TREM2 in Urological Malignancies and Benign Lesions: Mechanistic Convergence, Functional Heterogeneity, and Translational Perspectives: A Narrative Review
Simple Summary
Abstract
1. Introduction
Literature Search Methodology
2. Biological Functions and Signaling Pathways of TREM2
3. The Dual Role of TREM2 in the Tumor Immune Microenvironment: From Functional Paradox to Mechanism Convergence
3.1. TREM2 Function: Dual Cancer-Protection Spectrum
3.2. Mechanistic Convergence of Urological Tumors: PI3K/AKT Axis
4. Research Progress of TREM2 in Urological Diseases: From Benign Hyperplasia to Malignant Neoplasms
4.1. Bladder Cancer
4.2. Prostate Cancer
4.3. Benign Prostatic Hyperplasia (BPH)
4.4. Kidney Diseases
5. Therapeutic Potential of TREM2: From Mechanism to Clinical Translation
6. Discussion and Future Perspectives
6.1. Synthesis of Mechanistic Convergence
6.2. Renal Safety Considerations in TREM2-Targeted Therapy
6.3. Determinants of TREM2 Functional Switching: A Context-Dependent Framework
6.4. Future Directions and Challenges
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alkan, F.K.; Korkaya, H. Therapeutic Utility of Immunosuppressive TREM2+ Macrophages: An Important Step Forward in Potentiating the Immune Checkpoint Inhibitors. Signal Transduct. Target. Ther. 2020, 5, 264. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, K.; Cao, Y.; Xie, P.; Wang, L.; Shen, Z.; Qin, J. TREM2 Facilitates Gastric Cancer Progression and Immune Evasion via Inhibiting TRIM21-Mediated STAT1 Degradation in Tumor-Associated Macrophages. Cell Death Dis. 2025, 16, 845. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Gou, Y.N.; Hao, J.Y.; Huang, X.J. Mechanisms of TREM2 Mediated Immunosuppression and Regulation of Cancer Progression. Front. Oncol. 2025, 14, 1375729. [Google Scholar] [CrossRef] [PubMed]
- Colonna, M. TREMs in the Immune System and Beyond. Nat. Rev. Immunol. 2003, 3, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xu, Z.; Varner, J. Targeting Myeloid Cells to Improve Cancer Immune Therapy. Front. Immunol. 2025, 16, 1623436. [Google Scholar] [CrossRef]
- Wang, S.; Sudan, R.; Peng, V.; Zhou, Y.; Du, S.; Yuede, C.M.; Lei, T.; Hou, J.; Cai, Z.; Cella, M.; et al. TREM2 Drives Microglia Response to Amyloid-β via SYK-Dependent and -Independent Pathways. Cell 2022, 185, 4153–4169.e19. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, C.; Tang, Z.; Yuan, W.; Yue, K.; Cui, P.; Qiu, X.; Zhang, H.; Li, T.; Zhu, X.; et al. TREM2 Deficiency Aggravates Renal Injury by Promoting Macrophage Apoptosis and Polarization via the JAK-STAT Pathway in Mice. Cell Death Dis. 2024, 15, 401. [Google Scholar] [CrossRef]
- Zheng, H.; Jia, L.; Liu, C.-C.; Rong, Z.; Zhong, L.; Yang, L.; Chen, X.-F.; Fryer, J.D.; Wang, X.; Zhang, Y.; et al. TREM2 Promotes Microglial Survival by Activating Wnt/β-Catenin Pathway. J. Neurosci. 2017, 37, 1772–1784. [Google Scholar] [CrossRef]
- Huang, Y.; Fang, W. TREM2-Mediated Regulation of Myeloid Cells in the Tumor Microenvironment: New Insights and Therapeutic Prospects. Int. Immunopharmacol. 2025, 9, 359. [Google Scholar] [CrossRef]
- Deming, Y.; Li, Z.; Benitez, B.A.; Cruchaga, C. Triggering Receptor Expressed on Myeloid Cells 2 (TREM2): A Potential Therapeutic Target for Alzheimer Disease? Expert Opin. Ther. Targets 2018, 22, 587–598. [Google Scholar] [CrossRef]
- Zheng, J.-Y.; Pang, R.-K.; Ye, J.-H.; Su, S.; Shi, J.; Qiu, Y.-H.; Pan, H.-F.; Zheng, R.-Y.; Hu, X.-R.; Deng, Q.-W.; et al. Huang-Lian-Jie-Du Decoction Alleviates Cognitive Impairment in High-Fat Diet-Induced Obese Mice via Trem2/Dap12/Syk Pathway. Phytomedicine 2024, 135, 156248. [Google Scholar] [CrossRef]
- Castor-Macias, J.A.; Piotto, C.; Rudy, P.; Guzman, S.D.; Chang, A.; Larouche, J.A.; He, Y.; Levi, B.; Lahann, J.; Aguilar, C.A. Reprogramming of Myeloid Responses to Volumetric Muscle Loss via Engineered Protein Nanoparticles. Nat. Rev. Urol. 2025, 19, 30441–30454. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhou, T.; Wu, L.; Zhu, X.; Chen, L.; Zhang, M.; Zhou, J.; Wang, F. Microglial Exosome TREM2 Ameliorates Ferroptosis and Neuroinflammation in Alzheimer’s Disease by Activating the Wnt/β-Catenin Signaling. Sci. Rep. 2025, 15, 24968. [Google Scholar] [CrossRef] [PubMed]
- Deczkowska, A.; Weiner, A.; Amit, I. The Physiology, Pathology, and Potential Therapeutic Applications of the TREM2 Signaling Pathway. Cell 2020, 181, 1207–1217. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, L.; Yang, J.; Meng, L.; Chen, J.; Zhou, L.; Wang, J.; Xiong, M.; Zhang, Z. Soluble TREM2 Ameliorates Tau Phosphorylation and Cognitive Deficits through Activating Transgelin-2 in Alzheimer’s Disease. Front. Oncol. 2025, 14, 6670. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Ma, J.; Sun, J.; Xu, W.; Cong, H.; Wei, Y.; Ma, Y.; Dong, Q.; Kou, Y.; Yin, L.; et al. Soluble TREM2 Is a Potential Biomarker for the Severity of Primary Angiitis of the CNS. Front. Immunol. 2022, 13, 963373. [Google Scholar] [CrossRef]
- Edwin, T.H.; Henjum, K.; Nilsson, L.N.G.; Watne, L.O.; Persson, K.; Eldholm, R.S.; Saltvedt, I.; Halaas, N.B.; Selbæk, G.; Engedal, K.; et al. A High Cerebrospinal Fluid Soluble TREM2 Level Is Associated with Slow Clinical Progression of Alzheimer’s Disease. Sci. Adv. 2020, 12, 115–119. [Google Scholar] [CrossRef]
- Rohden, F.; Ferreira, P.C.L.; Bellaver, B.; Ferrari-Souza, J.P.; Aguzzoli, C.S.; Soares, C.; Abbas, S.; Zalzale, H.; Povala, G.; Lussier, F.Z.; et al. Glial Reactivity Correlates with Synaptic Dysfunction across Aging and Alzheimer’s Disease. Nat. Commun. 2025, 16, 5653. [Google Scholar] [CrossRef]
- Kothari, V.; Savard, C.; Tang, J.; Lee, S.P.; Subramanian, S.; Wang, S.; den Hartigh, L.J.; Bornfeldt, K.E.; Ioannou, G.N. sTREM2 Is a Plasma Biomarker for Human NASH and Promotes Hepatocyte Lipid Accumulation. Cells 2025, 7, e0265. [Google Scholar] [CrossRef]
- Xie, Y.; Sheng, Z.; He, H.; Li, Y.; Chen, Q.; Gao, Y.; Zheng, J. Single-Center Analysis of Soluble TREM2 as a Biomarker in Coronary Microvascular Dysfunction: A Cross-Sectional Study. JCM 2025, 14, 1816. [Google Scholar] [CrossRef]
- Xu, M.; Yang, Y.; Peng, J.; Zhang, Y.; Wu, B.; He, B.; Jia, Y.; Yan, T. Effects of Alpinae Oxyphyllae Fructus on Microglial Polarization in a LPS-Induced BV2 Cells Model of Neuroinflammation via TREM2. J. Ethnopharmacol. 2023, 302, 115914. [Google Scholar] [CrossRef]
- Yao, Y.; Li, H.; Chen, J.; Xu, W.; Yang, G.; Bao, Z.; Xia, D.; Lu, G.; Hu, S.; Zhou, J. TREM-2 Serves as a Negative Immune Regulator through Syk Pathway in an IL-10 Dependent Manner in Lung Cancer. Oncotarget 2016, 7, 29620–29634. [Google Scholar] [CrossRef]
- Zhao, C.; Qi, W.; Lv, X.; Gao, X.; Liu, C.; Zheng, S. Elucidating the Role of Trem2 in Lipid Metabolism and Neuroinflammation. CNS Neurosci. Ther. 2025, 31, e70338. [Google Scholar] [CrossRef]
- Shi, S.; Zhou, Y.; Zhang, H.; Zhang, J. TREM2 in MASH: Integrating Lipid Metabolism and Immune Response. Front. Immunol. 2025, 16, 1604837. [Google Scholar] [CrossRef] [PubMed]
- Reich, T.; Adato, O.; Kofman, N.S.; Feiglin, A.; Unger, R. TREM2 Has a Significant, Gender-Specific, Effect on Human Obesity. Sci. Rep. 2023, 13, 482. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Eeda, V.; Lim, H.-Y.; Wang, W. Identification and Sorting of Adipose Inflammatory and Metabolically Activated Macrophages in Diet-Induced Obesity. Bio-Protocol 2025, 15, e5479. [Google Scholar] [CrossRef]
- Humphrey, M.B.; Nakamura, M.C. A Comprehensive Review of Immunoreceptor Regulation of Osteoclasts. Clin. Rev. Allerg. Immu. 2016, 51, 48–58. [Google Scholar] [CrossRef]
- Nakamura, K.; Smyth, M.J. TREM2 Marks Tumor-Associated Macrophages. Signal Transduct. Target. Ther. 2020, 5, 233. [Google Scholar] [CrossRef]
- Molgora, M.; Liu, Y.A.; Colonna, M.; Cella, M. TREM2: A New Player in the Tumor Microenvironment. Semin. Immunol. 2023, 67, 101739. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Du, Y.; Xiong, W.; Shang, P. Combined Single-Cell RNA-Seq and Bulk RNA-Seq to Analyze the Expression and Role of TREM2 in Bladder Cancer. Med. Oncol. 2022, 40, 23. [Google Scholar] [CrossRef]
- Khantakova, D.; Brioschi, S.; Molgora, M. Exploring the Impact of TREM2 in Tumor-Associated Macrophages. EMBO Rep. 2025, 10, 943. [Google Scholar] [CrossRef]
- Binnewies, M.; Pollack, J.L.; Rudolph, J.; Dash, S.; Abushawish, M.; Lee, T.; Jahchan, N.S.; Canaday, P.; Lu, E.; Norng, M.; et al. Targeting TREM2 on Tumor-Associated Macrophages Enhances Immunotherapy. Cell Rep. 2021, 37, 109844. [Google Scholar] [CrossRef]
- Papakonstantinou, D.; Wang, H.; Bani, M.-A.; Mulder, K.; Dunsmore, G.; Boilève, A.; Jules-Clément, G.; Panunzi, L.; de Sousa, L.R.; de la Calle Fabregat, C.; et al. Molecular Analysis Highlights TREM2 as a Discriminating Biomarker for Patients Suffering from Pancreatic Ductal Adenocarcinoma. Cancer Treat. Res. Commun. 2025, 43, 100939. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z. TREM2 Is a Prognostic Biomarker and Correlated with an Immunosuppressive Microenvironment in Thyroid Cancer. Dis. Markers 2022, 2022, 1807386. [Google Scholar] [CrossRef]
- Timperi, E.; Gueguen, P.; Molgora, M.; Magagna, I.; Kieffer, Y.; Lopez-Lastra, S.; Sirven, P.; Baudrin, L.G.; Baulande, S.; Nicolas, A.; et al. Lipid-Associated Macrophages Are Induced by Cancer-Associated Fibroblasts and Mediate Immune Suppression in Breast Cancer. Cancer Res. 2022, 82, 3291–3306. [Google Scholar] [CrossRef]
- Zhu, X.; Zeng, Z.; Chen, M.; Chen, X.; Hu, D.; Jiang, W.; Du, M.; Chen, T.; Chen, T.; Liao, W.; et al. TREM2 as a Potential Immune-Related Biomarker of Prognosis in Patients with Skin Cutaneous Melanoma Microenvironment. Dis. Markers 2023, 2023, 8101837. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.-Q.; Yang, Z.-K.; Guo, H.-S.; Wu, X.-Y.; Ruganzu, J.B.; Liu, Z.-Z.; Wu, S.-D.; Yang, W.-N. TREM2 Alleviates Neuroinflammation and Improves Neurogenesis in ApoE−/− Mice by Regulating M1/M2 Microglial Polarization. Mol. Neurobiol. 2026, 63, 105. [Google Scholar] [CrossRef]
- Zhong, J.; Xing, X.; Gao, Y.; Pei, L.; Lu, C.; Sun, H.; Lai, Y.; Du, K.; Xiao, F.; Yang, Y.; et al. Distinct Roles of TREM2 in Central Nervous System Cancers and Peripheral Cancers. Cancer Cell 2024, 42, 968–984.e9. [Google Scholar] [CrossRef]
- Peshoff, M.M.; Gupta, P.; Oberai, S.; Trivedi, R.; Katayama, H.; Chakrapani, P.; Dang, M.; Migliozzi, S.; Gumin, J.; Kadri, D.B.; et al. Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Regulates Phagocytosis in Glioblastoma. Neuro-Oncology 2024, 26, 826–839. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-M.; Kim, E.-M.; Ji, K.-Y.; Lee, H.-Y.; Yee, S.-M.; Woo, S.-M.; Yi, J.-W.; Yun, C.-H.; Choi, H.; Kang, H.-S. TREM2 Acts as a Tumor Suppressor in Colorectal Carcinoma through Wnt1/β-Catenin and Erk Signaling. Cancers 2019, 11, 1315. [Google Scholar] [CrossRef] [PubMed]
- Ray, K. A Protective Role for TREM2 in Liver Injury. Nat. Rev. Gastro. Hepat. 2018, 15, 130–131. [Google Scholar] [CrossRef]
- Wang, X.; Wan, J.; Wang, C.; Tong, Y.; Chen, Y.; Wang, X.; Liu, J.; Li, Q.; Dong, Z.; Hong, Q.; et al. Trem2+ Macrophages Alleviate Renal Tubule Lipid Accumulation and Ferroptosis in Diabetic Nephropathy by Repressing IL-1β–Mediated CD36 Expression. Diabetes 2025, 74, 2231–2248. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Luo, S.; Liang, H.; Guo, C.; Du, Y.; Li, H.; Wang, L.; Wang, X.; Tang, C.; et al. An Adoptive Cell Therapy with TREM2-overexpressing Macrophages Mitigates the Transition from Acute Kidney Injury to Chronic Kidney Disease. Clin. Transl. Med. 2025, 15, e70252. [Google Scholar] [CrossRef]
- Lin, C.-C.; Chang, T.-Y.; Lu, Y.-C.; Wu, Y.-S.; Huang, W.; Lo, W.-C.; Liu, G.-F.; Hsu, W.-C.; Ohashi, P.S.; Mak, T.W.; et al. TREM-2 Mediates Dendritic Cell–Induced NO to Suppress Th17 Activation and Ameliorate Chronic Kidney Diseases. J. Mol. Med. 2022, 100, 917–931. [Google Scholar] [CrossRef]
- Liu, J.; Shi, Z.; Li, Y.; Ma, J.; Yao, J.; Yuan, Z.; Wang, Y.; Yang, C.; Li, X.; Xing, N.; et al. High-Resolution Transcriptome Atlas of Bladder Cancer Highlights the Functional Myeloid Subsets in Modulating Immune Microenvironment. eBioMedicine 2025, 117, 105801. [Google Scholar] [CrossRef]
- Wong, H.Y.; Sheng, Q.; Hesterberg, A.B.; Croessmann, S.; Rios, B.L.; Giri, K.; Jackson, J.; Miranda, A.X.; Watkins, E.; Schaffer, K.R.; et al. Single Cell Analysis of Cribriform Prostate Cancer Reveals Cell Intrinsic and Tumor Microenvironmental Pathways of Aggressive Disease. Nat. Commun. 2022, 13, 6036. [Google Scholar] [CrossRef]
- Zhang, L.; Lv, Z.; Xu, Q.-Y.; Wu, B. TREM2 Promotes the Proliferation and Invasion of Renal Cell Carcinoma Cells by Inhibiting the P53 Signaling Pathway. Oncol. Lett. 2024, 28, 538. [Google Scholar] [CrossRef]
- Beckermann, K.E.; Patnaik, A.; Winer, I.; Tan, W.; Bashir, B.; Kyriakopoulos, C.E.; Sweis, R.F.; Chamberlain, M.; Rini, B.I. A Phase 1b Open-Label Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Py314 in Combination with Pembrolizumab in Patients with Advanced Renal Cell Carcinoma. Investig. New Drugs 2024, 42, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Raghubar, A.M.; Matigian, N.A.; Crawford, J.; Francis, L.; Ellis, R.; Healy, H.G.; Kassianos, A.J.; Ng, M.S.Y.; Roberts, M.J.; Wood, S.; et al. High Risk Clear Cell Renal Cell Carcinoma Microenvironments Contain Protumour Immunophenotypes Lacking Specific Immune Checkpoints. npj Precis. Oncol. 2023, 7, 88. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhao, S.; Xie, X.; Wang, J.; Su, M.; Zhang, L.; Cui, R.; Zhao, D. Role of Tunneling Nanotubes in Arachidonic Acid Transfer and Macrophage Function Reprogramming in Intrahepatic Cholangiocarcinoma. Adv. Sci. 2025, 12, 2087–2104. [Google Scholar] [CrossRef] [PubMed]
- Lanman, N.A.; Meco, E.; Fitchev, P.; Kolliegbo, A.K.; Broman, M.M.; Filipovich, Y.; Kothandaraman, H.; Cresswell, G.M.; Talaty, P.; Antoniak, M.; et al. Infiltrating Lipid-Rich Macrophage Subpopulations Identified as a Regulator of Increasing Prostate Size in Human Benign Prostatic Hyperplasia. J. Affect. Disord. 2024, 15, 1494476. [Google Scholar] [CrossRef]
- Song, Y.; Peng, Y.; Qin, C.; Wang, Y.; Yang, W.; Du, Y.; Xu, T. Fibroblast Growth Factor Receptor 3 Mutation Attenuates Response to Immune Checkpoint Blockade in Metastatic Urothelial Carcinoma by Driving Immunosuppressive Microenvironment. J. ImmunoTher. Cancer 2023, 11, e006643. [Google Scholar] [CrossRef] [PubMed]
- Mikolaskova, I.; Zvarik, M.; Szaboova, K.; Tibenska, E.; Durmanova, V.; Suchankova, M.; Kollarik, B.; Hesko, P.; Palacka, P.; Bucova, M.; et al. Association of Sympathovagal Imbalance with Increased Inflammation and Impaired Adaptive Immunity in Bladder Cancer Patients. Int. J. Mol. Sci. 2025, 25, 12765. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Jiang, Y.; Li, X.; Yu, M.; Meng, Q.; Wang, D.; Zang, J.; Xu, F. Qingrehuoxue Formula Enhances Anti-PD-1 Immunotherapy in NSCLC by Remodeling the Tumor Immune Microenvironment via TREM2 Signaling. BMC Complement. Med. Ther. 2025, 25, 270. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, X.; Nie, K.; Cheng, L.; Zhang, Z.; Hu, Y.; Peng, W. Systematic Pan-Cancer Analysis Identifies TREM2 as an Immunological and Prognostic Biomarker. Front. Immunol. 2021, 12, 646523. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.-T.; Yang, Z.; Sun, H.; Zhang, Y.; Wang, Z.; Liu, W.-Y.; Wen, H.-Z.; Qu, C.-B.; Wang, X.-L. TREM2 as an Independent Predictor of Poor Prognosis Promotes the Migration via the PI3K/AKT Axis in Prostate Cancer. Am. J. Transl. Res. 2023, 15, 779–798. [Google Scholar]
- Bancaro, N.; Calì, B.; Troiani, M.; Elia, A.R.; Arzola, R.A.; Attanasio, G.; Lai, P.; Crespo, M.; Gurel, B.; Pereira, R.; et al. Apolipoprotein E Induces Pathogenic Senescent-like Myeloid Cells in Prostate Cancer. Cancer Cell 2023, 41, 602–619.e11. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, Y.; Long, Y.; Li, R.; Shi, Y.; Zheng, Y.; Chen, X.; Li, X.; Zhou, Y.; Huang, X.; et al. AR+TREM2+ Macrophage Induced Pathogenic Immunosuppression Promotes Prostate Cancer Progression. Nat. Commun. 2025, 16, 6964. [Google Scholar] [CrossRef]
- Mei, S.; Zhang, H.; Hirz, T.; Jeffries, N.E.; Xu, Y.; Baryawno, N.; Wu, S.; Wu, C.-L.; Patnaik, A.; Saylor, P.J.; et al. Single-Cell and Spatial Transcriptomics Reveal a Tumor-Associated Macrophage Subpopulation That Mediates Prostate Cancer Progression and Metastasis. Mol. Cancer Res. 2025, 23, 653–665. [Google Scholar] [CrossRef]
- Zennami, K.; Graham, M.; Chikara, S.; Sysa-Shah, P.; Rafiqi, F.H.; Wang, R.; Abel, B.; Zeng, Q.; Krueger, T.E.G.; Brennen, W.N.; et al. Cell Type-Specific Effects of miR-21 Loss Attenuate Tumor Progression in MYC-Driven Prostate Cancer. FASEB J. 2025, 39, 2025.5.14.654101. [Google Scholar] [CrossRef]
- Pervizou, D.; De Chiara, J.; Spinelli, L.; Nestor-Martin, M.; Chasson, L.; Len-Tayon, K.; Yanushko, D.; Fiore, F.; Bajénoff, M.; Malissen, B.; et al. Characterization of the Immune Landscape in Healthy Mouse Prostate and during Prostate Cancer Progression. OncoImmunology 2025, 14, 2562220. [Google Scholar] [CrossRef]
- Silver, S.V.; Tucker, K.J.; Vickman, R.E.; Lanman, N.A.; Semmes, O.J.; Alvarez, N.S.; Popovics, P. Characterization of Prostate Macrophage Heterogeneity, Foam Cell Markers, and CXCL17 Upregulation in a Mouse Model of Steroid Hormone Imbalance. Sci. Rep. 2024, 14, 21029. [Google Scholar] [CrossRef]
- Sun, M.; Yang, L.; Zong, Q.; Ying, L.; Liu, X.; Lin, R. Serum Soluble Triggering Receptor Levels Expressed on Myeloid Cells2 Identify Early Acute Kidney Injury in Infants and Young Children after Pediatric Cardiopulmonary Bypass. Front. Pediatr. 2025, 11, 1185151. [Google Scholar] [CrossRef]
- Stanaway, I.B.; Morrell, E.D.; Mabrey, F.L.; Sathe, N.A.; Bailey, Z.; Speckmaier, S.; Lo, J.; Zelnick, L.R.; Himmelfarb, J.; Mikacenic, C.; et al. Urinary Proteomics Identifies Distinct Immunological Profiles of Sepsis Associated AKI Sub-Phenotypes. Crit. Care 2020, 28, 419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, J.; Aniwan, A.; Zhou, S.; Li, Y.; Wang, L.; Wu, Y.; Wang, Z.; Zhang, L.; Lin, Y.; et al. RasGRP4 Exacerbates Diabetic Kidney Fibrosis via Aloxe3-Mediated Oxidative Stress and Scar-Associated Macrophage Activation. FASEB J. 2025, 39, e70840. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-P.; Wu, H.-W.; Zhu, T.; Li, X.-T.; Zuo, J.; Hasan, A.A.; Reichetzeder, C.; Delic, D.; Yard, B.; Klein, T.; et al. Empagliflozin Reduces Kidney Fibrosis and Improves Kidney Function by Alternative Macrophage Activation in Rats with 5/6-Nephrectomy. Biomed. Pharmacother. 2022, 156, 113947. [Google Scholar] [CrossRef]
- Zhang, H.; Sheng, L.; Tao, J.; Chen, R.; Li, Y.; Sun, Z.; Qian, W. Depletion of the Triggering Receptor Expressed on Myeloid Cells 2 Inhibits Progression of Renal Cell Carcinoma via Regulating Related Protein Expression and PTEN-PI3K/Akt Pathway. Int. J. Oncol. 2016, 49, 2498–2506. [Google Scholar] [CrossRef]
- Obradovic, A.; Chowdhury, N.; Haake, S.M.; Ager, C.; Wang, V.; Vlahos, L.; Guo, X.V.; Aggen, D.H.; Rathmell, W.K.; Jonasch, E.; et al. Single-Cell Protein Activity Analysis Identifies Recurrence-Associated Renal Tumor Macrophages. Cell 2021, 184, 2988–3005.e16. [Google Scholar] [CrossRef]
- Jikuya, R.; Murakami, K.; Nishiyama, A.; Kato, I.; Furuya, M.; Nakabayashi, J.; Ramilowski, J.A.; Hamanoue, H.; Maejima, K.; Fujita, M.; et al. Single-Cell Transcriptomes Underscore Genetically Distinct Tumor Characteristics and Microenvironment for Hereditary Kidney Cancers. iScience 2022, 25, 104463. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, S.; Nikpanjeh, N.; Rezaee, A.; Gholami, S.; Hashemipour, R.; Biavarz, N.; Yousefi, F.; Tashakori, A.; Salmani, F.; Rajabi, R.; et al. PI3K/Akt Signaling in Urological Cancers: Tumorigenesis Function, Therapeutic Potential, and Therapy Response Regulation. Eur. J. Pharmacol. 2023, 955, 175909. [Google Scholar] [CrossRef]
- Zhao, J.; Li, M.; Wu, Q.; Qiao, G.; Jiang, H.; Zhao, S.; Zhang, L.; Wang, S.; Jiang, H. Targeted Reprogramming of TREM2-Positive Macrophages and MRI-Guided Immune Monitoring in Colorectal Cancer Using CSF1R@Mn@MPDA-Antitrem2 Nanoplatform. Adv. Healthc. Mater. 2025, 14, 2501027. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Y.; Li, X.; Xia, N.; Han, S.; Pu, L.; Wang, X. Targeting Myeloid Trem2 Reprograms the Immunosuppressive Niche and Potentiates Checkpoint Immunotherapy in NASH-Driven Hepatocarcinogenesis. Cancer Immunol. Res. 2025, 13, 1516–1532. [Google Scholar] [CrossRef]
- Tan, J.; Fan, W.; Liu, T.; Zhu, B.; Liu, Y.; Wang, S.; Wu, J.; Liu, J.; Zou, F.; Wei, J.; et al. TREM2+ Macrophages Suppress CD8+ T-Cell Infiltration after Transarterial Chemoembolisation in Hepatocellular Carcinoma. J. Hepatol. 2023, 79, 126–140. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, K.; Tan, D.; Liang, G. TREM2 Knockdown Improves the Therapeutic Effect of PD-1 Blockade in Hepatocellular Carcinoma. Biochem. Biophys. Res. Commun. 2022, 636, 140–146. [Google Scholar] [CrossRef]
- von Locquenghien, M.; Zwicky, P.; Xie, K.; Jaitin, D.A.; Sheban, F.; Yalin, A.; Uhlitz, F.; Gur, C.; Eshed, R.S.; David, E.; et al. Macrophage-Targeted Immunocytokine Leverages Myeloid, T, and NK Cell Synergy for Cancer Immunotherapy. Cell 2025, 188, 7099–7117.e26. [Google Scholar] [CrossRef]
- Li, C.; Hou, X.; Yuan, S.; Zhang, Y.; Yuan, W.; Liu, X.; Li, J.; Wang, Y.; Guan, Q.; Zhou, Y. High Expression of TREM2 Promotes EMT via the PI3K/AKT Pathway in Gastric Cancer: Bioinformatics Analysis and Experimental Verification. J. Cancer 2021, 12, 3277–3290. [Google Scholar] [CrossRef]
- Di Luccia, B.; Molgora, M.; Khantakova, D.; Jaeger, N.; Chang, H.-W.; Czepielewski, R.S.; Helmink, B.A.; Onufer, E.J.; Fachi, J.L.; Bhattarai, B.; et al. TREM2 Deficiency Reprograms Intestinal Macrophages and Microbiota to Enhance Anti–PD-1 Tumor Immunotherapy. Sci. Immunol. 2024, 9, eadi5374. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, S.; Yuan, H.; Wang, Y.; Cai, L.; Chen, H.; Wang, X.; Song, D.; Wang, X.; Guo, Z.; et al. Platinum-Based TREM2 Inhibitor Suppresses Tumors by Remodeling the Immunosuppressive Microenvironment. Angew. Chem. Int. Ed. 2023, 62, e202213337. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Qiu, H.; Wang, H.; Liu, S.; Li, H.; Xu, S.; Jiang, L.; Hou, H.; Zhao, X.; Li, X.; et al. Anti-Triggering Receptor Expressed on Myeloid Cells 2-Conjugated Nanovesicles Loaded Vadimezan Reprogram Tumor-Associated Macrophages to Combat Recurrent Lung Cancer. ACS Nano 2025, 19, 32674–32692. [Google Scholar] [CrossRef] [PubMed]
- Halib, N.; Pavan, N.; Trombetta, C.; Dapas, B.; Farra, R.; Scaggiante, B.; Grassi, M.; Grassi, G. An Overview of siRNA Delivery Strategies for Urological Cancers. Pharmaceutics 2022, 14, 718. [Google Scholar] [CrossRef]
- Andreana, I.; Chiapasco, M.; Bincoletto, V.; Digiovanni, S.; Manzoli, M.; Ricci, C.; Del Favero, E.; Riganti, C.; Arpicco, S.; Stella, B. Targeting Pentamidine towards CD44-Overexpressing Cells Using Hyaluronated Lipid-Polymer Hybrid Nanoparticles. Drug Deliv. Transl. Res. 2024, 14, 2100–2111. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, T.; Jiang, G.; Zeng, Q.; Li, Z.; Huang, X. Target Delivery of a PD-1-TREM2 scFv by CAR-T Cells Enhances Anti-Tumor Efficacy in Colorectal Cancer. Mol. Cancer 2019, 22, 131. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Huang, J.; Wei, Y.; Wang, Y.; Lu, C.; Liu, J.; Ma, X. Nanotherapeutics for Macrophage Network Modulation in Tumor Microenvironments: Targets and Tools. Int. J. Nanomed. 2024, 19, 13615–13651. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, J.; Liang, M.; Song, M. Development of Functional Nanomedicines for Tumor Associated Macrophages-Focused Cancer Immunotherapy. Theranostics 2022, 12, 7821–7852. [Google Scholar] [CrossRef]
- Sabnis, R.W. Novel Compounds as TREM2 Agonists for Treating Alzheimer’s Disease. ACS Med. Chem. Lett. 2025, 16, 2183–2184. [Google Scholar] [CrossRef]
- Jiang, S.; Cai, G.; Yang, Z.; Shi, H.; Zeng, H.; Ye, Q.; Hu, Z.; Wang, Z. Biomimetic Nanovesicles as a Dual Gene Delivery System for the Synergistic Gene Therapy of Alzheimer’s Disease. ACS Nano 2024, 18, 11753–11768. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Guo, H.; Zhang, X.; Yang, Z.; Ruganzu, J.B.; Yang, Z.; Wu, X.; Bi, W.; Ji, S.; Yang, W. TREM2 Inhibits Tau Hyperphosphorylation and Neuronal Apoptosis via the PI3K/Akt/GSK-3β Signaling Pathway In Vivo and In Vitro. Mol. Neurobiol. 2023, 60, 2470–2485. [Google Scholar] [CrossRef]
- Yuan, S.; Fuchs, N.S.; Abdel-Rahman, S.A.; Kaur, B.; Gabr, M.T. TREM2 and LAG-3 in Cancer and Alzheimer’s Disease Immunotherapy. Trends Pharmacol. Sci. 2025, 46, 738–751. [Google Scholar] [CrossRef]
- Yeku, O.O.; Barve, M.; Tan, W.W.; Wang, J.; Patnaik, A.; LoRusso, P.; Richardson, D.L.; Naqash, A.R.; Lynam, S.K.; Fu, S.; et al. Myeloid Targeting Antibodies PY159 and PY314 for Platinum-Resistant Ovarian Cancer. J. Immunother. Cancer 2025, 13, e010959. [Google Scholar] [CrossRef]
- Borhani, S.; Borhani, R.; Kajdacsy-Balla, A. Artificial Intelligence: A Promising Frontier in Bladder Cancer Diagnosis and Outcome Prediction. Pediatrics 2022, 171, 103601. [Google Scholar] [CrossRef]
- Laurie, M.A.; Zhou, S.R.; Islam, M.T.; Shkolyar, E.; Xing, L.; Liao, J.C. Bladder Cancer and Artificial Intelligence. Urol. Clin. N. Am. 2024, 51, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Moore, N.S.; McWilliam, A.; Aneja, S. Bladder Cancer Radiation Oncology of the Future: Prognostic Modelling, Radiomics, and Treatment Planning with Artificial Intelligence. Semin. Radiat. Oncol. 2023, 33, 70–75. [Google Scholar] [CrossRef] [PubMed]

| Disease Type | Role | Cell Source | Key Signaling Mechanism | Pathological Outcome | Potential Combination Strategy | Ref. |
|---|---|---|---|---|---|---|
| I. Urological System | ||||||
| Prostate Cancer | Pro-tumorigenic | TAMs; PMN-MDSCs | APOE-TREM2-AR Axis; PI3K/AKT; STAT3-RORγ | Enhances AR signaling; Promotes immunosuppression | Anti-TREM2 + AR Antagonists | [56,57,58] |
| Bladder Cancer | Pro-tumorigenic | TAMs | PI3K/AKT → EMT; FGFR3 mutation link | Drives EMT; Induces T cell exhaustion and ICB resistance | Anti-TREM2 + Anti-PD-1/L1 | [30,45,52] |
| Renal Cell Carcinoma | Pro-tumorigenic | TAMs (C1Q+), Tumor cells | PTEN-PI3K/AKT; p53 inhibition | Promotes proliferation; Poor prognosis in ccRCC | Anti-TREM2 + AKT Inhibitors | [47,68,69] |
| BPH (Benign) | Pathogenic | Lipid-loaded Macrophages | Lipid Metabolism; Growth factor signaling | Promotes stromal and epithelial hyperplasia (distinct from malignancy) | Metabolic Modulators + 5α-RIs | [51,62] |
| AKI/CKD | Protective | Tubular Macrophages | Inhibition (⊣) of ERK/IL-1β; CD36 downregulation | Protects against ferroptosis; Promotes tissue repair | TREM2 Agonists | [7,42,64] |
| II. Other Cancers | ||||||
| Glioblastoma | Protective | Microglia | Sphingolipids → SYK → AKT2 | Drives M1-like polarization; Enhances phagocytosis | TREM2 Agonists | [39] |
| Colorectal Cancer | Protective | TAMs | Inhibition (⊣) of Wnt/β-Catenin | Inhibits tumor cell proliferation | TREM2 Agonists | [40] |
| NSCLC/Breast Cancer | Pro-tumorigenic | TAMs | NF-κB → IL-10/TGF-β | Classical immunosuppressive TME | Anti-TREM2 + ICIs/Chemo | [22,55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dai, Y.; Feng, Y.; Wang, C.; Zhang, H.; Shang, P. TREM2 in Urological Malignancies and Benign Lesions: Mechanistic Convergence, Functional Heterogeneity, and Translational Perspectives: A Narrative Review. Cancers 2026, 18, 359. https://doi.org/10.3390/cancers18030359
Dai Y, Feng Y, Wang C, Zhang H, Shang P. TREM2 in Urological Malignancies and Benign Lesions: Mechanistic Convergence, Functional Heterogeneity, and Translational Perspectives: A Narrative Review. Cancers. 2026; 18(3):359. https://doi.org/10.3390/cancers18030359
Chicago/Turabian StyleDai, Yu, Yaqiang Feng, Cheng Wang, Helin Zhang, and Panfeng Shang. 2026. "TREM2 in Urological Malignancies and Benign Lesions: Mechanistic Convergence, Functional Heterogeneity, and Translational Perspectives: A Narrative Review" Cancers 18, no. 3: 359. https://doi.org/10.3390/cancers18030359
APA StyleDai, Y., Feng, Y., Wang, C., Zhang, H., & Shang, P. (2026). TREM2 in Urological Malignancies and Benign Lesions: Mechanistic Convergence, Functional Heterogeneity, and Translational Perspectives: A Narrative Review. Cancers, 18(3), 359. https://doi.org/10.3390/cancers18030359

