The Combined Use of Lenvatinib and Locoregional Therapies for the Management of Hepatocellular Carcinoma
Simple Summary
Abstract
1. Introduction
2. Lenvatinib
3. Lenvatinib Combined with Locoregional Therapies
3.1. Lenvatinib with TACE
3.1.1. Retrospective Studies Exploring Lenvatinib and TACE
Author | Year | Country | Superior Group | Comparison Group | ORR | PFS | OS |
---|---|---|---|---|---|---|---|
Kawamura et al. [23] | 2020 | Japan | Lenvatinib + TACE | Lenvatinib | The ORR was significantly higher for the heterogeneous enhancement pattern (85 vs. 53%, respectively) (p = 0.028). | Not assessed. | Lenvatinib–TACE sequential therapy was associated with significant PPS (HR—0.08; p = 0.023). |
Fu et al. [22] | 2021 | China | TACE + lenvatinib | TACE alone | ORR in the TACE + lenvatinib group was higher than that in the TACE group (68.3% vs. 31.7%, p < 0.001). | PFS was improved for patients in the TACE + lenvatinib group more than those in the TACE group (1 y PFS rate: 78.4% vs. 64.7%; 2 y PFS rate: 45.5% vs. 38.0%; p < 0.001; HR = 0.343; 95% CI: 0.198–0.595) | The 1 y and 2 y OS rates were improved for TACE + lenvatinib vs. the TACE group (88.4% and 79.8% vs. 79.2% and 49.2%) (p = 0.047; hazard ratio [HR] = 0.466; 95% CI = 0.226–0.886). |
Ando et al. [24] | 2021 | Japan | TACE + lenvatinib | Lenvatinib alone | The ORR was similar for the TACE + lenvatinib and the lenvatinib groups (63.2%). | Median PFS was improved for the TACE + lenvatinib group vs. the lenvatinib-alone group (11.6 vs. 10.1 months). | The OS of the TACE + lenvatinib group was significantly higher than that of the lenvatinib group (median survival time: not reached vs. 16.9 months; p = 0.007) |
Tada et al. [25] | 2021 | Japan | Early lenvatinib | No lenvatinib | Not assessed. | Not assessed. | Lenvatinib therapy was significantly associated with overall survival in patients with HCC beyond the up-to-7 criteria (HR, 0.230; 95% CI, 0.059–0.904; p = 0.035). |
Shimose et al. [26] | 2021 | Japan | Lenvatinib + TACE | Lenvatinib | Not assessed. | Not assessed. | The overall survival of the TACE group was significantly higher than that of the non-TACE group (median OS: not reached vs. 16.3 months; p = 0.01). |
Yang et al. [31] | 2021 | China | TACE + lenvatinib | TACE + sorafenib | Before and after PSM, ORR in the TACE–lenvatinib group was significantly better than that in the TACE–sorafenib group (before PSM: 60.7% vs. 38.9% (OR 2.43; 95% CI: 1.13–5.23; p = 0.022); after PSM: 66.8% vs. 33.3% (OR 0.85; 1.05–6.90; p = 0.037)). | After PSM, the median PFS in the TACE–lenvatinib group was significantly better than that in the TACE–sorafenib group (10.6 vs. 5.4 months; HR: 2.62; 95% CI: 1.43–4.80; p = 0.002). | The median OS after PSM in the TACE–lenvatinib group was significantly better than that for the TACE–sorafenib group (18.97 months vs. 10.77 months; HR 2.21; 95% CI: 1.12–4.38; p = 0.022) |
Chen et al. [27] | 2022 | China | TACE + lenvatinib in portal vein tumor thrombosis | Indirect comparison with lenvatinib in the REFLECT trial | The ORR and DCR were 75% and 91.7%, respectively, for the TACE–lenvatinib group. | The median PFS for the TACE–lenvatinib group was 6.15 months. | The median OS was 16.9 months for the TACE + lenvatinib group. |
Tang et al. [32] | 2024 | China | TACE + lenvatinib + camrelizumab | TACE | Before and after PSM, the ORR was higher in the TACE + lenvatinib + camrelizumab group than in the TACE group (before PSM: 88.9% vs. 30.5%, p < 0.001; after PSM: 88.6% vs. 28.6%, p < 0.001). | After PSM, the median PFS was longer in the TACE + lenvatinib + camrelizumab group than in the TACE group (12.7 vs. 6.1 months, p = 0.005). | The median OS was longer in the TACE + lenvatinib + camrelizumab group than in the TACE group (19.4 vs. 13.0 months, p = 0.023). |
Zhang et al. [34] | 2023 | China | TACE + ICI + TKI | ICI + TKI | After PSM, the ORR was higher in the TACE-TKI-ICI group (50.9% vs. 28.4%, p < 0.001). | After PSM, the median PFS was significantly longer in the TACE-TKI-ICI group than in the TKI-ICI group (PFS: 9.1 vs. 5.0 months; p = 0.005). | After PSM, the median OS was significantly longer in the TACE-TKI-ICI group than in the TKI-ICI group (OS: 19.1 vs. 12.7 months; p = 0.002). |
Zhang et al. [38] | 2024 | China | TACE + ICI + TKI | ICI + TKI | After PSM, the ORR and DCR were higher in the TACE-TKI-ICI group (ORR: 63.0% vs. 29.6%, p < 0.001; DCR: 85.2% vs. 53.7%, p < 0.001). | After PSM, the median PFS was significantly longer in the TACE-TKI-ICI group (9.9 vs. 5.8 months; p = 0.026). | After PSM, the median OS was significantly improved in the TACE-TKI-ICI group (not reached vs. 18.5 months; p = 0.003). |
Lin et al. [29] | 2024 | Taiwan | Locoregional therapy + lenvatinib | Lenvatinib | Not assessed | Not assessed. | Patients who received subsequent locoregional therapy had significantly better survival than those who did not receive it (1st-year cumulative survival rate: 70% vs. 27%; log-rank p = 0.003). |
Wang et al. [30] | 2023 | China | Lenvatinib + TACE + pembrolizumab | Lenvatinib + TACE | The ORR of the combined group and the lenvatinib-TACE group were 44.4% and 20% (p = 0.059) according to the mRECIST criteria. | The median PFS was longer in the combined group compared to the lenvatinib–TACE group (11.7 months vs. 8.5 months, p = 0.028 ). | Patients with unresectable HCC who received combined therapy had a longer OS than those who underwent lenvatinib–TACE therapy (26.8 months vs. 14.0 months; p = 0.027). |
Wu et al. [33] | 2024 | China | Lenvatinib + TACE + camrelizumab | The ORR was 76.4% and the DCR was 85.5% per modified RECIST. | The median PFS was not reached. | The median OS was not reached. |
3.1.2. Clinical Trials Exploring Lenvatinib and TACE
3.2. Lenvatinib with Other Locoregional Therapies
Author | Year | Country | Superior Group | Comparison Group | ORR | PFS | OS |
---|---|---|---|---|---|---|---|
Men et al. [47] | 2024 | China | TACE+ MWA+ lenvatinib | TACE+ MWA | Not assessed. | The median PFS at 1 year was significantly better in the treatment arm compared to the control arm (not reached vs. 17.05 months, p = 0.035). | Not assessed. |
Ocal et al. [41] | 2022 | European Union | TARE+ sorafenib | Sorafenib | The combination arm had significantly higher ORR (61.6% vs. 29.8%, p < 0.001). | PFS (median 8.9 vs. 5.4 months, p = 0.022) and hepatic PFS were significantly better in the combination arm (9.0 vs. 5.7 months, p = 0.014). | There was no difference in overall survival between study arms (HR, 1 [0.76–1.5]; p = 0.77). |
Wang et al. [45] | 2022 | Japan | Lenvatinib + RFA | Lenvatinib | The combination group exhibited a higher ORR (100%) than the monotherapy group (76.9%). | The combination group had a longer PFS (12.5 months) than the monotherapy group (5.5 months). | The median OS was 21.3 months for the combination group and 17.1 months for the monotherapy group. |
Wang et al. [46] | 2024 | China | Lenvatinib + sintilimab + RFA (R-L-S) | Lenvatinib + sintilimab (L-S) | The R-L-S group had a significantly higher ORR than L-S group (40.0% vs. 20.9%; p = 0.022). | Patients in the R-L-S group had improved median PFS (12 vs. 8 months; p = 0.013) compared to L-S alone. | Patients in the R-L-S group had improved median OS (24 vs. 18 months; p = 0.037) compared to L-S alone. |
4. Future of Combination Therapies and Clinical Trials in Progress
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Key Statistics About Liver Cancer. Available online: https://www.cancer.org/cancer/types/liver-cancer/about/what-is-key-statistics.html (accessed on 29 April 2025).
- Sangiovanni, A.; Prati, G.M.; Fasani, P.; Ronchi, G.; Romeo, R.; Manini, M.; Del Ninno, E.; Morabito, A.; Colombo, M. The Natural History of Compensated Cirrhosis Due to Hepatitis C Virus: A 17-Year Cohort Study of 214 Patients. Hepatology 2006, 43, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, G.N.; Splan, M.F.; Weiss, N.S.; McDonald, G.B.; Beretta, L.; Lee, S.P. Incidence and Predictors of Hepatocellular Carcinoma in Patients with Cirrhosis. Clin. Gastroenterol. Hepatol. 2007, 5, 938–945.e4. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC Strategy for Prognosis Prediction and Treatment Recommendation: The 2022 Update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Child, C.G.; Turcotte, J.G. Surgery and Portal Hypertension. Major Probl. Clin. Surg. 1964, 1, 1–85. [Google Scholar]
- Kudo, M. Lenvatinib may drastically change the treatment landscape of hepatocellular carcinoma. Liver Cancer 2018, 7, 1–19. [Google Scholar] [CrossRef]
- Chan, L.L.; Chan, S.L. The evolving role of lenvatinib at the new era of first-line hepatocellular carcinoma treatment. Clin. Mol. Hepatol. 2023, 29, 909–923. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Matsui, J.; Matsushima, T.; Obaishi, H.; Miyazaki, K.; Nakamura, K.; Tohyama, O.; Semba, T.; Yamaguchi, A.; Hoshi, S.S.; et al. Lenvatinib, an Angiogenesis Inhibitor Targeting VEGFR/FGFR, Shows Broad Antitumor Activity in Human Tumor Xenograft Models Associated with Microvessel Density and Pericyte Coverage. Vasc. Cell 2014, 6, 18. [Google Scholar] [CrossRef]
- Tohyama, O.; Matsui, J.; Kodama, K.; Hata-Sugi, N.; Kimura, T.; Okamoto, K.; Minoshima, Y.; Iwata, M.; Funahashi, Y. Antitumor Activity of Lenvatinib (E7080): An Angiogenesis Inhibitor That Targets Multiple Receptor Tyrosine Kinases in Preclinical Human Thyroid Cancer Models. J. Thyroid Res. 2014, 2014, 638747. [Google Scholar] [CrossRef]
- He, X.-X.; Shi, L.-L.; Qiu, M.-J.; Li, Q.-T.; Wang, M.-M.; Xiong, Z.-F.; Yang, S.-L. Molecularly Targeted Anti-Cancer Drugs Inhibit the Invasion and Metastasis of Hepatocellular Carcinoma by Regulating the Expression of MMP and TIMP Gene Families. Biochem. Biophys. Res. Commun. 2018, 504, 878–884. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus Sorafenib in First-Line Treatment of Patients with Unresectable Hepatocellular Carcinoma: A Randomised Phase 3 Non-Inferiority Trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Reece, K.; Donoghue, M.B.; Yuan, W.; Rodriguez, L.; Keegan, P.; Pazdur, R. FDA Supplemental Approval Summary: Lenvatinib for the Treatment of Unresectable Hepatocellular Carcinoma. Oncologist 2020, 26, e484–e491. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Lenvima. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/lenvima (accessed on 29 April 2025).
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Chan, S.L.; Kudo, M.; Lau, G.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Dao, T.V.; De Toni, E.N.; et al. Phase 3 Randomized, Open-Label, Multicenter Study of Tremelimumab (T) and Durvalumab (D) as First-Line Therapy in Patients (Pts) with Unresectable Hepatocellular Carcinoma (uHCC): HIMALAYA. J. Clin. Oncol. 2022, 40, 379. [Google Scholar] [CrossRef]
- Yoo, C.; Kim, J.H.; Ryu, M.H.; Park, S.R.; Lee, D.; Kim, K.M.; Shim, J.H.; Lim, Y.S.; Lee, H.C.; Lee, J.; et al. Clinical Outcomes with Multikinase Inhibitors after Progression on First-Line Atezolizumab plus Bevacizumab in Patients with Advanced Hepatocellular Carcinoma: A Multinational Multicenter Retrospective Study. Liver Cancer 2021, 10, 107–114. [Google Scholar] [CrossRef]
- Kato, Y.; Tabata, K.; Kimura, T.; Yachie-Kinoshita, A.; Ozawa, Y.; Yamada, K.; Ito, J.; Tachino, S.; Hori, Y.; Matsuki, M.; et al. Lenvatinib plus Anti-PD-1 Antibody Combination Treatment Activates CD8+ T Cells through Reduction of Tumor-Associated Macrophage and Activation of the Interferon Pathway. PLoS ONE 2019, 14, e0212513. [Google Scholar] [CrossRef]
- Finn, R.S.; Kudo, M.; Merle, P.; Meyer, T.; Qin, S.; Ikeda, M.; Xu, R.; Edeline, J.; Ryoo, B.-Y.; Ren, Z.; et al. LBA34 Primary Results from the Phase III LEAP-002 Study: Lenvatinib plus Pembrolizumab versus Lenvatinib as First-Line (1L) Therapy for Advanced Hepatocellular Carcinoma (aHCC). Ann. Oncol. 2022, 33, S1401. [Google Scholar] [CrossRef]
- Finn, R.S.; Kudo, M.; Merle, P.; Meyer, T.; Qin, S.; Ikeda, M.; Xu, R.; Edeline, J.; Ryoo, B.-Y.; Ren, Z.; et al. Lenvatinib plus Pembrolizumab versus Lenvatinib Alone as First-Line Therapy for Advanced Hepatocellular Carcinoma: Longer-Term Efficacy and Safety Results from the Phase 3 LEAP-002 Study. J. Clin. Oncol. 2024, 42, 482. [Google Scholar] [CrossRef]
- Liu, K.; Min, X.L.; Peng, J.; Yang, K.; Yang, L.; Zhang, X.M. The changes of HIF-1α and VEGF expression after TACE in patients with hepatocellular carcinoma. J. Clin. Med. Res. 2016, 8, 297–302. [Google Scholar] [CrossRef]
- Fu, Z.; Li, X.; Zhong, J.; Chen, X.; Cao, K.; Ding, N.; Liu, L.; Zhang, X.; Zhai, J.; Qu, Z. Lenvatinib in Combination with Transarterial Chemoembolization for Treatment of Unresectable Hepatocellular Carcinoma (uHCC): A Retrospective Controlled Study. Hepatol. Int. 2021, 15, 663–675. [Google Scholar] [CrossRef]
- Kawamura, Y.; Kobayashi, M.; Shindoh, J.; Kobayashi, Y.; Okubo, S.; Tominaga, L.; Kajiwara, A.; Kasuya, K.; Iritani, S.; Fujiyama, S.; et al. Lenvatinib-Transarterial Chemoembolization Sequential Therapy as an Effective Treatment at Progression during Lenvatinib Therapy for Advanced Hepatocellular Carcinoma. Liver Cancer 2020, 9, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Ando, Y.; Kawaoka, T.; Amioka, K.; Naruto, K.; Ogawa, Y.; Yoshikawa, Y.; Kikukawa, C.; Kosaka, Y.; Uchikawa, S.; Morio, K.; et al. Efficacy and Safety of Lenvatinib-Transcatheter Arterial Chemoembolization Sequential Therapy for Patients with Intermediate-Stage Hepatocellular Carcinoma. Oncology 2021, 99, 507–517. [Google Scholar] [CrossRef]
- Tada, T.; Kumada, T.; Hiraoka, A.; Michitaka, K.; Atsukawa, M.; Hirooka, M.; Tsuji, K.; Ishikawa, T.; Takaguchi, K.; Kariyama, K.; et al. Impact of Early Lenvatinib Administration on Survival in Patients with Intermediate-Stage Hepatocellular Carcinoma: A Multicenter, Inverse Probability Weighting Analysis. Oncology 2021, 99, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Shimose, S.; Iwamoto, H.; Tanaka, M.; Niizeki, T.; Shirono, T.; Noda, Y.; Kamachi, N.; Okamura, S.; Nakano, M.; Suga, H.; et al. Alternating Lenvatinib and Trans-Arterial Therapy Prolongs Overall Survival in Patients with Inter-Mediate Stage HepatoCellular Carcinoma: A Propensity Score Matching Study. Cancers 2021, 13, 160. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Li, Y.; Song, K.; Li, L.; Shen, C.; Ma, P.; Wang, Z. Efficacy and Safety of Transarterial Chemoembolization-Lenvatinib Sequential Therapy for the Treatment of Hepatocellular Carcinoma with Portal Vein Tumor Thrombus: A Retrospective Study. J. Gastrointest. Oncol. 2022, 13, 780–786. [Google Scholar] [CrossRef]
- Liu, J.; Yan, S.; Zhang, G.; Yang, L.; Wei, S.; Yi, P. A Retrospective Study of Transarterial Chemoembolization (TACE) Combined with Lenvatinib Compared with TACE Monotherapy for BCLC B2 Stage Hepatocellular Carcinoma. Oncol. Lett. 2023, 26, 507. [Google Scholar] [CrossRef]
- Lin, P.T.; Teng, W.; Jeng, W.J.; Lin, C.C.; Lin, C.Y.; Lin, S.M.; Sheen, I.S. Subsequent Locoregional Therapy Prolongs Survival in Progressive Hepatocellular Carcinoma Patients under Lenvatinib Treatment. J. Formos. Med. Assoc. 2024, 123, 788–795. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Yang, X.; Wang, Y.C.; Long, J.Y.; Sun, H.S.; Li, Y.R.; Xun, Z.Y.; Zhang, N.; Xue, J.N.; Ning, C.; et al. Clinical Outcomes of Lenvatinib plus Transarterial Chemoembolization with or without Programmed Death Receptor-1 Inhibitors in Unresectable Hepatocellular Carcinoma. World J. Gastroenterol. 2023, 29, 1614–1626. [Google Scholar] [CrossRef]
- Yang, B.; Jie, L.; Yang, T.; Chen, M.; Gao, Y.; Zhang, T.; Zhang, Y.; Wu, H.; Liao, Z. TACE Plus Lenvatinib Versus TACE Plus Sorafenib for Unresectable Hepatocellular Carcinoma with Portal Vein Tumor Thrombus: A Prospective Cohort Study. Front. Oncol. 2021, 11, 821599. [Google Scholar] [CrossRef]
- Tang, Z.; Bai, T.; Wei, T.; Wang, X.; Chen, J.; Ye, J.; Li, S.; Wei, M.; Li, X.; Lin, Y.; et al. TACE Combined Lenvatinib plus Camrelizumab versus TACE Alone in Efficacy and Safety for Unresectable Hepatocellular Carcinoma: A Propensity Score-Matching Study. BMC Cancer 2024, 24, 717. [Google Scholar] [CrossRef]
- Wu, X.K.; Yang, L.F.; Chen, Y.F.; Chen, Z.W.; Lu, H.; Shen, X.Y.; Chi, M.H.; Wang, L.; Zhang, H.; Chen, J.F.; et al. Transcatheter Arterial Chemoembolisation Combined with Lenvatinib plus Camrelizumab as Conversion Therapy for Unresectable Hepatocellular Carcinoma: A Single-Arm, Multicentre, Prospective Study. eClinicalMedicine 2024, 67, 102367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.X.; Cheng, Y.; Wei, J.; Fan, W.L.; Liu, J.; Zhou, C.G.; Liu, S.; Shi, H.B.; Chu, X.Y.; Zheng, W.L.; et al. Transarterial Chemoembolization Combined with Tyrosine Kinase Inhibitors Plus Immune Checkpoint Inhibitors Versus Tyrosine Kinase Inhibitors Plus Immune Checkpoint Inhibitors in Unresectable Hepatocellular Carcinoma with First- or Lower-Order Portal Vein Tumor Thrombosis. Cardiovasc. Interv. Radiol. 2024, 47, 751–761. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Bai, T.; Chen, J.; Lu, S.; Wei, T.; Tang, Z.; Zhao, G.; Lu, H.; Li, L.; et al. Conversion Surgery for Initially Unresectable Hepatocellular Carcinoma Using Lenvatinib Combined with TACE plus PD-1 Inhibitor: A Real-World Observational Study. Dig. Liver Dis. 2024, 56, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, L.; Zhou, W. Efficacy and Safety of Transarterial Chemoembolization Combined with Lenvatinib and PD-1 Inhibitor in the Treatment of Advanced Hepatocellular Carcinoma: A Meta-Analysis. Pharmacol. Ther. 2024, 257, 108634. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Z.; Wang, Z.; Wang, K.; Sui, M.; Liu, D.; Liang, K. Lenvatinib-based Treatment Regimens in Conversion Therapy of Unresectable Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. Oncol. Lett. 2024, 27, 265. [Google Scholar] [CrossRef]
- Zhang, J.X.; Hua, H.J.; Cheng, Y.; Liu, S.; Shi, H.B.; Zu, Q.Q. Role of Transarterial Chemoembolization in the Era of Tyrosine Kinase Inhibitor and Immune Checkpoint Inhibitor Combination Therapy for Unresectable Hepatocellular Carcinoma: A Retrospective Propensity Score Matched Analysis. Acad. Radiol. 2024, 31, 1304–1311. [Google Scholar] [CrossRef]
- Ding, X.; Sun, W.; Li, W.; Shen, Y.; Guo, X.; Teng, Y.; Liu, X.; Zheng, L.; Li, W.; Chen, J. Transarterial Chemoembolization plus Lenvatinib versus Transarterial Chemoembolization plus Sorafenib as First-Line Treatment for Hepatocellular Carcinoma with Portal Vein Tumor Thrombus: A Prospective Randomized Study. Cancer 2021, 127, 3782–3793. [Google Scholar] [CrossRef]
- Peng, Z.; Fan, W.; Zhu, B.; Wang, G.; Sun, J.; Xiao, C.; Huang, F.; Tang, R.; Cheng, Y.; Huang, Z.; et al. Lenvatinib Combined with Transarterial Chemoembolization as First-Line Treatment for Advanced Hepatocellular Carcinoma: A Phase III, Randomized Clinical Trial (LAUNCH). J. Clin. Oncol. 2023, 41, 117–127. [Google Scholar] [CrossRef]
- Öcal, O.; Schütte, K.; Zech, C.J.; Loewe, C.; van Delden, O.; Vandecaveye, V.; Verslype, C.; Gebauer, B.; Sengel, C.; Bargellini, I.; et al. Addition of Y-90 Radioembolization Increases Tumor Response and Local Disease Control in Hepatocellular Carcinoma Patients Receiving Sorafenib. Eur. J. Nucl. Med. 2022, 49, 4716–4726. [Google Scholar] [CrossRef]
- Chung, S.; Gogna, A.; Chandramohan, S.; Lo, R.; Irani, F.G.; Venkatanarasimha, N. Review of Outcomes of Combination Therapy Using Yttrium 90 Radioembolization and Sorafenib/Nivolumab for HCC with Hepatic Vein or IVC Invasion. Proc. Singap. Health 2023, 32, 20101058231154666. [Google Scholar] [CrossRef]
- Cooke, P.; Sindhu, K.K.; Lehrer, E.J.; Maron, S.Z.; Rosenzweig, K.E.; Buckstein, M. Palliating Symptoms in Patients with Hepatocellular Carcinoma Involving the Inferior Vena Cava with External Beam Radiation Therapy. Cureus 2021, 13, e14107. [Google Scholar] [CrossRef] [PubMed]
- Spreafico, C.; Sposito, C.; Vaiani, M.; Cascella, T.; Bhoori, S.; Morosi, C.; Lanocita, R.; Romito, R.; Chiesa, C.; Maccauro, M.; et al. Development of a Prognostic Score to Predict Response to Yttrium-90 Radioembolization for Hepatocellular Carcinoma with Portal Vein Invasion. J. Hepatol. 2018, 68, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Numata, K.; Komiyama, S.; Miwa, H.; Sugimori, K.; Ogushi, K.; Moriya, S.; Nozaki, A.; Chuma, M.; Ruan, L.; et al. Combination Therapy with Lenvatinib and Radiofrequency Ablation for Patients With Intermediate-Stage Hepatocellular Carcinoma Beyond Up-to-Seven Criteria and Child-Pugh Class A Liver Function: A Pilot Study. Front. Oncol. 2022, 12, 843680. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, X.; Lei, Y.; Fang, L.; Wang, Y.; Feng, K.; Xia, F. The Efficacy and Safety of Radiofrequency Ablation Combined with Lenvatinib plus Sintilimab in Unresectable Hepatocellular Carcinoma: A Real-World Study. BMC Cancer 2024, 24, 1036. [Google Scholar] [CrossRef]
- Men, B.; Cui, H.; Han, Z.; Jin, X.; Xu, Q.; Jin, Y.; Piao, Z.; Zhang, S. Evaluation of the Efficacy of Transarterial Chemoembolization Combined with Microwave Ablation Followed by Adjuvant Therapy in Patients with Hepatocellular Carcinoma. Front. Immunol. 2024, 15, 1337396. [Google Scholar] [CrossRef]
- Ding, X.; Li, X.; Sun, W.; Shen, Y.; Guo, X.; Teng, Y.; Xu, Y.; Chen, J. 1011P A Prospective Study of TACE Combined with Lenvatinib plus Sintilimab for HCC with Portal Vein Tumor Thrombus. Ann. Oncol. 2023, 34, S617. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, H.; Yu, H.; Cheng, Y.; Xiang, Y.; Cheng, Z.; Li, Y.; Li, T.; Wang, D.; Zhu, Z.; et al. Early Experience of TACE Combined with Atezolizumab plus Bevacizumab for Patients with Intermediate-Stage Hepatocellular Carcinoma beyond Up-to-Seven Criteria: A Multicenter, Single-Arm Study. J. Oncol. 2023, 2023, 6353047. [Google Scholar] [CrossRef]
- Lencioni, R.; Kudo, M.; Erinjeri, J.; Qin, S.; Ren, Z.; Chan, S.; Arai, Y.; Heo, J.; Mai, A.; Escobar, J.; et al. EMERALD-1: A Phase 3, Randomized, Placebo-Controlled Study of Transarterial Chemoembolization Combined with Durvalumab with or without Bevacizumab in Participants with Unresectable Hepatocellular Carcinoma Eligible for Embolization. J. Clin. Oncol. 2024, 42, LBA432. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Fan, J.; Heo, J.; Arai, Y.; Erinjeri, J.P.; Kuhl, C.K.; Lencioni, R.; Ren, Z.; Zeng, A.; Evans, B.; et al. 727TiP A Randomised Phase III Study of Tremelimumab (T) plus Durvalumab (D) with or without Lenvatinib Combined with Concurrent Transarterial Chemoembolisation (TACE) versus TACE Alone in Patients (Pts) with Locoregional Hepatocellular Carcinoma (HCC): EMERALD-3. Ann. Oncol. 2022, 33, S874. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kudo, M.; Merle, P.; Meyer, T.; Qin, S.; Ikeda, M.; Xu, R.; Edeline, J.; Ryoo, B.Y.; Ren, Z.; et al. Lenvatinib plus Pembrolizumab versus Lenvatinib plus Placebo for Advanced Hepatocellular Carcinoma (LEAP-002): A Randomised, Double-Blind, Phase 3 Trial. Lancet Oncol. 2023, 24, 1399–1410. [Google Scholar] [CrossRef]
- Sangro, B.; Harding, J.J.; Johnson, M.; Palmer, D.H.; Edeline, J.; Abou-Alfa, G.K.; Cheng, A.-L.; Decaens, T.; El-Khoueiry, A.B.; Finn, R.S.; et al. A Phase III, Double-Blind, Randomized Study of Nivolumab (NIVO) and Ipilimumab (IPI), Nivo Monotherapy or Placebo plus Transarterial Chemoembolization (TACE) in Patients with Intermediate-Stage Hepatocellular Carcinoma (HCC). J. Clin. Oncol. 2021, 39, TPS349. [Google Scholar] [CrossRef]
Trial Name | Comparison Group | Sample Size | Study Period | Primary Endpoint | Secondary Endpoint |
---|---|---|---|---|---|
ChiCTR2200066830 | TACE + lenvatinib +/− sintilimab | 218 | 1 January 2023 | TTP | OS, ORR, safety |
ABC-HCC trial | Atezolizumab + bevacizumab vs. TACE for intermediate HCC | 434 | 7 June 2021 to July 2027 | Time to failure of treatment strategy | OS, ORR, TTP, PFS, DOR, duration of treatment, QoL, toxicity, time to deterioration of liver function, time to loss of systemic treatment options |
REPLACEMENT study | Atezolizumab + bevacizumab for TACE-unsuitable patients | 70 | 13 November 2020–end date not provided | PFS | PFS, ORR, duration of response (DOR) per mRECIST, PFS, ORR, DOR per RECIST ver.1.1, OS, safety |
EMERALD-1 | TACE + durvalumab +/− bevacizumab | 724 | 30 November 2018 to 31 August 2026 | PFS | PFS, OS, QoL, HrQoL |
EMERALD-3 | TACE + tremelimumab + durvalumab + lenvatinib vs. TACE + tremelimumab + durvalumab | 760 | 28 March 2022 to 26 February 2027 | PFS | PFS, OS |
LEAP-012 | TACE + lenvatinib + pembrolizumab vs. TACE | 450 | 20 May 2020 to 31 December 2029 | PFS, OS | PFS, ORR, DCR, DOR, TTP, toxicity/adverse events |
CheckMate 74W | Nivolumab + ipilimumab + TACE in intermediate HCC | 26 | 14 September 2020 to 12 December 2023 | Toxicity | |
PETAL1 | Pembrolizumab following TACE | 26 | 28 January 2018 to 23 March 2023 | Safety and tolerability | PFS |
Pro2021001725 | Tislelizumab following TACE | 35 | 25 July 2022 to 1 June 2027 | PFS | Time to metastatic disease, OS, ORR, DCR, DOR, safety profile, biomarker response |
NCT03937830 | Durvalumab + bevacizumab + tremelimumab +TACE | 27 | 10 March 2021 to 31 December 2025 | PFS | Best overall response (BOR), OS, safety |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juthani, R.; Malalur, P.; Manne, A.; Mittra, A. The Combined Use of Lenvatinib and Locoregional Therapies for the Management of Hepatocellular Carcinoma. Cancers 2025, 17, 1572. https://doi.org/10.3390/cancers17091572
Juthani R, Malalur P, Manne A, Mittra A. The Combined Use of Lenvatinib and Locoregional Therapies for the Management of Hepatocellular Carcinoma. Cancers. 2025; 17(9):1572. https://doi.org/10.3390/cancers17091572
Chicago/Turabian StyleJuthani, Ronit, Pannaga Malalur, Ashish Manne, and Arjun Mittra. 2025. "The Combined Use of Lenvatinib and Locoregional Therapies for the Management of Hepatocellular Carcinoma" Cancers 17, no. 9: 1572. https://doi.org/10.3390/cancers17091572
APA StyleJuthani, R., Malalur, P., Manne, A., & Mittra, A. (2025). The Combined Use of Lenvatinib and Locoregional Therapies for the Management of Hepatocellular Carcinoma. Cancers, 17(9), 1572. https://doi.org/10.3390/cancers17091572