoS ONE 2021, 16, e0252945. [Google Scholar] [CrossRef]
- Kim, B.-W.; Kim, M.-S.; Kim, S.-W.; Chang, C.-H.; Kim, O.-L. Peritumoral Brain Edema in Meningiomas: Correlation of Radiologic and Pathologic Features. J. Korean Neurosurg. Soc. 2011, 49, 26–30. [Google Scholar] [CrossRef]
- Li, Q.; Yang, Y.; Reis, C.; Tao, T.; Li, W.; Li, X.; Zhang, J.H. Cerebral Small Vessel Disease. Cell Transplant. 2018, 27, 1711–1722. [Google Scholar] [CrossRef]
- Li, M.; Tong, F.; Wu, B.; Dong, X. Radiation-Induced Brain Injury: Mechanistic Insights and the Promise of Gut–Brain Axis Therapies. Brain Sci. 2024, 14, 1295. [Google Scholar] [CrossRef]



| Characteristics | PTBE (−) | PTBE (+) | Total | p-Value |
|---|---|---|---|---|
| Number (%) | 51 (76.1) | 16 (23.9) | 67 | |
| Sex, female, n (%) | 41 (80.4) | 10 (62.5) | 51 (76.1) | 0.143 |
| Age, mean ± SD, y | 66.8 ± 10.5 | 72.2 ± 13.5 | 68.1 ± 11.4 | 0.101 |
| Age < 70 years, n (%) | 31 (60.8) | 5 (31.3) | 36 (53.7) | 0.039 |
| Imaging follow-up period, median (IQR), days | 531.0 (269.0–1268.0) | 978.0 (144.3–1696.0) | 678.0 (204.0–1337.0) | 0.507 |
| Imaging follow-up period, mean ± SD, days | 821.4 ± 697.6 | 961.7 ±844.8 | 854.9 ± 731.1 | 0.507 |
| BMI, mean ± SD, kg/m2 | 24.2 ± 4.0 | 24.5 ± 3.0 | 24.2 ± 3.7 | 0.764 |
| Location, n (%) | 0.327 | |||
| Convexity | 28 (54.9) | 11 (68.8) | 39 (58.2) | |
| Parasagittal or parafalcine | 23 (45.1) | 5 (31.3) | 28 (41.8) | |
| GTV, mean ± SD, cc | 5.3 ± 9.0 | 15.6 ± 15.6 | 7.8 ± 11.7 | 0.001 |
| PTV, mean ± SD, cc | 6.3 ± 10.5 | 21.1 ± 19.9 | 9.9 ± 14.6 | <0.001 |
| Marginal radiation dose, mean ± SD, Gy | 27.2 ± 3.7 | 27.4 ± 6.1 | 27.2 ± 4.4 | 0.826 |
| Fractionation, n (%) | 0.006 | |||
| SRS | 5 (9.8) | 4 (25.0) | 9 (13.4) | |
| hf-SRS (2–5 fx) | 44 (86.3) | 8 (50.0) | 52 (77.6) | |
| hf-SRT (6–10 fx) | 2 (3.9) | 4 (25.0) | 6 (9.0) | |
| Dose per fraction, mean ± SD, Gy | 6.9 ± 3.8 | 8.4 ± 5.9 | 7.3 ± 4.4 | 0.248 |
| BED (α/β = 3), mean ± SD, Gy | 86.4 ± 14.8 | 94.0 ± 22.9 | 88.2 ± 17.2 | 0.126 |
| Tumor progression, n (%) | 6 (11.8) | 0 | 6 (9.0) | 0.150 |
| Past medical history, n (%) | ||||
| Hypertension | 26 (51.0) | 9 (56.3) | 35 (52.2) | 0.713 |
| Diabetes | 10 (19.6) | 2 (12.5) | 12 (17.9) | 0.518 |
| Univariate Analysis | Multivariate Analysis | |||
|---|---|---|---|---|
| Variable | HR (95% CI) | p-Value | HR (95% CI) | p-Value |
| Sex | ||||
| Male | Reference | Reference | ||
| Female | 0.41 (0.15–1.14) | 0.086 | 0.67 (0.16–2.77) | 0.577 |
| Age (per 1 year increase) | 1.06 (1.01–1.11) | 0.030 | 1.04 (0.98–1.09) | 0.169 |
| BMI (per 1 BMI increase) | 1.01 (0.88–1.17) | 0.868 | 1.03 (0.84–1.27) | 0.767 |
| PTV (per 1 cc increase) | 1.04 (1.02–1.06) | <0.001 | 1.04 (0.99–1.09) | 0.154 |
| BED (α/β = 3) (per 1 Gy increase) | 1.02 (1.00–1.04) | 0.114 | 1.06 (1.01–1.12) | 0.017 |
| Fractionation (per 1 fraction increase) | 1.17 (0.92–1.50) | 0.207 | 1.10 (0.64–1.87) | 0.734 |
| Hypertension | ||||
| No | Reference | Reference | ||
| Yes | 1.13 (0.42–3.03) | 0.813 | 1.92 (0.56–6.57) | 0.298 |
| Diabetes | ||||
| No | Reference | Reference | ||
| Yes | 0.66 (0.15–2.92) | 0.588 | 0.16 (0.02–1.31) | 0.087 |
| α/β | AUC | p-Value | Optimal BED (Gy) | Sensitivity | Specificity | Youden’s J | 1 fx Dose ≤ (Gy) | 5 fx Dose/fx ≤ (Gy) |
|---|---|---|---|---|---|---|---|---|
| All patients | ||||||||
| 2 | 0.550 | 0.551 | 119.840 | 0.500 | 0.804 | 0.304 | 14.51 | 5.99 |
| 3 | 0.556 | 0.503 | 89.427 | 0.500 | 0.804 | 0.304 | 14.95 | 5.98 |
| 4 | 0.559 | 0.476 | 74.550 | 0.500 | 0.804 | 0.304 | 15.38 | 5.98 |
| 5 | 0.593 | 0.267 | 65.096 | 0.500 | 0.784 | 0.284 | 15.71 | 5.95 |
| 6 | 0.602 | 0.219 | 59.672 | 0.500 | 0.804 | 0.304 | 16.16 | 5.98 |
| 7 | 0.662 | 0.051 | 50.457 | 0.688 | 0.667 | 0.355 | 15.62 | 5.60 |
| 8 | 0.663 | 0.050 | 48.025 | 0.688 | 0.667 | 0.355 | 16.00 | 5.64 |
| 9 | 0.675 | 0.036 | 46.798 | 0.688 | 0.686 | 0.374 | 16.51 | 5.72 |
| 10 | 0.726 | 0.007 | 43.785 | 0.812 | 0.667 | 0.479 | 16.51 | 5.61 |
| 11 | 0.730 | 0.006 | 42.577 | 0.812 | 0.667 | 0.479 | 16.83 | 5.63 |
| 12 | 0.733 | 0.005 | 41.075 | 0.812 | 0.667 | 0.479 | 17.00 | 5.60 |
| 13 | 0.718 | 0.009 | 41.217 | 0.750 | 0.725 | 0.475 | 17.54 | 5.72 |
| 14 | 0.716 | 0.009 | 40.595 | 0.750 | 0.745 | 0.495 | 17.85 | 5.75 |
| 15 | 0.722 | 0.008 | 39.565 | 0.750 | 0.745 | 0.495 | 17.99 | 5.73 |
| 16 | 0.719 | 0.009 | 38.136 | 0.750 | 0.725 | 0.475 | 17.96 | 5.64 |
| 17 | 0.680 | 0.031 | 38.487 | 0.625 | 0.804 | 0.429 | 18.45 | 5.75 |
| 18 | 0.677 | 0.034 | 37.910 | 0.625 | 0.804 | 0.429 | 18.63 | 5.75 |
| 19 | 0.682 | 0.029 | 37.394 | 0.625 | 0.804 | 0.429 | 18.80 | 5.74 |
| 20 | 0.654 | 0.065 | 36.749 | 0.625 | 0.804 | 0.429 | 18.90 | 5.72 |
| Patients younger than 70 years | ||||||||
| α/β | AUC | p-value | Optimal BED (Gy) | Sensitivity | Specificity | Youden’s J | 1 fx dose ≤ (Gy) | 5 fx dose/fx ≤ (Gy) |
| 2 | 0.745 | 0.082 | 144.118 | 0.800 | 0.871 | 0.671 | 16.01 | 6.66 |
| 3 | 0.745 | 0.082 | 105.562 | 0.800 | 0.871 | 0.671 | 16.36 | 6.60 |
| 4 | 0.758 | 0.067 | 95.031 | 0.800 | 0.903 | 0.703 | 17.60 | 6.95 |
| 5 | 0.790 | 0.040 | 80.775 | 0.800 | 0.903 | 0.703 | 17.75 | 6.83 |
| 6 | 0.790 | 0.040 | 70.271 | 0.800 | 0.903 | 0.703 | 17.75 | 6.66 |
| 7 | 0.906 | 0.004 | 50.457 | 1.000 | 0.710 | 0.710 | 15.62 | 5.60 |
| 8 | 0.906 | 0.004 | 48.025 | 1.000 | 0.710 | 0.710 | 16.00 | 5.64 |
| 9 | 0.919 | 0.003 | 46.798 | 1.000 | 0.742 | 0.742 | 16.51 | 5.72 |
| 10 | 0.919 | 0.003 | 45.160 | 1.000 | 0.742 | 0.742 | 16.83 | 5.74 |
| 11 | 0.939 | 0.002 | 44.440 | 1.000 | 0.839 | 0.839 | 17.28 | 5.81 |
| 12 | 0.939 | 0.002 | 43.327 | 1.000 | 0.871 | 0.871 | 17.58 | 5.83 |
| 13 | 0.932 | 0.002 | 42.415 | 1.000 | 0.871 | 0.871 | 17.86 | 5.85 |
| 14 | 0.945 | 0.002 | 41.079 | 1.000 | 0.871 | 0.871 | 17.98 | 5.81 |
| 15 | 0.932 | 0.002 | 39.565 | 1.000 | 0.839 | 0.839 | 17.99 | 5.73 |
| 16 | 0.919 | 0.003 | 38.136 | 1.000 | 0.806 | 0.806 | 17.96 | 5.64 |
| 17 | 0.719 | 0.120 | 39.565 | 0.600 | 0.935 | 0.535 | 18.79 | 5.88 |
| 18 | 0.706 | 0.143 | 38.700 | 0.600 | 0.935 | 0.535 | 18.89 | 5.84 |
| 19 | 0.706 | 0.143 | 37.926 | 0.600 | 0.935 | 0.535 | 18.98 | 5.81 |
| 20 | 0.623 | 0.385 | 36.749 | 0.600 | 0.903 | 0.503 | 18.90 | 5.72 |
| Patients older than 70 years | ||||||||
| α/β | AUC | p-value | Optimal BED (Gy) | Sensitivity | Specificity | Youden’s J | 1 fx dose ≤ (Gy) | 5 fx dose/fx ≤ (Gy) |
| 2 | 0.468 | 0.773 | 98.075 | 0.273 | 0.950 | 0.223 | 13.04 | 5.34 |
| 3 | 0.473 | 0.804 | 72.450 | 0.182 | 1.000 | 0.182 | 13.32 | 5.26 |
| 4 | 0.473 | 0.804 | 61.838 | 0.182 | 1.000 | 0.182 | 13.85 | 5.31 |
| 5 | 0.477 | 0.836 | 55.470 | 0.182 | 1.000 | 0.182 | 14.34 | 5.36 |
| 6 | 0.486 | 0.901 | 54.792 | 0.545 | 0.600 | 0.145 | 15.38 | 5.65 |
| 7 | 0.536 | 0.741 | 51.450 | 0.545 | 0.600 | 0.145 | 15.80 | 5.68 |
| 8 | 0.536 | 0.741 | 50.169 | 0.455 | 0.700 | 0.155 | 16.43 | 5.81 |
| 9 | 0.550 | 0.650 | 44.939 | 0.909 | 0.300 | 0.209 | 16.11 | 5.56 |
| 10 | 0.600 | 0.364 | 43.785 | 0.727 | 0.600 | 0.327 | 16.51 | 5.61 |
| 11 | 0.586 | 0.433 | 42.577 | 0.727 | 0.600 | 0.327 | 16.83 | 5.63 |
| 12 | 0.595 | 0.386 | 41.075 | 0.727 | 0.600 | 0.327 | 17.00 | 5.60 |
| 13 | 0.577 | 0.483 | 40.719 | 0.636 | 0.600 | 0.236 | 17.41 | 5.67 |
| 14 | 0.564 | 0.563 | 39.989 | 0.636 | 0.600 | 0.236 | 17.67 | 5.69 |
| 15 | 0.582 | 0.457 | 40.237 | 0.545 | 0.750 | 0.295 | 18.19 | 5.80 |
| 16 | 0.582 | 0.457 | 39.659 | 0.545 | 0.750 | 0.295 | 18.43 | 5.82 |
| 17 | 0.591 | 0.409 | 39.150 | 0.545 | 0.750 | 0.295 | 18.66 | 5.83 |
| 18 | 0.591 | 0.409 | 38.617 | 0.545 | 0.750 | 0.295 | 18.86 | 5.83 |
| 19 | 0.591 | 0.409 | 38.084 | 0.545 | 0.750 | 0.295 | 19.03 | 5.83 |
| 20 | 0.595 | 0.386 | 37.605 | 0.545 | 0.750 | 0.295 | 19.19 | 5.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ko, S.-W.; Won, Y.D.; Ha, B.J.; Cheong, J.H.; Ryu, J.I.; Hong, S.W.; Min, K.-W.; Han, M.-H. Optimal α/β Ratio for Biologically Effective Dose-Based Prediction of Radiation-Induced Peritumoral Brain Edema in Meningioma. Cancers 2026, 18, 448. https://doi.org/10.3390/cancers18030448
Ko S-W, Won YD, Ha BJ, Cheong JH, Ryu JI, Hong SW, Min K-W, Han M-H. Optimal α/β Ratio for Biologically Effective Dose-Based Prediction of Radiation-Induced Peritumoral Brain Edema in Meningioma. Cancers. 2026; 18(3):448. https://doi.org/10.3390/cancers18030448
Chicago/Turabian StyleKo, Shin-Woong, Yu Deok Won, Byeong Jin Ha, Jin Hwan Cheong, Je Il Ryu, Seung Woo Hong, Kyueng-Whan Min, and Myung-Hoon Han. 2026. "Optimal α/β Ratio for Biologically Effective Dose-Based Prediction of Radiation-Induced Peritumoral Brain Edema in Meningioma" Cancers 18, no. 3: 448. https://doi.org/10.3390/cancers18030448
APA StyleKo, S.-W., Won, Y. D., Ha, B. J., Cheong, J. H., Ryu, J. I., Hong, S. W., Min, K.-W., & Han, M.-H. (2026). Optimal α/β Ratio for Biologically Effective Dose-Based Prediction of Radiation-Induced Peritumoral Brain Edema in Meningioma. Cancers, 18(3), 448. https://doi.org/10.3390/cancers18030448

