Autophagy Modulates Immunogenic Cell Death in Cancer
Simple Summary
Abstract
1. Introduction
2. Molecular Basis of Immunogenic Cell Death
2.1. Canonical DAMPs in ICD
2.2. Signaling Pathways Related to ICD Induction
3. Autophagy Pathways at the Cell Stress–Immunity Interface
3.1. Overview of Autophagy in Cancer
3.2. Autophagy in the Tumor Microenvironment
4. Dual Roles of Autophagy in Immunogenic Cell Death
4.1. Autophagy as a Facilitator of ICD
4.2. Autophagy as an ICD Brake
4.2.1. Restoration of Antigen Presentation and MHC-I Stability
4.2.2. Amplification of ATP Secretion and DAMP Release
4.3. Determinants of the Autophagy–ICD Outcome
4.3.1. Steps of Autophagy
4.3.2. Intensity of the Primary ICD Inducer
4.3.3. Tumor Type and Genetic Background
4.3.4. Microenvironmental Factors
5. Lessons from Hematologic Malignancies, Including Multiple Myeloma
5.1. ICD in Hematologic Cancers
5.2. GABARAP-Dependent Autophagy and Bortezomib-Induced ICD in Multiple Myeloma
5.3. Late-Stage Autophagy Inhibition in Multiple Myeloma
5.4. Future Strategy to Utilize Autophagy-Modulating Drugs to Strengthen ICD in Multiple Myeloma
6. Translational Implications
6.1. Rational Combinations with Anticancer Agents
6.1.1. Autophagy Modulation to Rescue “Weak ICD”
6.1.2. Late-Stage Autophagy Inhibition to Prevent DAMP Degradation
6.2. Synergy with Checkpoint Blockade and CAR-T/TCR-T
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ATF4 | Activating transcription factor 4 |
| ATG | Autophagy-related |
| ATP | Adenosine triphosphate |
| CALR | Calreticulin |
| DAMPs | Damage-associated molecular patterns |
| DC | Dendritic cell |
| eIF2α | Eukaryotic translation initiation factor-2α |
| ER | Endoplasmic reticulum |
| GABARAP | GABA type A receptor-associated protein |
| HDAC | Histone deacetylase |
| HMGB1 | High-mobility group box-1 |
| HSP | Heat shock protein |
| ICD | Immunogenic cell death |
| IFN | Interferon |
| LC3 | Microtubule-associated protein 1 light chain 3 |
| MHC | Major histocompatibility complex |
| MM | Multiple myeloma |
| PDT | Photodynamic therapy |
| PERK | Protein kinase R-like endoplasmic reticulum kinase |
| PI3K | Phosphoinositide 3-kinase |
| PIs | Proteasome inhibitors |
| ROS | Reactive oxygen species |
| STING | Stimulator of interferon genes |
| TME | Tumor microenvironment |
| UPR | Unfolded protein response |
References
- Galluzzi, L.; Guilbaud, E.; Schmidt, D.; Kroemer, G.; Marincola, F.M. Targeting immunogenic cell stress and death for cancer therapy. Nat. Rev. Drug Discov. 2024, 23, 445–460. [Google Scholar] [CrossRef] [PubMed]
- Kroemer, G.; Galassi, C.; Zitvogel, L.; Galluzzi, L. Immunogenic cell stress and death. Nat. Immunol. 2022, 23, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Vitale, I.; Warren, S.; Adjemian, S.; Agostinis, P.; Martinez, A.B.; Chan, T.A.; Coukos, G.; Demaria, S.; Deutsch, E.; et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J. Immunother. Cancer 2020, 8, e000337. [Google Scholar] [CrossRef]
- Debnath, J.; Gammoh, N.; Ryan, K.M. Autophagy and autophagy-related pathways in cancer. Nat. Rev. Mol. Cell Biol. 2023, 24, 560–575. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, D.; Oon, C.E. Navigating therapeutic prospects by modulating autophagy in colorectal cancer. Life Sci. 2024, 358, 123121. [Google Scholar] [CrossRef]
- Yu, Y.; Bogdan, M.; Noman, M.Z.; Parpal, S.; Bartolini, E.; Van Moer, K.; Kleinendorst, S.C.; Saether, K.B.; Trésaugues, L.; Silvander, C.; et al. Combining VPS34 inhibitors with STING agonists enhances type I interferon signaling and anti-tumor efficacy. Mol. Oncol. 2024, 18, 1904–1922. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, L.; Liu, J.; Chen, B.; Shi, H.; Chen, H.; Qi, H.; Wu, Z.; Mao, X.; Wang, X.; et al. Inhibition of autophagy-related protein 7 enhances anti-tumor immune response and improves efficacy of immune checkpoint blockade in microsatellite instability colorectal cancer. J. Exp. Clin. Cancer Res. 2024, 43, 1–19. [Google Scholar] [CrossRef]
- Humeau, J.; Bezu, L.; Kepp, O.; Kroemer, G. EIF2α phosphorylation: A hallmark of both autophagy and immunogenic cell death. Mol. Cell. Oncol. 2020, 7, 1776570. [Google Scholar] [CrossRef]
- Ahluwalia, P.; Ahluwalia, M.; Mondal, A.K.; Sahajpal, N.; Kota, V.; Rojiani, M.V.; Rojiani, A.M.; Kolhe, R. Immunogenomic Gene Signature of Cell-Death Associated Genes with Prognostic Implications in Lung Cancer. Cancers 2021, 13, 155. [Google Scholar] [CrossRef]
- Wu, Q.; Tian, A.-L.; Durand, S.; Aprahamian, F.; Nirmalathasan, N.; Xie, W.; Liu, P.; Zhao, L.; Zhang, S.; Pan, H.; et al. Isobacachalcone induces autophagy and improves the outcome of immunogenic chemotherapy. Cell Death Dis. 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Quiros-Fernandez, I.; Figueroa-Protti, L.; Arias-Arias, J.L.; Brenes-Cordero, N.; Siles, F.; Mora, J.; Mora-Rodríguez, R.A. Perturbation-Based Modeling Unveils the Autophagic Modulation of Chemosensitivity and Immunogenicity in Breast Cancer Cells. Metabolites 2021, 11, 637. [Google Scholar] [CrossRef]
- Tran, T.-H.; Kao, M.; Liu, H.-S.; Hong, Y.-R.; Su, Y.; Huang, C.-Y.F. Repurposing thioridazine for inducing immunogenic cell death in colorectal cancer via eIF2α/ATF4/CHOP and secretory autophagy pathways. Cell Commun. Signal. 2023, 21, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Venida, A.; Yano, J.; Biancur, D.E.; Kakiuchi, M.; Gupta, S.; Sohn, A.S.W.; Mukhopadhyay, S.; Lin, E.Y.; Parker, S.J.; et al. Autophagy Promotes Immune Evasion of Pancreatic Cancer by Degrading MHC-I; Springer: Berlin/Heidelberg, Germany, 2020; Volume 581, ISBN 0000007587. [Google Scholar]
- Herhaus, L.; Gestal-Mato, U.; Eapen, V.V.; Mačinković, I.; Bailey, H.J.; Prieto-Garcia, C.; Misra, M.; Jacomin, A.-C.; Ammanath, A.V.; Bagarić, I.; et al. IRGQ-mediated autophagy in MHC class I quality control promotes tumor immune evasion. Cell 2024, 187, 7285–7302.e29. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, W.; Humeau, J.; Chen, G.; Liu, P.; Pol, J.; Zhang, Z.; Kepp, O.; Kroemer, G. Autophagy induction by thiostrepton improves the efficacy of immunogenic chemotherapy. J. Immunother. Cancer 2020, 8, e000462. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Xu, H.; Shi, J.; Fang, K.; Liu, J.; Liu, F.; Chen, Y.; Liang, H.; Zhang, Y.; Piao, H. Carbonic anhydrase IX inhibitor S4 triggers release of DAMPs related to immunogenic cell death in glioma cells via endoplasmic reticulum stress pathway. Cell Commun. Signal. 2023, 21, 1–13. [Google Scholar] [CrossRef]
- Michaud, M.; Martins, I.; Sukkurwala, A.Q.; Adjemian, S.; Ma, Y.; Pellegatti, P.; Shen, S.; Kepp, O.; Scoazec, M.; Mignot, G.; et al. Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice. Science 2011, 334, 1573–1577. [Google Scholar] [CrossRef]
- Martins, I.; Wang, Y.; Michaud, M.; Ma, Y.; Sukkurwala, A.Q.; Shen, S.; Kepp, O.; Métivier, D.; Galluzzi, L.; Perfettini, J.-L.; et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. 2013, 21, 79–91. [Google Scholar] [CrossRef]
- Ko, A.; Kanehisa, A.; Martins, I.; Senovilla, L.; Chargari, C.; Dugue, D.; Mariño, G.; Kepp, O.; Michaud, M.; Perfettini, J.-L.; et al. Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death Differ. 2013, 21, 92–99. [Google Scholar] [CrossRef]
- Wen, Q.; Liu, J.; Kang, R.; Zhou, B.; Tang, D. The release and activity of HMGB1 in ferroptosis. Biochem. Biophys. Res. Commun. 2019, 510, 278–283. [Google Scholar] [CrossRef]
- Wang, X.; Ren, L.; Ye, L.; Cao, J. Photodynamic therapy augments oxaliplatin-induced immunogenic cell death in colorectal cancer. Central Eur. J. Immunol. 2023, 48, 189–202. [Google Scholar] [CrossRef]
- Bao, Y.; Qiao, Y.; Choi, J.E.; Zhang, Y.; Mannan, R.; Cheng, C.; He, T.; Zheng, Y.; Yu, J.; Gondal, M.; et al. Targeting the lipid kinase PIKfyve upregulates surface expression of MHC class I to augment cancer immunotherapy. Proc. Natl. Acad. Sci. USA 2023, 120, e2314416120. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.F.; Yang, J.; Fang, R.; Borgers, A.; Krengel, K.; Stoffel, A.; Althoff, K.; Yip, C.W.; Siu, E.H.L.; Ng, L.W.C.; et al. Progranulin mediates immune evasion of pancreatic ductal adenocarcinoma through regulation of MHCI expression. Nat. Commun. 2022, 13, 156. [Google Scholar] [CrossRef] [PubMed]
- Xian, J.; Gao, L.; Ren, Z.; Jiang, Y.; Pan, J.; Ying, Z.; Guo, Z.; Du, Q.; Zhao, X.; Jin, H.; et al. Inhibition of Autophagy by Berbamine Hydrochloride Mitigates Tumor Immune Escape by Elevating MHC-I in Melanoma Cells. Cells 2024, 13, 1537. [Google Scholar] [CrossRef] [PubMed]
- He, L.-N.; Liu, Y.-J.; Jiang, J.-B.; Wang, D.-Y.; Li, Y.-L.; Zeng, S.-J.; Guo, Z.; Yao, P.-Y.; Lin, Z.-C.; Lv, S.-X.; et al. Tetrandrine augments melanoma cell immunogenicity via dual inhibition of autophagic flux and proteasomal activity enhancing MHC-I presentation. Acta Pharmacol. Sin. 2025, 46, 2056–2072. [Google Scholar] [CrossRef]
- Zhao, H.; Cai, Y.; Santi, S.; Lafrenie, R.; Lee, H. Chloroquine-Mediated Radiosensitization is due to the Destabilization of the Lysosomal Membrane and Subsequent Induction of Cell Death by Necrosis. Radiat. Res. 2005, 164, 250–257. [Google Scholar] [CrossRef]
- Wang, Y.; Martins, I.; Ma, Y.; Kepp, O.; Galluzzi, L.; Kroemer, G. Autophagy-dependent ATP release from dying cells via lysosomal exocytosis. Autophagy 2013, 9, 1624–1625. [Google Scholar] [CrossRef]
- Li, D.-D.; Xie, B.; Wu, X.-J.; Li, J.-J.; Ding, Y.; Wen, X.-Z.; Zhang, X.; Zhu, S.-G.; Liu, W.; Zhang, X.-S.; et al. Late-stage inhibition of autophagy enhances calreticulin surface exposure. Oncotarget 2016, 7, 80842–80854. [Google Scholar] [CrossRef]
- Xia, F.; Sha, Y.; Jin, Y.; Yang, J.; Chen, C.; Gong, B.; Liu, Y.; Zhao, Q. Autophagy inhibition amplifies anti-tumor immunity effect of dinutuximab beta on neuroblastoma via the VEGFR/AKT/mTOR and ROS/NF-κB pathways. Int. Immunopharmacol. 2025, 158, 114862. [Google Scholar] [CrossRef]
- Sharma, G.; Ojha, R.; Noguera-Ortega, E.; Rebecca, V.W.; Attanasio, J.; Liu, S.; Piao, S.; Lee, J.J.; Nicastri, M.C.; Harper, S.L.; et al. PPT1 inhibition enhances the antitumor activity of anti–PD-1 antibody in melanoma. J. Clin. Investig. 2020, 5, e133225. [Google Scholar] [CrossRef]
- Sun, D.; Yu, L.; Wang, G.; Xu, Y.; Wang, P.; Wang, N.; Wu, Z.; Zhang, G.; Zhang, J.; Zhang, Y.; et al. Rationally designed catalytic nanoplatform for enhanced chemoimmunotherapy via deploying endogenous plus exogenous copper and remodeling tumor microenvironment. J. Nanobiotechnol. 2024, 22, 551. [Google Scholar] [CrossRef]
- Mei, L.; Liu, H.; Ding, Q.; Xie, Y.; Shen, X.; Chen, H.; Wang, K.; Li, M.; He, Q. Self-propelled smart nanomotors for enhanced mild photothermal therapy of tumors through autophagy modulation. Acta Biomater. 2025, 201, 574–590. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.A.Z.; Romagnoli, G.G.; Falasco, B.F.; Gorgulho, C.M.; Fogolin, C.S.; dos Santos, D.C.; Junior, J.P.A.; Lotze, M.T.; Ureshino, R.P.; Kaneno, R. Blocking drug-induced autophagy with chloroquine in HCT-116 colon cancer cells enhances DC maturation and T cell responses induced by tumor cell lysate. Int. Immunopharmacol. 2020, 84, 106495. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, Y.; Wang, B.; Su, Y.; Jiang, T.; Gan, T.; Zhao, X. Fucoidan based Ce6-chloroquine self-assembled hydrogel as in situ vaccines to enhance tumor immunotherapy by autophagy inhibition and macrophage polarization. Carbohydr. Polym. 2024, 346, 122637. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Nie, J.; Ye, A.; Liu, C.; Li, X.; Yang, Z.; Zhou, R.; Li, J.; Xu, C. Impaired autophagy by cepharanthine induces immunogenic cell death and enhances anti-PD-1 response in MSS-type colorectal cancer. Oncogene 2025, 44, 3171–3182. [Google Scholar] [CrossRef]
- Li, J.; Cai, W.; Yu, J.; Zhou, S.; Li, X.; He, Z.; Ouyang, D.; Liu, H.; Wang, Y. Autophagy inhibition recovers deficient ICD-based cancer immunotherapy. Biomaterials 2022, 287, 121651. [Google Scholar] [CrossRef]
- Yuan, G.; Yang, R.; Wen, W.; Wei, Z.; Song, M.; Zhang, L.; Hou, K.; Liang, G. Endoplasmic Reticulum-Targeted Photodynamic Therapy Combined with Autophagy Inhibition to Enhance Synergistic Immunotherapy for Triple-Negative Breast Cancer. Chem. Eur. J. 2025, 31, e202500146. [Google Scholar] [CrossRef]
- Kroemer, G.; Galluzzi, L. Autophagy-dependent danger signaling and adaptive immunity to poorly immunogenic tumors. Oncotarget 2016, 8, 5686–5691. [Google Scholar] [CrossRef]
- Dhatchinamoorthy, K.; Colbert, J.D.; Rock, K.L. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front. Immunol. 2021, 12, 636568. [Google Scholar] [CrossRef]
- Xu, L.; Su, B.; Mo, L.; Zhao, C.; Zhao, Z.; Li, H.; Hu, Z.; Li, J. Norcantharidin Induces Immunogenic Cell Death of Bladder Cancer Cells through Promoting Autophagy in Acidic Culture. Int. J. Mol. Sci. 2022, 23, 3944. [Google Scholar] [CrossRef]
- Estephan, H.; Tailor, A.; Parker, R.; Kreamer, M.; Papandreou, I.; Campo, L.; Easton, A.; Moon, E.J.; Denko, N.C.; Ternette, N.; et al. Hypoxia promotes tumor immune evasion by suppressing MHC-I expression and antigen presentation. EMBO J. 2025, 44, 903–922. [Google Scholar] [CrossRef]
- Zhang, X.; Lao, M.; Yang, H.; Sun, K.; Dong, Y.; He, L.; Jiang, X.; Wu, H.; Jiang, Y.; Li, M.; et al. Targeting cancer-associated fibroblast autophagy renders pancreatic cancer eradicable with immunochemotherapy by inhibiting adaptive immune resistance. Autophagy 2024, 20, 1314–1334. [Google Scholar] [CrossRef] [PubMed]
- Mondesir, J.; Ghisi, M.; Poillet, L.; Bossong, R.A.; Kepp, O.; Kroemer, G.; Sarry, J.-E.; Tamburini, J.; Lane, A.A. AMPK activation induces immunogenic cell death in AML. Blood Adv. 2023, 7, 7585–7596. [Google Scholar] [CrossRef] [PubMed]
- Heiser, R.A.; Cao, A.T.; Zeng, W.; Ulrich, M.; Younan, P.; Anderson, M.E.; Trueblood, E.S.; Jonas, M.; Thurman, R.; Law, C.-L.; et al. Brentuximab Vedotin–Driven Microtubule Disruption Results in Endoplasmic Reticulum Stress Leading to Immunogenic Cell Death and Antitumor Immunity. Mol. Cancer Ther. 2023, 23, 68–83. [Google Scholar] [CrossRef] [PubMed]
- Jarauta, V.; Jaime, P.; Gonzalo, O.; de Miguel, D.; Ramírez-Labrada, A.; Martínez-Lostao, L.; Anel, A.; Pardo, J.; Marzo, I.; Naval, J. Inhibition of autophagy with chloroquine potentiates carfilzomib-induced apoptosis in myeloma cells in vitro and in vivo. Cancer Lett. 2016, 382, 1–10. [Google Scholar] [CrossRef]
- Ping, L.; He, Y.; Gao, Y.; Wang, X.; Huang, C.; Bai, B.; Huang, H. Immunogenic Cell Death (ICD)-Related Gene Signature Could Predict the Prognosis of Patients with Diffuse Large B-Cell Lymphoma. J. Pers. Med. 2022, 12, 1840. [Google Scholar] [CrossRef]
- Xu, C.; Gao, M.; Zhang, J.; Fu, Y. IL5RA as an immunogenic cell death-related predictor in progression and therapeutic response of multiple myeloma. Sci. Rep. 2023, 13, 1–12. [Google Scholar] [CrossRef]
- De Beck, L.; Melhaoui, S.; De Veirman, K.; Menu, E.; De Bruyne, E.; Vanderkerken, K.; Breckpot, K.; Maes, K. Epigenetic treatment of multiple myeloma mediates tumor intrinsic and extrinsic immunomodulatory effects. OncoImmunology 2018, 7, e1484981. [Google Scholar] [CrossRef]
- de Oca, R.M.; Alavi, A.S.; Vitali, N.; Bhattacharya, S.; Blackwell, C.; Patel, K.; Seestaller-Wehr, L.; Kaczynski, H.; Shi, H.; Dobrzynski, E.; et al. Belantamab Mafodotin (GSK2857916) Drives Immunogenic Cell Death and Immune-mediated Antitumor Responses In Vivo. Mol. Cancer Ther. 2021, 20, 1941–1955. [Google Scholar] [CrossRef]
- Grillone, K.; Riillo, C.; Rocca, R.; Ascrizzi, S.; Spanò, V.; Scionti, F.; Polerà, N.; Maruca, A.; Barreca, M.; Juli, G.; et al. The New Microtubule-Targeting Agent SIX2G Induces Immunogenic Cell Death in Multiple Myeloma. Int. J. Mol. Sci. 2022, 23, 10222. [Google Scholar] [CrossRef]
- Matsushita, M.; Kashiwazaki, S.; Kamiko, S.; Kobori, M.; Osada, M.; Kunieda, H.; Hirao, M.; Ichikawa, D.; Hattori, Y. Immunomodulatory Effect of Proteasome Inhibitors via the Induction of Immunogenic Cell Death in Myeloma Cells. Pharmaceuticals 2023, 16, 1367. [Google Scholar] [CrossRef]
- Serrano-del Valle, A.; Anel, A.; Naval, J.; Marzo, I. Immunogenic Cell Death and Immunotherapy of Multiple Myeloma. Front. Cell Dev. Biol. 2019, 7, 50. [Google Scholar] [CrossRef]
- Gulla, A.; Morelli, E.; Samur, M.K.; Botta, C.; Hideshima, T.; Bianchi, G.; Fulciniti, M.; Malvestiti, S.; Prabhala, R.H.; Talluri, S.; et al. Bortezomib Induces Anti–Multiple Myeloma Immune Response Mediated by cGAS/STING Pathway Activation. Blood Cancer Discov. 2021, 2, 468–483. [Google Scholar] [CrossRef] [PubMed]
- Gulla, A.; Morelli, E.; Johnstone, M.; Turi, M.; Samur, M.K.; Botta, C.; Cifric, S.; Folino, P.; Vinaixa, D.; Barello, F.; et al. Loss of GABARAP mediates resistance to immunogenic chemotherapy in multiple myeloma. Blood 2024, 143, 2612–2626. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Sugiyama, H.; Miyashita, Y.; Shibata, S.; Okaue, T.; Matsumoto, Y.; Yamada, T.; Yamamoto, T.; Yamaguchi, T.; Yamazaki, K.; et al. Ambroxol induces myeloma cell death by inhibiting autophagy. Blood Neoplasia 2025, 2, 100100. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Sun, X.; Wang, Y.; Zhou, C.; Yang, H.; Zhou, S. Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy. Front. Immunol. 2022, 13, 1018903. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, S.; Sun, R.; Zhu, W.; Zhang, Y.; Liu, T.; Li, T.; Jiang, N.; Guo, H.; Yang, R. The combination of oxaliplatin and anti-PD-1 inhibitor promotes immune cells infiltration and enhances anti-tumor effect of PD-1 blockade in bladder cancer. Front. Immunol. 2023, 14, 1085476. [Google Scholar] [CrossRef]
- Guan, X.; Sun, L.; Shen, Y.; Jin, F.; Bo, X.; Zhu, C.; Han, X.; Li, X.; Chen, Y.; Xu, H.; et al. Nanoparticle-enhanced radiotherapy synergizes with PD-L1 blockade to limit post-surgical cancer recurrence and metastasis. Nat. Commun. 2022, 13, 1–17. [Google Scholar] [CrossRef]
- Sasaki, M.; Tanaka, M.; Kojima, Y.; Nishie, H.; Shimura, T.; Kubota, E.; Kataoka, H. Anti-tumor immunity enhancement by photodynamic therapy with talaporfin sodium and anti-programmed death 1 antibody. Mol. Ther. Oncolytics 2023, 28, 118–131. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Y.; Pi, S.; Chen, H.; Ye, F.; Wu, C.; Li, L.; Ye, Q.; Lin, Y.; Su, Z. Autophagy-amplifying nanoparticles evoke immunogenic cell death combined with anti-PD-1/PD-L1 for residual tumors immunotherapy after RFA. J. Nanobiotechnol. 2023, 21, 1–22. [Google Scholar] [CrossRef]
- De Mitri, F.; Giansanti, M.; Melaiu, O.; Haas, D.; Ebert, S.; Tumino, N.; Vulpis, E.; Gatto, F.; Martuscelli, B.; Antonioli, M.; et al. Inhibition of autophagy enhances the antitumor efficacy of T/CAR T cell against neuroblastoma. J. Exp. Clin. Cancer Res. 2025, 44, 1–20. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, H.; Zhou, F.; Wei, Q.; Du, M.; Wu, J.; Li, C.; Luo, W.; Zhou, J.; Wang, X.; et al. Targeting autophagy overcomes cancer-intrinsic resistance to CAR-T immunotherapy in B-cell malignancies. Cancer Commun. 2024, 44, 408–432. [Google Scholar] [CrossRef]
- Sinclair, L.V.; Youdale, T.; Spinelli, L.; Gakovic, M.; Langlands, A.J.; Pathak, S.; Howden, A.J.M.; Ganley, I.G.; Cantrell, D.A. Autophagy repression by antigen and cytokines shapes mitochondrial, migration and effector machinery in CD8 T cells. Nat. Immunol. 2025, 26, 429–443. [Google Scholar] [CrossRef]




| Steps | Related Molecules | Inhibitors |
|---|---|---|
| Initiation | ULK1, Beclin-1 | 3-MA, Wortmannin |
| Membrane elongation | ATGs, LC3/GABARAP family members | Genetic modulation (siRNA) |
| Maturation/fusion | Rab7, SNARE complex, LAMP1/2 | Bafilomycin A1, CQ, HCQ |
| Degradation | SQSTM1 | E64d, Pepstatin A |
| Cancer Type | Autophagy Inhibition Method | ICD Markers | Key Mechanism | Reference |
|---|---|---|---|---|
| Colon | siRNA (ATG5, ATG7), Baf, HCQ, | ATP Secretion | Autophagy inhibition reduced mitoxantrone- or oxaliplatin-induced ATP secretion. | [17] |
| Osteosarcoma | siRNA (ATG5) | ATP Secretion | siRNA-mediated depletion of ATG5 blocked ATP secretion induced by oxaliplatin. | [18] |
| Lung | siRNA (BECN1, ATG5) | ATP Secretion | Genetic depletion of ATG5 and Beclin 1 reduced ATP secretion and suppressed radiotherapy efficacy. | [19] |
| Pancreatic | siRNA (ATG5, ATG7), Baf | HMGB1 Release | Inhibition of autophagy blocked ferroptosis activator-induced HMGB1 release. | [20] |
| Colorectal | - | HMGB1 Release, ATP Secretion | PDT amplified oxaliplatin-induced ICD along with autophagy. | [21] |
| Cancer Type | Inhibition Strategy | ICD Markers | Key Mechanisms | Reference |
|---|---|---|---|---|
| Colon | CQ, siRNA (Atg5) | CALR exposure, ATP release | Co-delivery of oxaliplatin; CQ prevents late autophagy, amplifying CALR exposure. | [28] |
| Pancreatic | CQ, genetic (Nbr1 KO) | MHC-I surface levels, CD8+ T-cell accumulation | NBR1-mediated selective autophagy degrades MHC-I; inhibition restores antigen presentation and cytotoxicity. | [13] |
| Neuroblastoma | CQ | MHC-I expression, tumor infiltration | Autophagy inhibition with CQ boosts antitumor immune responses of anti-GD2 antibody. | [29] |
| Melanoma | CQ | CALR exposure, HMGB1 release | Combination with checkpoint inhibitors; autophagy inhibition converts “cold” tumors to “hot” via increased immunogenicity. | [30] |
| Colon | CQ | CALR exposure, HMGB1 release CD8+ T-cell accumulation | Liposomes loaded with copper peroxide and CQ enhance the immunogenicity of cell death. | [31] |
| Lung | CQ | HMGB1 release CD8+ T-cell accumulation | Mild photothermal therapy with CQ increased DAMP release and CD8+ T-cell accumulation. | [32] |
| Colon | CQ | DC maturation T-cell response | Combination of 5-FU and CQ increased DC maturation and stimulated T-cell responses. | [33] |
| Breast | CQ | CALR exposure, HMGB1 release | Photodynamic therapy with fucoidan (Fuc)-based chlorin e6 (Ce6)–CQ hydrogels enhanced ICD. | [34] |
| Colon | Cepharanthine | CALR exposure, DC activation | Autophagy inhibition by cepharanthine induced immunogenic cell death markers. | [35] |
| Colon | HCQ | CALR exposure, ATP release | Shikonin with encapsulate HCQ promotes ICD. | [36] |
| Breast | CQ | CALR exposure, ATP release | ER-targeted PDT combined with CQ synergistically induces ER stress and drives robust ICD via autophagy inhibition. | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Matsushita, M.; Moriwaki, M. Autophagy Modulates Immunogenic Cell Death in Cancer. Cancers 2026, 18, 205. https://doi.org/10.3390/cancers18020205
Matsushita M, Moriwaki M. Autophagy Modulates Immunogenic Cell Death in Cancer. Cancers. 2026; 18(2):205. https://doi.org/10.3390/cancers18020205
Chicago/Turabian StyleMatsushita, Maiko, and Miyu Moriwaki. 2026. "Autophagy Modulates Immunogenic Cell Death in Cancer" Cancers 18, no. 2: 205. https://doi.org/10.3390/cancers18020205
APA StyleMatsushita, M., & Moriwaki, M. (2026). Autophagy Modulates Immunogenic Cell Death in Cancer. Cancers, 18(2), 205. https://doi.org/10.3390/cancers18020205

