Next Article in Journal
The Attractiveness of B7-H3 as a Target for Lung Cancer Treatment
Previous Article in Journal
A Tissue Section-Based Mid-Infrared Spectroscopical Analysis of Salivary Gland Tumors Based on Enzymatic Deglycosylation
Previous Article in Special Issue
LKB1 and STRADα Promote Epithelial Ovarian Cancer Spheroid Cell Invasion
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Reciprocal Modulation of Tumour and Immune Cell Motility: Uncovering Dynamic Interplays and Therapeutic Approaches

by
Angelo Aquino
and
Ornella Franzese
*
Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
*
Author to whom correspondence should be addressed.
Cancers 2025, 17(9), 1547; https://doi.org/10.3390/cancers17091547
Submission received: 31 March 2025 / Revised: 28 April 2025 / Accepted: 30 April 2025 / Published: 1 May 2025
(This article belongs to the Special Issue Cancer Cell Motility)

Simple Summary

In this review, we describe the key mechanisms controlling tumour and immune cell motility within the tumour microenvironment and how these dynamics affect cancer progression, metastasis, and response to therapy. We focus on how tumours can hinder T-cell access promoting immune-excluded phenotypes. At the same time, regulatory immune cells such as tumour-associated macrophages (TAMs) and regulatory T-cells (Tregs) can enhance tumour cell migration and invasion by promoting processes like epithelial–mesenchymal transition (EMT) and producing signals that support tumour cell migration. These processes create an environment that impairs the immune response against the tumour. Understanding these mechanisms can help identify biomarkers predicting patients’ response to immunotherapy and support the development of treatments that make tumours more accessible to immune cells, improving therapeutic outcomes.

Abstract

Dysregulated cell movement is a hallmark of cancer progression and metastasis, the leading cause of cancer-related mortality. The metastatic cascade involves tumour cell migration, invasion, intravasation, dissemination, and colonisation of distant organs. These processes are influenced by reciprocal interactions between cancer cells and the tumour microenvironment (TME), including immune cells, stromal components, and extracellular matrix proteins. The epithelial–mesenchymal transition (EMT) plays a crucial role in providing cancer cells with invasive and stem-like properties, promoting dissemination and resistance to apoptosis. Conversely, the mesenchymal–epithelial transition (MET) facilitates metastatic colonisation and tumour re-initiation. Immune cells within the TME contribute to either anti-tumour response or immune evasion. These cells secrete cytokines, chemokines, and growth factors that shape the immune landscape and influence responses to immunotherapy. Notably, immune checkpoint blockade (ICB) has transformed cancer treatment, yet its efficacy is often dictated by the immune composition of the tumour site. Elucidating the molecular cross-talk between immune and cancer cells, identifying predictive biomarkers for ICB response, and developing strategies to convert cold tumours into immune-active environments is critical to overcoming resistance to immunotherapy and improving patient survival.

1. Unravelling the Mechanisms Regulating Tumour Cell Motility

1.1. An Overview

Cell motility is a fundamental and tightly regulated process exhibited by all cells. It plays a key role in various biological contexts, including embryonic development, morphogenesis, organogenesis, tissue remodelling, wound healing, immune responses, angiogenesis, tissue repair, tissue regeneration, and cell differentiation. Furthermore, cell movement is also critically involved in a wide range of human pathological conditions such as cancer development, progression, and metastasis [1].
Although numerous studies have investigated the molecular and biochemical mechanisms underlying the motility of individual cells, the broader principles regulating cell motility at the systemic level remain poorly understood.
The processes of migration, local tissue invasion, and distant metastatic spread are complex biological mechanisms that significantly worsen patient outcomes and represent the primary drivers of cancer-related mortality [2,3].
During tumour initiation, progression, and metastatic spread, dynamic and reciprocal cross-talk between cancer cells and their surrounding microenvironment reprograms cellular behaviour through extensive molecular and phenotypic alterations [4,5].
The tumour microenvironment (TME) and epithelial–mesenchymal transition (EMT) are critical factors in the onset, advancement, and dissemination of tumours, influencing cellular behaviour and facilitating various stages of tumourigenesis and metastasis [6,7].
EMT is a complex process where epithelial cells undergo a phenotypic shift to a mesenchymal state through reversible changes in gene expression and morphological features. The transition of cells to a more mesenchymal-like phenotype enhances their migratory abilities and is essential for tumour cell invasion of adjacent tissues, subsequent systemic dissemination, and metastatic spread to distant organs [8]. EMT is also crucial for enhancing cancer stem cell (CSC) properties [9,10,11,12], inhibiting apoptosis and senescence, and promoting chemoresistance [13,14]. CSCs are known to contribute significantly to cancer progression, metastasis, and therapeutic resistance due to their self-renewal capacity and multidirectional differentiation ability [15,16,17,18]. During the transition toward the mesenchymal phenotype, epithelial cells undergo a series of significant changes, resulting in the loss of tight cell–cell junctions and polarity. These alterations endow the cells with migratory and invasive properties, thereby facilitating tumour cell dissociation from the primary tumour mass, invasion through the extracellular matrix (ECM) and intravasation into blood vessels [8]. Furthermore, the reverse process from a mesenchymal to an epithelial, known as mesenchymal–epithelial transition (MET), occurs when cancer cells migrating through blood vessels and lymphatic vessels reach other tissues. Here, they are converted back into epithelial cells, re-establishing tight cell–cell junctions and apicobasal polarity at distant sites, thereby promoting metastatic colonisation of distant organs [4] and re-initiation of tumour cell growth [19,20,21].
Therefore, both EMT and MET contribute to cell motility, cancer progression, metastasis, and response to therapy. EMT can be induced by signals derived from tumour cells as well as by various components of the TME. The TME consists of a diverse array of cellular components, including endothelial cells, cancer-associated fibroblasts (CAFs) [22], mesenchymal stromal cells (MSCs) [23], pericytes [24], and immune cells [25,26,27,28,29,30,31], along with non-cellular elements such as ECM proteins [32] and various soluble factors. Immune cells, including lymphocytes [26], B cells [27], natural killer cells (NK) [28], tumour-associated macrophages (TAMs) [25], regulatory T-cells (Tregs) [26], myeloid-derived suppressor cells (MDSCs) [29], tumour-associated neutrophils (TANs) [30], and dendritic cells (DCs) [31], play a crucial role in cancer metastasis and proliferation by directly or indirectly influencing the EMT process. The various components of the TME interact with cancer cells through a complex network of signalling pathways mediated by growth factors [33], cytokines [34], chemokines [35], hormones [33], metabolites, metalloproteases (MMPs) [36], and extracellular vesicles (ECVs) [37], containing non-coding RNA-carrying exosomes and others secreted molecules.

1.2. The Role of EMT Transcription Factors in Tumour Cell Motility

The EMT is orchestrated by several transcription factors (EMT-TFs), including TWIST1/2 (bHLH family), SNAIL1/2 (zinc finger SNAIL family), and ZEB1/2 (zinc finger E-box-binding homeobox family) (Figure 1) [38]. EMT-TFs are activated by diverse TME signals [39], and their upregulation (e.g., ZEB1, SNAIL, and TWIST) is associated with a shift toward a stem-like phenotype in cancer cells [40]. Suppressing these factors may help counteract EMT-related drug resistance [10].
EMT-TFs are modulated by major signalling pathways involving Transforming Growth Factor-β (TGF-β) [41], epidermal growth factor (EGF) [42], insulin-like growth factor-1 [43], hepatocyte growth factor (HGF) [44], WNT/β-catenin [45], and NOTCH [46]. SNAIL1/2 downregulates target genes, such as E-cadherin and MMPS depending on the cellular context [47,48,49], and tight junction proteins (claudins, occludins, ZO-1, and connexins) [48,49,50,51,52]. SNAIL1 also inhibits CRUMBS3, affecting cell polarity [53]. Their overexpression promotes stemness, metastasis [54,55,56,57,58,59,60,61,62,63], and therapy resistance in various cancer models [64] and is associated with poor prognosis and recurrence [59,60,61,62,63,64,65]. SNAIL1 also alters glucose metabolism, shifting cells toward glycolysis [66]. Post-translational regulation is crucial: GSK3-mediated phosphorylation leads to nuclear export and degradation, maintaining epithelial features [67,68], while PAK1-mediated phosphorylation promotes nuclear localisation and EMT [69,70]. TWIST1/2 regulate genes involved in EMT promotion and cancer metastasis [71]. They downregulate E-cadherin and upregulate fibronectin, N-cadherin, and vimentin, facilitating motility and invasion (Figure 1) [72]. TWIST also controls TGFβ2, AKT2, and PDGFR and supports cancer stemness [73,74]. Notably, phosphorylation by MAPK or AKT enhances EMT features [75,76]. ZEB1/2 promote EMT by repressing epithelial and activating mesenchymal genes [77,78] and are regulated by estrogen, TGF-β, and Wnt/β-catenin pathways [79,80]. ZEB1 regulates crucial genes like E-cadherin and MMPs [81] and is modulated by SNAIL1 and TWIST1 [82,83]. The activation of ZEB1/2 ZEB1 represses polarity genes (CDH1, Lgl2, PATJ, Crumbs3), enhancing metastatic potential [83,84]. High ZEB1/2 levels correlate with poor prognosis in various cancers [85,86,87,88,89,90,91].

1.3. The Role of Hypoxia

Hypoxia is a pivotal factor in the TME, promoting cell migration, proliferation, apoptosis, and metastasis [92]. It activates hypoxia-inducible factors (HIFs), particularly HIF-1α and HIF-2α, which drive EMT by regulating TFs [93]. HIF-1α can also induce EMT via the TGF-β pathway through SMAD phosphorylation [94].
In breast cancer cells, hypoxia increases uPAR expression, which facilitates SNAIL nuclear translocation, E-cadherin downregulation, vimentin upregulation, and ultimately EMT and migration [95]. Additionally, hypoxia activates NOTCH, NF-κB, and EGFR signalling pathways, further contributing to EMT and tumour progression [96].
HIF-1α enhances metastasis by directly binding hypoxia-responsive elements (HREs) in the TWIST and ZEB1 promoters, as observed in hypopharyngeal, breast, and colorectal cancer cells [97,98]. Overall, hypoxia influences multiple signalling cascades to drive EMT.

1.4. The Role of CAFs

CAFs are key TME components that interact with tumour cells and contribute to EMT activation (Figure 1) [99]. Unlike quiescent fibroblasts, CAFs display high metabolic activity and support tumourigenesis through enhanced proliferation, angiogenesis, ECM remodelling, and immune evasion [100].
CAFs encompass several subtypes, including myofibroblast-like CAFs (myCAFs), which remodel and stiffen ECM to aid invasion; inflammatory CAFs (iCAFs), induced by IL-1α or TNF-α, that secrete IL-6, IL-11, LIF, and chemokines to support proliferation, metastasis, and therapy resistance; and antigen-presenting CAFs (apCAFs), expressing MHC-II and modulating T-cell responses to foster immune suppression [101]. Interestingly, apCAFs may also activate CD4+ effector T-cells and support anti-tumour immunity in lung cancer [102].
CAFs promote EMT via paracrine release of TGF-β, IL-6, IL-8, IL-32, CXCL12, MMP-2, and MMP-9 [103,104,105,106]. This effect is largely TGF-β-dependent and can be reversed with TGF-β-neutralising Abs or receptor kinase inhibitors, as shown in colon cancer [107]. IL-6 from CAFs also drives EMT via JAK2/STAT3 signalling in lung [108], liver [109], and bladder cancer [110] and amplifies TGF-β signalling transduction [111]. This creates a self-sustaining loop that fuels EMT and drug resistance.
CAFs can also induce EMT through EGF, HGF, and FGF-2 in endometrial cancer and lung metastasis [112] and ovarian cancer by upregulating key EMT markers like SNAIL and MMP3 [113]. CAF-secreted periostin promotes EMT and drug resistance in NSCLC [114]. In pancreatic cancer, EMT induction involves Hedgehog signalling, whose inhibition impairs migration and invasion [115]. Additionally, CAFs remodel ECM through LOX enzymes [116], MMPs [117], and the synthesis of collagen, fibronectin, and proteoglycans, increasing ECM stiffness and promoting invasion [118,119].
In summary, CAF-induced ECM alterations, coupled with tumour–ECM interactions, can drive EMT and modulate cellular behaviours such as adhesion, differentiation, and migration.

1.5. The Role of Exosomes

Exosomes are vital TME components that mediate communication with cancer cells (Figure 1) [120,121], serving as crucial signalling molecules to facilitate communication between the TME and cancer cells [122,123]. By transporting proteins, miRNAs, and lncRNAs via endocytosis or systemic routes, exosomes influence gene expression and promote EMT, proliferation, migration, and drug resistance [122,123,124].
CAFs also release exosomes carrying SNAIL, which induce EMT in lung cancer cells [125]. Exosomal RNAs such as miR-21, miR-143, miR-378e, and miR-92a-3p, found in CAF-derived exosomes, promote EMT and drug resistance in different cancer models [126,127,128,129]. In colorectal cancer (CRC), exosomal lncRNA LINC00659 from CAFs upregulates ANXA2, enhancing migration, proliferation, and invasion [130].

1.6. Mesenchymal Stromal Cells (MSMCs)

Cancer-associated mesenchymal stromal cells (CA-MSCs) are multipotent progenitors in the TME that support tumour growth through interactions with cancer and stromal cells (Figure 1) [131]. They may also serve as precursors for CAFs.
CA-MSCs secrete factors such as FGF, HGF, MCP-1, IL-6, VEGF, and IL-8, which promote EMT, invasion, metastasis, angiogenesis, ECM remodelling, and immune evasion [132,133,134,135]. They also release TRAIL decoy receptors and immunosuppressive IL-12p40, a soluble IL-2Rα) which hinders anti-tumour immunity [134,135]. MMPs secreted by MSCs degrade the ECM, aiding tumour invasion [136,137].
Human MSCs can activate ADAM metalloproteases in different cancer models, thus increasing the disruption of cell–cell adhesion and enhancing pro-metastatic activity [138,139,140].

1.7. The Role of ECM

The ECM is a dynamic and complex structure consisting of various macromolecules, such as collagen, laminin, fibronectin, hyaluronan, and other constituents that influence cellular adhesion, motility, and morphology, thereby facilitating EMT [141]. Collagens are essential structural proteins in the ECM, and their excessive deposition represents one of the most prevalent ECM changes observed in cancer [142]. Collagens can induce EMT through different mechanisms. For example, in NSCLC cell lines, collagens activate TGF-β3 [143], while in pancreatic cancer cells, collagen type I disrupts the E-cadherin adhesion complex [144]. Moreover, collagen type I or type III reduces E-cadherin expression and cell–cell adhesion while promoting proliferation and morphological transformation in pancreatic cancer cells [145].
Fibronectin can significantly influence EMT, migration, invasion, metastatic spread, tumour growth, and angiogenesis by interacting with cellular receptors, such as integrins, as well as ECM components [146]. Breast cancer cells exposed to fibronectin promote EMT by increasing the expression of both N-cadherin and vimentin, thereby enhancing cell migration and invasion [147].
Another ECM constituent that is important in inducing EMT is the linear polysaccharide hyaluronan [148], overproduced in lung cancer cells and associated with pro-tumourigenic effects [149]. The binding of hyaluronan to the CD44 glycoprotein on the surface of breast cancer cells induces LOX transcription, leading to TWIST1-induced EMT, thereby enhancing metastatic dissemination [150].

1.8. TAM, Tumour-Associated Macrophages

TAMs primarily originate from monocytic progenitor cells [151], although a significant fraction in some tumours derive from tissue-resident macrophages [152]. Cancer cells secrete chemokines like CCL2/MCP-1 [153], CCL5 [154], and CCL8/MCP-2 [155], which recruit TAMs into the TME. TAMs regulate tumour progression by influencing proliferation, EMT, metastasis, ECM remodelling, angiogenesis, immune modulation, genetic instability, and therapy resistance [156]. Through cross-talk in the TME, tumour cells reprogram TAMs to enhance growth factor production (Figure 1), promoting EMT and tumour progression. Macrophages trigger EMT by releasing TGF-β [157], CCL2 [158], and IL-6 [159], which increase SNAIL levels (Figure 1). IL-6, in turn, downregulates tumour-suppressive miR-34a and promotes EMT, tumour growth, and dissemination [160,161].
CCL2 and IL-6 secreted by TAMS attract more macrophages [162] and foster M2 polarisation [163], perpetuating the EMT feedback loop. In breast cancer, TAMs induce EMT by secreting TGF-β1, CCL18, CCL2, and IL-6 [164,165]. Exosomes facilitate the feedback loop between macrophages and tumour cells supporting EMT and M2 polarisation [166,167].
CCL18, primarily secreted by TAMs, activates NF-κB through PITPNM3, enhancing EMT gene expression and promoting cancer cell migration and metastasis [168,169]. CCL18 also stimulates ELMO1 and PI3K/AKT, driving tumour cell motility and reinforcing EMT [170]. TAMs are linked to increased vimentin and decreased E-cadherin, enhancing migration and invasion in several cancers [171], with TAM-derived IL-6 [172] and EGF [173] contributing to this process.
TAMs remodel the ECM, increasing stiffness and deposition in both cancerous and normal tissues [174,175]. Matrix degradation via MMPs, driven by STAT3, ERK, and NF-κB, is crucial for cancer progression [176,177,178,179]. TAMs release TGF-β, IL-1β, and IL-6, which increase MMP-9 in tumour cells [176,177,178]. In gastric cancer, IL-1β upregulate MMP-9, facilitating invasion [180]. MMP-11 from breast cancer TAMs is a poor prognostic marker, which promotes migration via MMP-9 expression [181]. MMP-9 also activates PI3K/AKT, driving EMT and enhancing invasion [182,183].
TAMs support tumour cell migration towards blood vessels, facilitating intravasation and systemic dissemination. Monocytes differentiate into motile CXCR4-expressing TAMs, which are recruited by CXCL12-expressing fibroblasts to perivascular niches. TAMs form TMEM doorways with tumour cells and endothelial cells, stimulating VEGFA secretion, which disrupts endothelial junctions and increases vascular permeability (Figure 1) [184,185].
Invadopodia formation is crucial for intravasation [186]. TAM–tumour interactions drive invadopodia formation, leading to matrix degradation and intravasation [186,187]. TAMs enhance their intra-tumour persistence by promoting invadopodia assembly via actin-regulatory proteins [187,188,189]. TAMs also support invadopodia maturation by inducing the Mena^INV variant, which stabilises and prologues the degradative activity of invadopodia [190]. Moreover, TAMs release chemotactic signals like CSF1 and EGF [191,192,193,194,195], while HGF from endothelial cells acts as a chemoattractant for macrophage–tumour co-migration [196]. In conclusion, TAMs collaborate with tumour cells to enhance migration towards blood vessels and facilitate invadopodia formation, ultimately promoting tumour dissemination.

1.9. Metabolism and Tumour Migration

Cell migration and invasion are energy-dependent processes reliant on actin cytoskeleton dynamics and ATP consumption [197]. Cancer cells adapt by directing metabolic proteins to high-energy areas, with glycolytic and mitochondrial pathways playing key roles. Glycolysis, although less energy-efficient, provides rapid ATP for cytoskeletal activity, while mitochondrial respiration ensures sustained energy. Cancer cells often favour glycolysis, a phenomenon known as the “Warburg effect”, which increases glucose uptake to support invasive growth [198]. Under hypoxia, HIF signalling further drives this glycolytic shift, creating an acidic microenvironment that enhances invasion by suppressing immune responses and activating proteases [199]. These metabolic shifts also promote the use of alternative energy sources like glutamine, amino acids, lipids, and dietary sugars, which increase motility and metastatic potential. For instance, glutamine metabolism is critical for invasion and linked to higher colorectal cancer metastasis risk [200]. Non-essential amino acids, such as asparagine, promote migration and metastasis by influencing processes like EMT in various cancers [201].
Lipid metabolism is also pivotal in the TME, supporting cancer cell growth and survival through metabolic interactions with CAFs and adipocytes. Hypoxia promotes lipid droplet formation in cancer cells, which serve as energy reservoirs [202]. Targeting lipid metabolic pathways, including fatty acid oxidation (FAO) and lipid uptake, shows promise as a therapeutic strategy. Pre-clinical studies suggest that inhibiting lipogenesis enzymes and fatty acid uptake can reduce tumour growth [203].
In conclusion, targeting metabolic pathways in cancer cells and the TME represents a promising strategy to hinder tumour growth and improve treatment outcomes.

2. Regulation of Intra-Tumour T-Cell Motility: Dynamics, Mechanisms, and Implications

2.1. Groundwork of Intra-Tumour T-Cell Motility: Concepts and Challenges

Immune checkpoint blockade (ICB), particularly targeting CTLA-4 or PD-1/PD-L1, has significantly advanced cancer treatment, offering clinical benefits across various cancers, including melanoma, NSCLC, and renal cell carcinoma [204,205,206,207]. However, resistance remains an issue, requiring deeper investigations into the underlying mechanisms and the identification of biomarkers predictive of ICB response [208]. Patients who respond to ICB often exhibit a “hot” (immune-inflamed) TME, characterised by immune cell infiltration and activation. In contrast, non-responders typically display a “cold” (immune desert) phenotype, lacking immune infiltration [209]. A more complex “excluded” phenotype, where immune cells are at the tumour periphery but fail to infiltrate the core, has also been identified [209]. Additionally, an “immunosuppressive tumour” subtype, characterised by high immune cell infiltration but dominated by immunosuppressive cells, is associated with poor prognosis [210]. These findings highlight the need for patient-tailored immunotherapeutic strategies based on the tumour’s immune landscape [206,210].
To convert a cold TME into a hot, immune-active environment, strategies must focus on enhancing immune cell infiltration, overcoming immunosuppressive barriers, and stimulating an effective anti-tumour immune response. Understanding tumour-intrinsic factors, the cross-talk between tumour and immune cells and the influence of external factors is critical for predicting responses and tailoring treatments. Combination therapies are being developed to reprogram the TME, promoting immune cell infiltration and transforming cold or excluded tumours into a hot state [211,212].
Enhanced T-cell motility is essential for effective tumour infiltration, allowing immune cells to locate and attack cancer cells. Increased motility improves T-cell interactions with antigen-presenting cells (APCs), boosting anti-tumour responses. In the context of immune checkpoint inhibition, enhanced motility helps T-cells overcome barriers like stromal density, hypoxia, and immunosuppressive signals, ultimately leading to better tumour control and reduced resistance to immunotherapy [213,214]. Chemokines play a key role in directing T-cell subtypes, including CD4+, CD8+, and Tregs, to different immune niches [215,216].
The TME is a dynamic system where immune cells interact with each other, tumour cells, and stromal components, influencing cancer progression. Immune cell subsets within the TME modulate migration through cell–cell interactions, soluble factors, and ECM modifications, all of which impact the efficacy of IC inhibitors (ICIs) and other therapies [217,218].
Pre-existing infiltration of CD8+ T-cells within tumours is a key factor in the efficacy of IC therapy [219,220]. Intra-tumour T-cell motility is influenced by both intrinsic factors and external cues such as matrix proteins, chemokines, and antigen density [213]. Understanding these mechanisms is essential for optimising cancer immunotherapy and developing more effective strategies.

2.2. Chemokines and Their Role in the Regulation of Intra-Tumour T-Cell Migration

Chemokines are key signalling molecules that regulate immune cell migration through chemotaxis, influencing both immune surveillance and anti-tumour responses. These small proteins act as chemotactic cytokines, activating G protein-coupled receptors to guide immune cells within tissues [221]. Based on conserved cysteine residues, chemokines are classified into four subfamilies: CX3C, CXC, CC, and C [221]. Within the TME, chemokines secreted by host and tumour cells can recruit immune cells, mediating either pro-tumour or anti-tumour responses. CXCR3, a CXC chemokine receptor, plays a pivotal role in regulating tumourigenesis, angiogenesis, and immune cell infiltration. This duality is influenced by different CXCR3 variants (CXCR3-A, CXCR3-B, CXCR3-alt), which differ in their ligand-binding properties, signalling pathways, and cellular responses [222].
Effector cells like CD8+ T-cells and NK cells rely on CXCR3 to infiltrate tumours [223]. CXCR3 ligands, such as CXCL9, CXCL10, and CXCL11, are mainly produced by monocytes, endothelial cells, and tumour cells [224,225] and are crucial for regulating anti-tumour immunity. Elevated expression of these ligands correlates with enhanced immune cell infiltration and better therapeutic outcomes [215,221,224,225]. IFN-γ is a major inducer of the CXCR3–CXCL9/10/11 axis (Figure 2). While CXCL9 is induced by IFN-γ but not by type-1 interferons (IFN-α/β), CXCL10 is inducible by both IFN-γ and type-1 IFNs as well as tumour necrosis factor alpha (TNF-α) (Figure 2) [215,226,227]. In cutaneous T-cell lymphoma, single-cell RNA sequencing has shown that CXCR3 ligands, particularly CXCL9 and CXCL11, are primarily derived from macrophages, with higher expression linked to increased CD8+ T-cell infiltration [215]. Notably, CXCR3 expression can serve as a biomarker for the effectiveness of anti-PD-1 mAbs. Blocking CXCR3 impairs the efficacy of PD-1 blockade, whereas enhancing its expression promotes T-cell infiltration and tumour suppression [228].
The expression of CXCR3-A on tumour cells is associated with greater proliferation and spreading, whereas CXCR3-B limits these processes [222]. A comprehensive understanding of CXCR3 variants and their distinct signalling pathways is essential for evaluating their potential as anti-tumour targets and for developing variant-specific drugs for combination therapies. CXCR3 expression on NK cells plays a dual role in the TME: it can enhance NK cell recruitment and promote a highly cytotoxic phenotype [221,223], but persistent CXCR3 signalling in an immunosuppressive TME may lead to NK cell dysfunction and impaired tumour clearance, contributing to immune evasion [229]. However, genetic deletion of CXCR3 or in vivo administration of anti-CXCR3 mAbs has been shown to enhance bone marrow NK cell infiltration, improving anti-myeloma efficacy [230] and promoting tumour rejection in melanoma models [231,232].
The recruitment of CD103+ DCs by CCL4 occurs via CCR5 (Figure 2), an essential step for successful CD8+ T-cell accumulation through the CXCL9/10 signalling axis [233]. In “cold” tumours, β-catenin signalling suppresses CCL4 transcription via activation of the transcription factor ATF3 (Figure 2), thus impairing CD103+ DC recruitment and the associated T-cell infiltration [234]. Immunohistochemical analyses and database studies have shown that higher CCL4 levels correlate with improved survival in primary melanoma patients [235], while T-cell single-cell RNA sequencing in metastatic melanoma patients suggests its association with durable responses to ICB [236]. In NSCLC, aberrantly high CCL4 expression has been linked to immune infiltration [237], although it correlates with reduced CD8+ T-cell survival and elevated PD-1/PD-L1 expression. Furthermore, intra-tumour delivery of CCL4 has been reported to enhance CD103+ DC and CD8+ T-cell recruitment in melanoma and breast cancer models [238].
CCL5, also known as Regulated upon Activation Normal T-cell Expressed and Secreted (RANTES), binds primarily to CCR5 but can also interact with CCR1, CCR3, and CCR4 and is induced by IFN-γ, IL-1, and TNF-α [239]. Produced by tumour cells, lymphocytes, and myeloid cells, CCL5 plays a dual role in immune activation and tumour immune evasion [240]. The CCL5/CCR5 axis promotes tumour growth, ECM degradation, and cancer cell migration (Figure 2), while CCR5+ cancer cells exhibit stem-like properties, contributing to therapy resistance. Additionally, CCL5 induces metabolic reprogramming, enhances angiogenesis, and recruits normal cells to support tumour development [241]. CCL5 also shapes an immunosuppressive TME by polarising monocytes and myeloid cells into tumour-promoting phenotypes, leading to effector T-cell exhaustion [240]. Nonetheless, CCL5 is part of the T-cell-inflamed gene signature, and higher levels correlate with T-cell infiltration in melanoma metastases and CD8+ T-cell recruitment to the TME (Figure 2) [242]. Recent studies suggest that CCL5 levels are positively associated with the infiltration of CD8+ T cells, B cells, DCs, and macrophages and negatively associated with myeloid progenitor cell infiltration [243,244,245]. These findings highlight the dual role of the CCL5/CCR5 axis, recruiting both effector T-cells and immunosuppressive compartments depending on local cues [246].
CCL22, produced by both tumour and immune cells [247,248], primarily binds to CCR4, which is expressed on Tregs (Figure 2), Th2-polarised T-cells, and specific DC subsets. CCL22 facilitates tumour progression and immune evasion by recruiting Tregs, thereby establishing an immunosuppressive TME. Elevated CCL22 levels have been observed in melanoma and other cancers, promoting the accumulation of Foxp3+ Tregs, often in collaboration with CCL17 [249,250]. IL-1α, secreted by cancer cells, has been identified as a driver of CCL22 production, further amplifying Treg recruitment and suppressing anti-tumour immunity [251]. These findings emphasise the complex, context-dependent role of chemokine signalling in cancer, with CCL4 enhancing T-cell infiltration, CCL5 mediating both immune activation and suppression [252], and CCL22 driving immune evasion through Treg recruitment.
Tissue resident memory T (TRM) cells, characterised by markers such as CD103, CD49a, and CD69, are essential for immunosurveillance in epithelial tissues. CD103 binds to E-cadherin (Figure 2), facilitating intra-tumour TRM retention. TRM cells contribute significantly to tumour immunology, enhancing localised immune responses and improving immunotherapy efficacy [253,254]. The CXCR6/CXCL16 axis is crucial for TRM cell retention in tumours (Figure 2) [255]. CXCR6 enhances the interaction between CXCR6+ cytotoxic T-cells and CXCL16+ DCs, supporting T-cell retention and function within the TME [256]. CXCR6-deficient T-cells or those treated with CXCL16-blocking Abs show impaired retention and reduced local anti-tumour activity. Additionally, CXCR6-deficient mice exhibit increased tumour metastasis in liver and lung models, highlighting the importance of this axis in limiting metastatic spread [257]. Interestingly, blocking CXCL16 in metastatic lung models of breast cancer redirects T-cells to distant lung tissues, reducing the metastatic tumour burden [258].
Increased infiltration of TRM-like TILs correlates with improved survival in lung cancer patients, emphasising their role in anti-tumour immunity. However, many TRM-like TILs lack tumour specificity, and their exact function in orchestrating anti-tumour responses in lung cancer remains unclear [259]. Preclinical studies suggest that alveolar CD8+ TRM cells migrate from the parenchyma to the airways, replacing short-lived CD8+ TRM cells while downregulating CXCR6 and CD11a expression [260]. TRM-like TIL infiltration also correlates with higher overall TIL numbers across various NSCLC histological subtypes, particularly in smokers, and is associated with improved outcomes [261]. TRM cells enhance the recruitment of circulating T lymphocytes by producing IFN-γ (Figure 2), which upregulates chemokine release and vascular adhesion molecule expression [262,263,264,265]. CD8+ CD103+ CD39+ PD-1+ CD28- TRM cells, known for their higher anti-tumour cytokine production, may facilitate the recruitment of less-exhausted peripheral T-cells to the NSCLC tumour site, potentially improving their response to ICIs [266]. Marceaux et al. have reviewed the pivotal role of the CXCR6/CXCL16 axis in lung TRM cell motility [267].
CCL18 is a critical chemokine in the TME, primarily secreted by TAMs (Figure 3) but also by CAFs and tumour cells [268,269]. It plays a significant role in tumour progression by promoting cancer cell migration, EMT, immune suppression, and interactions between stromal and immune cells. In various cancers, including colon and renal carcinoma, CCL18 expression is enhanced by the β-catenin pathway [270], highlighting its role in the tumour adaptive response. CCL18 exerts pro-tumourigenic effects through two main mechanisms. First, it directly enhances cancer cell motility and metastasis, primarily via the PITPNM3 receptor [271], involved in pathways driving tumour proliferation, EMT, and invasion [272,273]. Second, CCL18 modulates the TME by recruiting and sustaining TAMs and CAFs, fostering an immunosuppressive niche. CCL18 enhances TAM–CAF interactions and facilitates the recruitment and differentiation of Tregs via its receptor PITPNM3 (Figure 3) [274,275]. Tregs, in turn, reinforce TAM polarisation towards a pro-tumourigenic M2 phenotype, promoting further CCL18 production [276]. Additionally, CCL18 recruits naïve T-cells, which differentiate into Tregs upon exposure to TAMs [277] and immunosuppressive IL-10 [276].
CCL18 also influences DC fate by attracting immature DCs to the tumour niche, where they differentiate into tumour-associated DCs (TADCs) [273,278], which produce immunosuppressive IL-10 and indoleamine 2,3-dioxygenase (IDO) (Figure 3) [279], further expanding Tregs.
Within the TME, CXCL12 and its receptor CXCR4 promote tumour angiogenesis, sustain tumour cell survival and proliferation, and orchestrate immunosuppressive responses [280]. CXCL12 is secreted by tumour cells (Figure 3) across multiple cancer types, including advanced cervical cancer, malignant pleural mesothelioma, ovarian cancer, and renal cell carcinoma, facilitating the recruitment of TAMs and Tregs [281]. The CXCL12/CXCR4 axis also supports the recruitment of monocytes and induce their shift towards an immunosuppressive M2 phenotype (Figure 3) [281,282].
Additionally, MDSCs are attracted via CXCL12-CXCR4 signalling (Figure 3), further suppressing anti-tumour immune responses and promoting tumour growth [283]. B cells are similarly affected by CXCL12/CXCR4 interactions. Indeed, CXCL12 recruits regulatory B cells (Bregs) to the tumour site, where they suppress T-cell activity [284].
CXCL12 binding to CXCR4 also activates key signalling pathways, triggering calcium mobilisation and actin polymerisation, that are essential processes for T-cell motility [281]. Importantly, CXCR4 heteromerises with CCR7, enhancing CCR7 ligand binding and promoting T-cell retention in lymphoid tissues [285].
CAFs also play a role in creating a chemical barrier by secreting CXCL12, attracting CXCR4-expressing T-cells. Through the CXCL12–CXCR4 axis, CAFs misdirect CTLs to the stromal area, preventing their effective targeting and elimination of cancer cells [210].
CXCL13, another critical chemokine, binds to CXCR5 and facilitates immune cell trafficking [286]. TGF-β has been identified as an inducer of CXCL13 production in T-cells [287], and follicular helper T-cells (Tfh) have been identified as the primary source of CXCL13 secretion in secondary lymphoid organs (Figure 3).
A critical function of CXCL13 is its role in the development and maintenance of lymphoid follicles, where it recruits B cells and T-cells to specific regions within lymphoid-like structures [286]. In the TME, CXCL13 is a hallmark of tertiary lymphoid structures (TLSs) (Figure 3) [288], which facilitate antigen presentation and support effective anti-tumour T-cell responses [289]. However, in many cancer types, the CXCL13/CXCR5 axis also promotes the recruitment of immunosuppressive cells to the tumour site.
Preclinical models have demonstrated that the CXCL13/CXCR5 axis is crucial for promoting intra-tumour T-cell migration (Figure 4), and accordingly, tumours with high CXCL13 expression exhibit an increased infiltration of activated CD8+ CXCR5+ T-cells. These findings underscore the CXCL13 therapeutic potential as a chemoattractant in enhancing immunotherapy responses [290]. Interestingly, recent preclinical studies have reported that CXCL13+ T-cells within TLSs predict favourable prognosis, whereas their presence outside TLSs correlates with poorer outcomes [291]. Nevertheless, further studies are needed to validate the clinical relevance of CXCL13 as a predictive biomarker for immunotherapy efficacy.

2.3. Modulation of Adhesion Processes Excludes Anti-Tumour T-Cells: LFA-1 as a Critical Mediator

Lymphocyte function-associated antigen-1 (LFA-1) plays a critical role in the formation of the immunological synapse (IS) between T-cells and APCs [292], initiating cell adhesion by interacting with intracellular adhesion molecule 1 (ICAM-1). During IS formation, T-cells receive signals from chemokines, such as CCL19 and CCL2 [293].
T-cell migration is a critical process for immune surveillance, allowing T-cells to move across various tissues to protect the host and maintain homeostasis. This process, known as extravasation, involves T-cell motility from circulation into inflamed tissues or lymph nodes, which is essential for immune function and maturation [294].
LFA-1 can exist in different affinity states that play distinct roles in migration [295,296]. In the high-affinity state, activated by chemokine signalling and TCR engagement, LFA-1 mediates firm adhesion. In contrast, the intermediate-affinity state, induced by selectin engagement, allows for reversible interactions with ligands like ICAM-1. This reversible binding slows T-cell rolling, promoting chemokine receptor engagement and migration. T-cell crawling and trans-endothelial migration rely on chemokine-triggered high-affinity LFA-1 [297], which reorganises the cytoskeleton, promoting adhesion and spreading. These interactions guide T-cell migration through endothelial cells into tissues. LFA-1 forms podosomes that interact with ICAM-1-rich invaginations in the endothelium, aiding transcellular migration (Figure 4). LFA-1 also acts as a mechanical sensor, with shear forces increasing filopodia density, helping T-cells locate extravasation sites [296]. Additionally, LFA-1 activation is influenced by cytoskeletal dynamics, with actin polymerisation and myosin contraction inducing cell polarisation. The leading-edge forms protrusions interacting with the extracellular environment, where LFA-1 regulates migration speed and direction, while LFA-1 at the focal zone controls adhesion (Figure 4) [296].

2.4. Role of CD28 and CTLA-4: Key Regulators of T-Cell Activation and Migration

During T-cell activation, CD28 binds to its ligands, CD80 and CD86, on APCs to sustain immune responses [206]. Beyond its role in immune modulation, CD28 is essential for cellular reorganisation, cytokine and chemokine production, and key biochemical processes such as phosphorylation, transcription, and metabolism, all of which support T-cell growth, specialisation, and T-cell infiltration [298,299].
Furthermore, CD28 signalling enhances IS formation by strengthening the adhesion between T-cells and APCs (including tumour cells). This interaction is crucial for effective antigen recognition and T-cell activation during the early immune response. CD28 signalling involves key molecules such as the lipid kinase PI3K and LCK [206,300], which recruits protein kinase C [301]. These signalling pathways influence the organisation of the cytoskeleton and promote T-cell localisation to target tissues following antigenic priming [302]. Notably, CD28 signalling drives T-cell migration from lymphoid tissues to sites of inflammation. The CD28-mediated regulation of T-cell motility and trafficking needs an intact CD28 signalling and, in particular, PI3K activity (Figure 4) [303]. While the downstream pathways linking CD28 to adhesion and migration remain incompletely understood, a loss of CD28 binding to PI3K alters tissue localisation [303].
Naïve T-cells explore short distances for antigens, while primed T-cells migrate longer distances to infection sites [304]. Co-receptors like CD28 and CTLA-4 regulate migration pathways. CTLA-4 deficiency causes extensive organ infiltration, suggesting its role in T-cell motility regulation. Evidence from mice with tailless CTLA-4 mutants shows altered migration patterns [305]. Accordingly, depletion of CTLA-4 in T-cell subpopulations reveals its role in preventing excessive infiltration into non-lymphoid tissues, with Tregs preventing activation and conventional T-cells preventing excessive migration [306].
At variance, CTLA-4 has also been reported to impact T-cell movement by activating LFA-1 adhesion through integrin clustering and PI3K binding [307,308]. This suggests CTLA-4 generates both positive and negative intracellular signals, as seen in NGF signalling [309]. CTLA-4 prevents stable conjugates with APCs, enhancing T-cell motility while limiting DC binding in the “reverse-stop signal model” [310]. Without CTLA-4, antigen-specific T-cells migrate despite antigen presence, reducing contact with DCs and raising activation thresholds, but this effect is absent in Tregs or anergic T-cells [311,312]. CTLA-4 upregulates chemokine receptors like CCR5 and CCR7, enhancing sensitivity to CCL4, CXCL12, and CCL19 [309], and modulates chemotaxis by controlling receptor phosphorylation and desensitisation [309]. Anti-CTLA-4 Abs enhance T-cell motility and reduce T-cell contact with APCs, weakening TCR signalling [309]. CTLA-4 and PD-1 influence T-cell migration and interactions with APCs in a context-dependent manner. Tumours, especially in immune-privileged sites like the CNS, upregulate CTLA-4 at barriers to limit T-cell infiltration [313,314]. Anti-CTLA-4 blockade enables T-cell tumour infiltration, enhancing immune responses, as seen in murine breast cancer models. Interestingly, NKG2D expression in TILs counteracts this motility by promoting arrest [315].

2.5. The Role of Stromal and ECM Components in Intra-Tumour T-Cell Motility

Efficient T-cell migration to the tumour site is crucial for the prognosis and success of cancer immunotherapy. However, ECM abnormalities in structure and stiffness within the TME often hinder T-cell infiltration [316,317]. The TME is a dynamic ecosystem comprising tumour, immune, and stromal cells, where ECM provides structural support and regulates tumour progression, immune evasion, and T-cell migration [318].
Abnormal ECM remodelling creates a dense, stiff matrix that impedes T-cell movement (Figure 4). Excessive collagen deposition increases matrix stiffness, limiting T-cell infiltration [319]. Key ECM components, such as collagen, fibronectin, and glycosaminoglycans, influence cell adhesion and motility. T-cell surface receptors, including integrins and CD44, interact with these ECM molecules to govern T-cell migration [320]. Aberrant ECM composition can disrupt these processes, as observed with DDR1, which promotes immune evasion by aligning collagen fibres and limiting T-cell infiltration (Figure 4). Increased ECM stiffness and altered composition also impact chemokine gradients guiding T-cell migration. CCL18 contributes to resistance to anti-PD-1/PD-L1 therapy in lung tumours by increasing collagen receptor LAIR1 levels (Figure 4), which suppress T-cell motility and activation, reduce proliferation, and skew the T-cell population toward a higher CD4+/CD8+ ratio, indicating fewer cytotoxic cells. Transcriptomic data show downregulation of cytotoxic genes and upregulation of suppressive markers in T-cells exposed to dense collagen, mirroring reduced CD8+ T-cell infiltration in collagen-rich tumours [321]. Conversely, inflammatory signals like TNF-α, IFN-γ, and TGF-β in ECM-dense tissues can induce protease secretion to loosen the matrix and facilitate T-cell motility [322,323]. The ECM also actively contributes to immune suppression by interacting with immunosuppressive cells. For example, collagen I within the ECM can affect T-lymphocyte composition and activity [324]. Moreover, TAMs and CAFs interact with the ECM to recruit and retain immunosuppressive cells [325]. In conclusion, the ECM, along with stromal cells like TAMs and CAFs, creates a microenvironment that not only hinders immune cell infiltration but also recruits immunosuppressive cells, effectively shielding tumours from immune surveillance.

2.6. Tumour Vasculature Can Limit CD8+ T-Cell Infiltration into Tumours

Tumour vasculature plays a critical role as a barrier to CD8+ T-cell infiltration, limiting immunotherapy efficacy [326,327,328]. Effective T-cell entry into tumours is crucial for therapeutic success, but even when antigen-specific T-cells are in the bloodstream, tumour infiltration is often inadequate [329]. Several tumour-derived factors, including VEGF, CD73, and endothelin B receptor (ETBR), suppress vascular adhesion molecules, restricting T-cell entry. However, effector CD8+ T-cells can enhance their infiltration through positive feedback loops. For example, intratumoral IFN-γ secretion upregulates chemokines like CXCL10, attracting additional T-cells, and anti-PD-1 therapy amplifies this process by boosting IFN-γ production and chemokine expression [330]. T-cells extravasate through the vasculature in a multistep process to enter peripheral tissues, including tumours [331]. The homing receptors and ligands required for T-cell entry are determined by T-cell activation, local inflammation, and the anatomy of the target tissue [332,333]. Chronic inflammation can induce lymphoid neogenesis in solid tumours, leading to the formation of TLS with HEV-like Peripheral Node Addressin+ (PNAd+) vasculature [334,335]. Tumour vasculature disorganised structure is a major barrier to T-cell infiltration. Rapid tumour expansion outperforms angiogenesis, resulting in tissue hypoxia [336]. HIF-1α upregulation in tumour and endothelial cells promotes pro-angiogenic genes like VEGF-A, leading to excessive neovascularisation and structurally abnormal blood vessels (Figure 4) [337]. These defects create an inhospitable environment for T-cell infiltration due to irregular blood flow, compromised endothelial junctions, and altered endothelial cell cytoskeletons that impairs transmigration.
Beyond structural issues, tumour-associated endothelial cells often exhibit impaired responses to inflammatory signals. VEGF-A and FGF-2 suppress TNF-α-induced adhesion molecule expression on endothelial cells, further restricting T-cell entry [338].
FAS ligand (FASL/CD95L), a regulator of T-cell homeostasis through apoptosis [298], is also expressed on tumour vasculature in humans and mice [339]. Endothelial FASL expression correlates with the exclusion of intra-tumoral CD8+ T-cells (Figure 4), while Tregs remain unaffected. In mouse models, endothelial FASL limits T-cell infiltration, preferentially eliminating tumour-reactive CD8+ effector T-cells while sparing Tregs, skewing the CD8+/Foxp3+ T-cell ratio, and promoting immune tolerance and tumour progression [340].

2.7. Metabolic Control of CD8+ T-Cell Motility and Implications for Immunotherapy

The TME imposes structural and metabolic barriers that hinder CD8+ T-cell infiltration and function. TAMs and ECM fibres sequester CD8+ T-cells within stromal regions, preventing direct interaction with cancer cells [341]. These physical barriers also restrict CD8+ CAR T-cell infiltration, posing a challenge for immunotherapies targeting solid tumours. Beyond extracellular constraints, cell-intrinsic metabolic limitations also affect T-cell motility [342]. T-cell migration is energy-consuming, requiring ATP and GTP for cytoskeletal remodelling. While oxidative phosphorylation (OXPHOS) and glycolysis are implicated, the metabolic pathways involved are incompletely understood. Studies suggest that glucose and glutamine deprivation negatively impacts T-cell migration [343], with aerobic glycolysis often identified as the primary ATP source for migration [344]. Glycolysis occurs in the cytoplasm, providing localised ATP production for actin polymerisation [345]. Chemokine signalling can modulate metabolic pathways; for example, CCL5 stimulates mTORC1-dependent glucose uptake and activates AMPK [343]. Glycolysis is also required for CXCL10-induced T-cell migration (Figure 4) [346], and Treg migration depends on the PI3K/mTORC2 pathway activated by integrins and chemokine receptors (Figure 4) [347].
Cytoskeletal proteins interact with glycolytic enzymes, linking glycolysis to cytoskeletal dynamics [348]. PFK binding to actin enhances glycolysis, amplified by insulin signalling [349]. Metabolic byproducts like lactate influence T-cell migration, with CD4+ and CD8+ T-cells showing differential lactate sensitivity due to transporter expression [346]. Lactate impairs T-cell motility through selective transporters SLC5A12 and SLC16A1, with CD4+ T-cells more affected by glycolysis interference through CXCR3 and CXCL10 (Figure 4). At variance, the lactic acid effect on CD8+ T-cell motility has been reported as more independent of glycolysis [344,350]. Tregs, however, may utilise lactate for a metabolic advantage, enhancing their infiltration over conventional T-cells [351]. Recent findings suggest that CD8+ T-cell motility primarily relies on the tricarboxylic acid (TCA) cycle, fuelled by glucose and glutamine, with minimal dependence on FAO and glycolysis (Figure 4) [341]. Mitochondrial dynamics influence T-cell migration. Enhancing mitochondrial metabolism has emerged as a strategy to improve CAR T-cell infiltration [352,353,354]. Elongated mitochondria promote OXPHOS, while fragmented mitochondria favour glycolysis and rapid proliferation [355]. Effector T-cells mostly depend on glycolysis, while memory T-cells rely on FAO and OXPHOS [355,356]. Memory T-cell ability to reach tissues and establish residency depends on their capacity to transmigrate and extravasate from blood vessels. During migration, T-cells polarise their mitochondria at the uropod to fuel the ATP-demanding myosin II motor [341,357].
These findings underscore the crucial role of mitochondrial dynamics in T-cell differentiation, function, and migration, with significant therapeutic implications.

2.8. Direct Impact of Tumour Features on T-Cell Intra-Tumour Infiltration

Tumour cells engage in many strategies to control T-cell infiltration and evade immune recognition, including modifying gene expression and activating IC pathways. For instance, tumour cells with high FAT2 expression have been reported to upregulate several chemokines that influence immune cell behaviour, including CCL2, CCL3, CCL4, CCL19, CXCL10, and CXCL11 [358].
Single-cell RNA sequencing has helped identify different tumour cell subtypes, revealing divergent effects on T-cell infiltration. Notably, a mesenchymal-like tumour state has been reported to boost T-cell cytotoxicity in glioma models [359], while a negative correlation exists between the abundance of infiltrating T-cells and the expression of genes related to EMT in colon cancer [360] and NSCLC [361].
Tumours can alter T-cell infiltration by upregulating specific genes. For example, a study has provided a high-resolution landscape of ICI-resistant genes, reporting that p53 and MYC promote T-cell exclusion in melanoma, while HLA-A and c-JUN encourage T-cell infiltration [362]. Notably, TGF-β contributes to immunosuppression through the downregulation of CD8+ T-cell expression of CXCR3, limiting trafficking to the tumour site (Figure 2) [363]. Mechanisms of immune evasion mediated by p53 mutation or loss include the downregulation of MHC Class I and II molecules, loss of TRAIL receptors, and upregulation of PD-L1 expression [364]. MYC overexpression further drives immune evasion by restricting neoantigen presentation, upregulating PD-L1, and metabolic reprogramming of cancer cells [365]. In contrast, HLA-A enhances tumour immunogenicity and T-cell recognition [366], while c-JUN promotes the establishment of an inflammatory signalling, favouring immune infiltration [367].

3. Therapeutic Strategies

3.1. Therapeutic Strategies to Contrast Tumour Cell Motility

Targeting key components of the TME has become a promising strategy to inhibit EMT and metastasis. Therapies have been developed against immune cells, stromal cells, vasculature, and the ECM using monoclonal Abs (mAbs) small molecules, peptides, nanoparticles, and hybrid systems. Stromal targeting, especially of CAFs, is gaining interest [368,369]. CAFs promote tumour progression by secreting ECM components, enzymes, cytokines, chemokines, and growth factors [370,371] while modulating T-cell responses and angiogenesis via TGF-β, IL-6, CXCL9, and VEGF [372]. Most therapies focus on Fibroblas Activation protein (FAP), overexpressed on CAFs [373]. RO6874281 and sibrotuzumab (NCT02627274, NCT02198274, NCT03386721) showed safety but limited efficacy [374,375]. A DNA vaccine targeting FAP reduced tumour growth in mice [376].
CAF functions rely on TGF-β, CXCR4, FGFR, PDGFR, ROCK, and NF-κB, which are under clinical investigation [377,378]. Markers like FSP1, ITGA11, and ITGB1 are being studied as prognostic tools [379]. Erdafitinib (FGFR inhibitor) is FDA-approved for FGFR-mutated urothelial cancer [380]. FGFR and Hedgehog inhibitors like vismodegib are approved for basal cel carcinoma (BCC) [381], although saridegib with gemcitabine was ineffective in pancreatic cancer (NCT01130142). Axitinib, a PDGFR inhibitor, showed benefit in metastatic RCC (NCT02684006, last accessed 31 March 2025) [382].
CAF normalisation via vitamins A or D enhances anticancer response in preclinical models [383]. Combination therapies, e.g., galunisertib with sorafenib or chemoradio-therapy, improved outcomes (NCT01246986, NCT02688712) [384,385]. CXCR4 inhibition with AMD3100 and G-CSF supports stem cell mobilisation in Multiple Myeloma (MM) and non-Hodgkin lymphoma (NHL) [386,387]. The ROCK inhibitor AT13148 showed good tolerability (NCT01585701) [388], and ATRA with apatinib was effective in metastatic adenoid cystic carcinoma (ACC) (NCT04433169) [389] and is under study in acute promyelocytic leukemia (APL) (NCT00482833) [390].
Extracellular vesicles (ECVs)—microvesicles, exosomes, and apoptotic bodies—have diagnostic and therapeutic potential [391,392,393,394]. Exosome-targeting strategies to block EMT in various cancer models include proton pump inhibitors [395], Rab27a silencing [396,397], and heparin to inhibit uptake [398], although clinical data are limited.
TAM targeting aims to restore immune surveillance [399,400,401]. CCL2 promotes TAM accumulation and metastasis [153,402]. Anti-CCL2 (carlumab) and anti-CCR2 (PF-04136309) showed limited efficacy alone, but combinations with chemotherapy yielded better outcomes (NCT01204996) [403,404,405,406].
CSF1R, essential for TAM survival, is targeted to deplete or reprogram TAMs [407,408,409,410,411,412,413,414]. Combining CSF1R inhibitors with radiotherapy or TKIs enhances efficacy [415,416,417,418,419,420,421]. Several agents (emactuzumab, PLX7486, BLZ945, edicotinib, ARRY-382, pexidartinib) are in trials [422,423]; however, pexidartinib failed in glioblastoma (NCT01349036) [424].
CD40 agonists reprogram TAMs and enhance T-cell infiltration. Agents like CP-870,893 and sotigalimab showed early efficacy [425,426,427,428]. The results vary with some trials reporting durable responses [429], while others like those employing dacetuzumab (NCT00435916) did not. CD40 also promotes endothelial activation (e.g., through induction of ICAM-1, VCAM-1, and selectin expression) [430]. The viral delivery of CD40L activates immune cells in pancreatic preclinical models [431]. Combined with sunitinib, CD40 agonists improve tumour regression through activation of DCs and MDSC reduction [432].
TREM2 is another TAM target. PY314 showed safety in Phase I trials (NCT04691375, last accessed 31 March 2025) [433]. PI3Kγ inhibition by eganelisib demonstrated efficacy with ICIs in solid tumours (NCT03961698, last accessed 31 March 2025) [434,435].
ECM modulation, particularly employing hyaluronidases and collagenases, has been reported to enhance drug delivery [436]. PEGPH20 improved PFS in pancreatic cancer [437], but subsequent trials (NCT02715804, NCT01959139) did not observe clinical benefit and notable toxicity in pancreatic cancer [438]. ECM synthesis inhibitors target HIF-1α, TGF-β, and LOX. Anti-LOXL2 Ab simtuzumab failed in clinical trials (NCT01472198, NCT01479465) [439,440].
Repurposed agents like losartan, pirfenidone, and metformin are under evaluation. FOLFIRINOX plus losartan improved outcomes in pancreatic cancer [441], while metformin showed no benefit in a Phase III breast cancer trial (NCT01101438) [442].
Integrins and FAK are also therapeutic targets [443,444]. Despite encouraging preclinical findings, integrin inhibitors still lack clinical validation [445]. The Ab– antimitotic drug conjugate SGN-B6A, targeting integrin β6, is under clinical investigation for advanced malignancies (NCT04389632) [446]. Another promising approach involves MMG49-CAR T-cells (OPC-415), designed to target the active form of integrin β7 in multiple myeloma, now in a Phase II trial (NCT04649073) [447]. FAK inhibitor defactinib is also under investigation, showing mixed results in advanced solid tumours [448,449]. These findings underscore the complexities of ECM-targeting strategies, requiring further research to improve their clinical utility.

3.2. Potential Approaches to Increase Intra-Tumour T-Cell Motility

A deeper understanding of chemokines (e.g., CXCL13, CXCL16, CCL5, and CCL22) and cytokines (e.g., IL-2, IL-7, and IL-15) is essential to reprogramming the TME from immunologically “cold” to “hot”, thereby enhancing immune infiltration and activity.
Several approaches have been explored to manipulate chemokine signalling. CD8+ T-cells, Th1 cells, and NK cells are critical for anti-tumour immunity, often expressing CXCR3. The presence of CXCR3 on circulating T-cells, along with intra-tumoural CXCL9 and CXCL10 expression, is associated with increased T-cell infiltration and improved patient survival across cancers [215,221]. This axis is primarily driven by IFN-γ [215,225,226,227], and its activation via intra-tumoural IFN-γ delivery increases CXCL10/11 levels in melanoma [450]. Preclinical administration of CXCL9/10 enhances T-cell recruitment and suppresses tumour growth [451], although clinical translation remains challenging.
ICB indirectly increases CXCR3 ligands by promoting IFN-γ from activated T-cells. PD-1 blockade increases tumoural CXCL10 in ACT-treated melanoma [452], while ipilimumab elevates CXCL9–11 levels [453]. CXCL9 from CD103+ DCs facilitates CXCR3+ T-cell recruitment in the TME [453]. IL-7 delivery and COX-2 inhibitors also promote an increase in the levels of CXCR£ ligands CXCL9/10 [453,454].
PARP inhibitors enhance intra-tumoural CD4+ and CD8+ T-cell infiltration [455,456,457]. BRCA1/2-deficient cancers show greater T-cell presence and survival [458]. Olaparib promotes CD8+ T-cell infiltration via the cGAS/STING pathway, especially in BRCA1-deficient tumours [459,460], while increased cytosolic DNA leads to CCL5/CXCL10-driven T-cell recruitment, independent of BRCA status [461]. However, STING agonists may benefit BRCA wild-type tumours [459].
DPP4 (CD26) inhibition elevates CXCR3 ligands, enhances CXCR3+ NK/T cell infiltration, and improves responses in melanoma, glioblastoma, and colorectal cancers [215,223]. Interestingly, CD26+ T-cells also drive tumour immunity and may predict response to PD-1 blockade [462,463,464], underscoring the dual role of CD26 in immuno-regulation.
The CCL5/CCR5 axis promotes tumour progression via survival, proliferation, MMP activation, and immune suppression through Treg, MDSC, and TAM recruitment [243]. CCR5 blockade repolarises TAMs and improves tumour control [240], although its dual role in both tumour progression [241] and effector T-cell recruitment [242] requires context-specific targeting.
GPR182, a scavenger of CXCL9/10, impairs lymphocyte recruitment and contributes to immunotherapy resistance, representing a promising target for cold tumours [465].
CAR-T therapies have transformed hematologic malignancy treatment and are advancing in solid tumours, where poor infiltration remains a challenge [466,467]. Chemokine receptor engineering (e.g., CXCR3, CXCR4) improves CAR-T migration and efficacy [468]. Co-expression of CCR5 and IL-12 in mesothelin-targeted CAR-T enhances infiltration and functionality [469]. Trials are underway for CAR-T cells expressing CXCR5 (NCT04153799, NCT05060796), CXCR2 (NCT05353530, NCT01740557), and CCR4 (NCT03602157) in various cancers [470] (https://clinicaltrials.gov, last accessed 31 March 2025). Other strategies include IL-7/CCL19-secreting CAR-T cells (NCT04381741, NCT04833504).
However, CXCR4–CXCL12 engagement supports angiogenesis, tumour survival, and immune suppression [280]. CXCR4 inhibition with AMD3100 enhances effector T-cell infiltration and reduces Tregs, promoting M1 macrophage polarisation [471].
Tumour metabolism, particularly elevated lactate levels and low pH in the TME, im-pairs CD8+ T-cell function via transporters MCT-1 and SLC5A12 [346,472,473]. Targeting lactate metabolism through MCT1 inhibitor AZD3965 (Phase I trials) [474], CPI-613 (targets TCA enzymes) [475], lactate oxidase nanocapsules [476], and dichloroacetate (DCA) [477] may restore T-cell functionality and bolster immune responses.
GPR65, a proton-sensing receptor, modulates T-cells in acidic TMEs. Its inhibition improves macrophage function and tumour immunity [478].
Aberrant vasculature in tumours impairs T-cell trafficking. VEGF blockade enhances vascular structure and chemokine expression, improving survival, particularly with ICB [479]. Low-dose VEGF inhibition (e.g., bevacizumab) normalises vessels and reduces pressure, facilitating T-cell entry [326,480]. HEV-like vasculature expressing PNAds and CCL21 also supports naïve T-cell infiltration, correlating with improved prognosis in melanoma, lung, and ovarian cancers [481,482]. LTα3 and IFN-γ promote HEV formation, and their localised delivery or VEGF inhibition may enhance this process. LIGHT, a TNF superfamily member, similarly promotes HEV and TLS formation while improving adhesion molecule expression and vessel normalisation [483,484,485].
Inhibiting endothelial factors (e.g., FASL) increases CD8+ infiltration and suppresses tumour growth, revealing an endothelial immune barrier and offering a therapeutic avenue for improving anti-tumour immunity [480].

4. Unveiling the Dynamic Interplay of Tumour and T-Cell Motility in the TME

The plasticity of tumour cell motility enables cancer cells to switch epithelial to mesenchymal and amoeboid phenotypes in response to cues from the extracellular matrix and immune cells [486]. This tumor dissemination relies on dynamic interactions with the immune microenvironment, where cancer cell motility and immune-regulated chemotactic and adhesion signals shape immune cell infiltration [487]. Tumour spread is a dynamic process [1], governed by intricate interactions between cancer cells and the TME, particularly immune components. The plasticity of tumour cell motility enables cancer cells to switch epithelial to mesenchymal and amoeboid phenotypes in response to cues from the extracellular matrix and immune cells [486].
Simultaneously, chemokines such as CXCL9, CXCL10, and CCL5 regulate T-cell recruitment [215], whereas LFA-1 and adhesion molecules like ICAM-1 [487] govern their infiltration and retention within the tumour.
The TME shapes not only tumour cell motility and metastatic dissemination but also profoundly affects immune cell recruitment and functionality, particularly impacting T-cell trafficking. Tumour-derived factors such as hypoxia, ECM remodelling, CAFs, TAMs, and metabolic adaptations exert a dynamic influence on these processes. Hypoxia represents a central driver of both tumour cell migration and immune modulation within the TME, fostering tumour proliferation, EMT, and metastasis [92] while creating a metabolically hostile and immunosuppressive environment that hampers T-cell infiltration. The hypoxia-induced acidic milieu resulting from increased glycolysis suppresses immune cell motility and activity, promoting protease activation and matrix degradation, which in turn facilitate tumour invasion [197,198,199]. These tumour-derived adaptations remodel the TME biochemically and physically, forming barriers that T-cells must overcome to infiltrate tumours.
CAFs, activated by tumour-derived signals, are major players in the TME and contribute to the exclusion and dysfunction of T-cells. By producing TGF-β, IL-6, CXCL12, and MMPs [103,104,105,106], CAFs induce EMT and modify the ECM, enhancing tumour invasiveness while creating a stiffened, collagen-rich matrix [116,117,118,119]. Such matrix alterations not only support tumour cell motility but also generate a dense physical barrier that impedes T-cell entry and restricts their motility within tumours. In addition, CXCL12, produced by either CAFs and tumours [105,281], misdirect CTLs to the stromal area, preventing their effective targeting and elimination of cancer cells [210]. TAMs also play a critical role at the intersection between tumour progression and immune suppression. Recruited by tumour-derived chemokines such as CCL2, CCL5, and CCL8 [153,154,155], TAMs are reprogrammed to enhance EMT, tumour motility, and metastasis, while hampering T-cell infiltration. Moreover, their ECM remodelling activity [176,177,178,179] facilitates tumour dissemination but restricts T-cell penetration by altering matrix stiffness [174,175]. Furthermore, TAMs orchestrate the formation of TMEM doorways in collaboration with the tumour and endothelial cells, guided by VEGFA signalling [184,185], promoting tumour cell intravasation but also creating vascular niches potentially less accessible to T-cells. Together, these tumour-derived features generate a dynamic TME that selectively promotes tumour motility and invasion while simultaneously establishing physical, chemical, and immunological barriers that inhibit T-cell recruitment and motility. A key aspect of this interaction is how motile cancer cells and T-cells reciprocally influence each other’s motility, an important consideration for developing novel therapeutic strategies [488]. Emerging evidence shows that motile cancer cells can impact T-cell recruitment and motility by actively reshaping the TME, establishing physical and biochemical barriers that hinder T-cell infiltration and function. Through ECM remodelling, invasive tumour cells increase matrix density and fibre alignment, which not only facilitates tumour dissemination but also obstructs T-cell migration toward the tumour core [489].
The efficiency of cancer cell motility is influenced by ECM properties and cellular energetics. For instance, optimal collagen density reduces energy demands, enabling more efficient cancer cell movement [490]. However, this same efficiency contributes to nutrient competition within the TME, as highly migratory cancer cells exhibit elevated metabolic activity and consume key resources such as glucose and oxygen. This metabolic competition depletes the energy reserves necessary for T-cell function, ultimately impairing T-cell motility [491]. This dynamic results in a remodelled, immune-excluded TME, where tumour and immune cells compete for space. Spatial reorganisation driven by tumour cell movement can physically displace T-cells. A mathematical model illustrated by Marzban et al. supports this hypothesis, demonstrating that cancer–ECM interactions can generate T-cell-depleted regions, thereby compromising immune surveillance [492].
Moreover, motile cancer cells actively recruit immunosuppressive populations, TAMs and MDSCs, to invasive sites [493]. These cells secrete suppressive factors such as TGF-β, which downregulates CXCR3 expression on T-cells, further limiting their recruitment and infiltration [363]. Tumour-derived lactate accumulation and diminished adhesion signalling also reduce T-cell motility within the TME [341]. Computational models highlight that enhanced tumour cell motility increases spatial heterogeneity in adhesion landscapes, collectively impairing T-cell migration and cytotoxic efficiency [494]. Additionally, tumours degrade key chemokines essential for T-cell recruitment. Motile tumour cells frequently overexpress MMPs, such as MMP-8 and MMP-9, which cleave chemokines like CXCL9 and CXCL10, disrupting chemotactic gradients and diminishing T-cell infiltration [495]. Epigenetic mechanisms, including EZH2-mediated histone methylation and DNMT1-driven DNA methylation, further suppress CXCL9/10 expression. Inhibiting these pathways restores chemokine production, enhancing T-cell recruitment and improving immunotherapy efficacy [496]. Moreover, tumour-derived nitric oxide similarly downregulates CXCL10, impairing T-cell migration [497].
Conversely, T-cell motility can potentially exert substantial effect on tumour cell behaviour. Efficient T-cell infiltration into tumours is associated with reduced tumour cell migration and invasiveness. This is partly due to the cytotoxic elimination of migratory tumour cells and the modulation of the TME by activated T-cells [209]. Interestingly, tumour-associated EMT can suppress IFN-γ signalling [498]. On the other hand, IFN-γ released by cytotoxic T-cells can exert dual effects. It may promote EMT and metastasis by inducing ICAM1 and CXCR4 or alternatively inhibit metastasis through the upregulation of FN1 expression. Notably, low doses of IFN-γ have been linked to the acquisition of metastatic features, whereas higher doses promote tumour regression [499].
Motile T-cells within the tumour core also potentially disrupt pro-invasive ECM remodelling by releasing MMPs and lysosomal enzymes that degrade ECM components such as collagen and fibrin. This degradation impairs tumour cell survival and migration [317]. At variance, recent evidence suggests that cancer cell actin cytoskeleton undergoes extensive remodelling during the interaction with cytotoxic T-cells, altering the stability of IS and CTL motility [500].
Advanced methodologies, including live imaging [501], computational modelling [492], and single-cell communication analysis tools like CellChat [502], are shedding light on these complex, bidirectional interactions. These tools reveal how robust T-cell infiltration and motility can actively restrain tumour front expansion and suppress metastatic spread, offering novel insights into therapeutic opportunities.

5. Conclusions

Tumour cell motility and immune cell trafficking are tightly interconnected processes that shape both tumour progression and immune evasion. By remodelling the TME, cancer cells create physical, biochemical, and metabolic barriers that block T-cell infiltration. Conversely, effective T-cell mobilisation can restrain tumour invasion and spread. Future therapies should aim to reprogram the TME by restoring chemokine gradients, normalising the EM, and overcoming metabolic suppression to improve T-cell access and function. Integrating spatial imaging, computational modelling, and targeted interventions will be critical to not only prevent metastasis but also remodel the tumour–immune interface for lasting clinical responses. Understanding and manipulating the reciprocal regulation of tumour and immune cell motility is critical to identify predictive biomarkers and transforming immune-excluded (“cold”) tumours into immune-active (“hot”) ones for enhancing the efficacy, personalisation, and durability of cancer immunotherapy.

Author Contributions

Conceptualisation, supervision, writing, review, and editing of the manuscript, A.A. and O.F. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. De la Fuente, I.M.; López, J.I. Cell Motility and Cancer. Cancers 2020, 12, 2177. [Google Scholar] [CrossRef] [PubMed]
  2. Ganesh, K. Uncoupling Metastasis from Tumourigenesis. N. Engl. J. Med. 2023, 388, 657–659. [Google Scholar] [CrossRef] [PubMed]
  3. Li, R.; Liu, X.; Huang, X.; Zhang, D.; Chen, Z.; Zhang, J.; Bai, R.; Zhang, S.; Zhao, H.; Xu, Z.; et al. Single cell transcriptomic analysis deciphers heterogenous cancer stem like cells in colorectal cancer and their organ specific metastasis. Gut 2024, 73, 470–484. [Google Scholar] [CrossRef] [PubMed]
  4. Pietilä, M.; Ivaska, J.; Mani, S.A. Whom to blame for metastasis, the epithelial–mesenchymal transition or the tumour microenvironment? Cancer Lett. 2016, 380, 359–368. [Google Scholar] [CrossRef]
  5. Zhang, X.; Ma, H.; Gao, Y.; Liang, Y.; Du, Y.; Hao, S.; Ni, T. The tumour microenvironment: Signal transduction. Biomolecules 2024, 14, 438. [Google Scholar]
  6. Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumour progressionand metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef]
  7. Hu, A.; Sun, L.; Lin, H.; Liao, Y.; Yang, H.; Mao, Y. Harnessing innate immunepathways for therapeutic advancement in cancer. Signal Transduct. Target Ther. 2024, 9, 68. [Google Scholar] [CrossRef]
  8. Heerboth, S.; Housman, G.; Leary, M.; Longacre, M.; Byler, S.; Lapinska, K.; Willbanks, A.; Sarkar, S. EMT and tumour metastasis. Clin. Transl. Med. 2015, 4, 6. [Google Scholar] [CrossRef]
  9. Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. [Google Scholar] [CrossRef]
  10. Mladinich, M.; Ruan, D.; Chan, C.H. Tackling cancer stem cells via inhibition of EMT transcription factors. Stem Cells Int. 2016, 2016, 5285892. [Google Scholar] [CrossRef]
  11. Singh, A.; Settleman, J. EMT, cancer stem cells and drug resistance: An emerging ax-is of evil in the war on cancer. Oncogene 2010, 29, 4741–4751. [Google Scholar] [CrossRef]
  12. Khan, A.Q.; Hasan, A.; Mir, S.S.; Rashid, K.; Uddin, S.; Steinhoff, M. Exploiting transcription factors to target EMT and cancer stem cells for tumour modulation and therapy. Semin. Cancer Biol. 2024, 100, 1–16. [Google Scholar] [CrossRef] [PubMed]
  13. Peyre, L.; Meyer, M.; Hofman, P.; Roux, J. TRAIL receptor-induced features of epithelial-to-mesenchymal transition increase tumour phenotypic heterogeneity: Potential cell survival mechanisms. Br. J. Cancer 2021, 124, 91–101. [Google Scholar] [CrossRef] [PubMed]
  14. Faheem, M.M.; Seligson, N.D.; Ahmad, S.M.; Rasool, R.U.; Gandhi, S.G.; Bhagat, M.; Goswami, A. Convergence of therapy-induced senescence (TIS) and EMT in multistep carcinogenesis: Current opinions and emerging perspectives. Cell Death Discov. 2020, 6, 51. [Google Scholar] [CrossRef]
  15. Pece, S.; Tosoni, D.; Confalonieri, S.; Mazzarol, G.; Vecchi, M.; Ronzoni, S.; Bernard, L.; Viale, G.; Pelicci, P.G.; Di Fiore, P.P. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 2010, 140, 62–73. [Google Scholar] [CrossRef] [PubMed]
  16. Nagata, S.; Hirano, K.; Kanemori, M.; Sun, L.T.; Tada, T. Self-renewal and pluripotency acquired through somatic reprogramming to human cancer stem cells. PLoS ONE 2012, 7, e48699. [Google Scholar] [CrossRef]
  17. Shibue, T.R.; Weinberg, A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 2017, 14, 611–629. [Google Scholar] [CrossRef]
  18. Cabarcas, S.M.; Mathews, L.A.; Farrar, W.L. The cancer stem cell niche—There goes the neighborhood? Int. J. Cancer 2011, 129, 2315–2327. [Google Scholar] [CrossRef]
  19. Tsai, J.H.; Donaher, J.L.; Murphy, D.A.; Chau, S.; Yang, J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 2012, 22, 725–736. [Google Scholar] [CrossRef]
  20. Ocana, O.H.; Córcoles, R.; Fabra, A.; Moreno-Bueno, G.; Acloque, H.; Vega, S.; Barrallo-Gimeno, A.; Cano, A.; Nieto, M.A. Metastatic colonization requires the repression of the epithelial mesenchymal transition inducer Prrx1. Cancer Cell 2012, 22, 709–724. [Google Scholar] [CrossRef]
  21. Terragno, M.; Vetrova, A.; Semenov, O.; Sayan, A.E.; Kriajevska, M.; Tulchinsky, E. Mesenchymal-epithelial transition and AXL inhibitor TP-0903 sensitise triple-negative breast cancer cells to the antimalarial compound, artesunate. Sci. Rep. 2024, 14, 425. [Google Scholar] [CrossRef] [PubMed]
  22. Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D.G.; Egeblad, M.; Evans, R.M.; Fearon, D.; Greten, F.R.; Hingorani, S.R.; Hunter, T.; et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 2020, 20, 174–186. [Google Scholar] [CrossRef] [PubMed]
  23. Eissner, G. Mesenchymal stromal cells “think” globally, but act locally. Cell 2023, 12, 509. [Google Scholar] [CrossRef]
  24. Jiang, Z.; Zhou, J.; Li, L.; Liao, S.; He, J.; Zhou, S.; Zhou, Y. Pericytes in the tumour micro-environment. Cancer Lett. 2023, 556, 216074. [Google Scholar] [CrossRef] [PubMed]
  25. Cassetta, L.; Pollard, J.W. A timeline of tumour-associated macrophage biology. Nat. Rev. Cancer 2023, 23, 238–257. [Google Scholar] [CrossRef]
  26. Dikiy, S.; Rudensky, A.Y. Principles of regulatory T cell function. Immunity 2023, 56, 240–255. [Google Scholar] [CrossRef]
  27. Laumont, C.M.; Banville, A.C.; Gilardi, M.; Hollern, D.P.; Nelson, B.H. Tumour-infiltrating B cells: Immunological mechanisms, clinical impact and therapeutic opportunities. Nat. Rev. Cancer 2022, 22, 414–430. [Google Scholar] [CrossRef]
  28. Zhou, Y.; Cheng, L.; Liu, L.; Li, X. NK cells are never alone: Crosstalk and communication in tumour microenvironments. Mol. Cancer 2023, 22, 34. [Google Scholar] [CrossRef]
  29. Wu, Y.; Yi, M.; Niu, M.; Mei, Q.; Wu, K. Myeloid-derived suppressor cells: An emerging target for anticancer immunotherapy. Mol. Cancer 2022, 21, 184. [Google Scholar] [CrossRef]
  30. Yan, M.; Zheng, M.; Niu, R.; Yang, X.; Tian, S.; Fan, L.; Li, Y.; Zhang, S. Roles of tumour associated neutrophils in tumour metastasis and its clinical applications. Front. Cell Dev. Biol. 2022, 10, 938289. [Google Scholar] [CrossRef]
  31. Lei, X.; Khatri, I.; de Wit, T.; de Rink, I.; Nieuwland, M.; Kerkhoven, R.; van Eenennaam, H.; Sun, C.; Garg, A.D.; Borst, J.; et al. CD4+ helper T cells endow cDC1 with cancer-impeding functions in the human tumour microenvironment. Nat. Commun. 2023, 14, 217. [Google Scholar] [CrossRef] [PubMed]
  32. Huang, J.; Zhang, L.; Wan, D.; Zhou, L.; Zheng, S.; Lin, S.; Qiao, Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct. Target Ther. 2021, 6, 153. [Google Scholar] [CrossRef]
  33. Lappano, R.; Todd, L.A.; Stanic, M.; Cai, Q.; Maggiolini, M.; Marincola, F.; Pietrobon, V. Multifaceted interplay between hormones, growth factors and hypoxia in the tumour microenvironment. Cancers 2022, 14, 539. [Google Scholar] [CrossRef]
  34. Martins-Lima, C.; Chianese, U.; Benedetti, R.; Altucci, L.; Jerónimo, C.; Correia, M.P. Tumour microenvironment and epithelial-mesenchymal transition in bladder cancer: Cytokines in the game? Front. Mol. Biosci. 2022, 9, 1070383. [Google Scholar]
  35. Bose, S.; Saha, P.; Chatterjee, B.; Srivastava, A.K. Chemokines driven ovarian cancer progression, metastasis and chemoresistance: Potential pharmacological targets for cancer therapy. Semin. Cancer Biol. 2022, 86, 568–579. [Google Scholar] [CrossRef] [PubMed]
  36. Mustafa, S.; Koran, S.; AlOmair, L. Insights into the role of matrix metalloproteinases in cancer and its various therapeutic aspects: A review. Front. Mol. Biosci. 2022, 9, 896099. [Google Scholar] [CrossRef]
  37. Chen, Q.Y.; Gao, B.; Tong, D.; Huang, C. Crosstalk between extracellular vesicles and tumour-associated macrophage in the tumour microenvironment. Cancer Lett. 2023, 552, 215979. [Google Scholar] [CrossRef] [PubMed]
  38. Doodmani, S.M.; Safari, M.H.; Akbari, M.; Farahani, N.; Alimohammadi, M.; Aref, A.R.; Tajik, F.; Maghsoodlou, A.; Daneshi, S.; Tabari, T.; et al. Metastasis and chemoresistance in breast cancer: Crucial function of ZEB1/2 proteins. Pathol. Res. Pract. 2025, 267, 155838. [Google Scholar] [CrossRef]
  39. Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 69–84. [Google Scholar] [CrossRef]
  40. Garg, M. Epithelial-mesenchymal transition—Activating transcription factors—Multifunctional regulators in cancer. World J. Stem Cells. 2013, 26, 188–195. [Google Scholar] [CrossRef]
  41. Peinado, H.; Quintanilla, M.; Cano, A. Transforming growth factor β-1 induces snail transcription factor in epithelial cell lines mechanisms for epithelial mesenchymal transitions. J. Biol. Chem. 2003, 278, 21113–21123. [Google Scholar] [CrossRef] [PubMed]
  42. Fukuda, S.; Nishida-Fukuda, H.; Nanba, D.; Nakashiro, K.-I.; Nakayama, H.; Kubota, H.; Higashiyama, S. Reversible interconversion and maintenance of mammary epithelial cell characteristics by the ligand-regulated EGFR system. Sci. Rep. 2016, 6, 20209. [Google Scholar] [CrossRef] [PubMed]
  43. Graham, T.R.; Zhau, H.E.; Odero-Marah, V.A.; Osunkoya, A.O.; Kimbro, K.S.; Tighiouart, M.; Liu, T.; Simons, J.W.; O’Regan, R.M. Insulin-like growth factor-I–dependent up-regulation of ZEB1 drives epitheli-al-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 2008, 68, 2479–2488. [Google Scholar] [CrossRef]
  44. Jiao, D.; Wang, J.; Lu, W.; Tang, X.; Chen, J.; Mou, H.; Chen, Q.Y. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signalling pathways in lung cancer. Mol. Ther.-Oncolytics 2016, 3, 16018. [Google Scholar] [CrossRef] [PubMed]
  45. Xue, W.; Yang, L.; Chen, C.; Ashrafizadeh, M.; Tian, Y.; Sun, R. Wnt/β-catenindriven EMT regulation in human cancers. Cell Mol. Life Sci. 2024, 81, 79. [Google Scholar] [CrossRef]
  46. Fukusumi, T.; Guo, T.W.; Sakai, A.; Ando, M.; Ren, S.; Haft, S.; Liu, C.; Amornphimoltham, P.; Gutkind, J.S.; Califano, J.A.; et al. The NOTCH4–HEY1 pathway induces epithelial–mesenchymal transition in head and neck squamous cell carcinoma. Clin. Cancer Res. 2018, 24, 619–633. [Google Scholar] [CrossRef]
  47. Kaufhold, S.; Bonavida, B. Central role of Snail1 in the regulation of EMT and resistance in cancer: A target for therapeutic intervention. J. Exp. Clin. Cancer Res. 2014, 33, 62. [Google Scholar] [CrossRef]
  48. Comijn, J.; Berx, G.; Vermassen, P.; Verschueren, K.; van Grunsven, L.; Bruyneel, E.; Mareel, M.; Huylebroeck, D.; van Roy, F. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell 2001, 7, 1267–1278. [Google Scholar] [CrossRef]
  49. Batlle, E.; Sancho, E.; Francí, C.; Domínguez, D.; Monfar, M.; Baulida, J.; García De Herreros, A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2000, 2, 84–89. [Google Scholar] [CrossRef]
  50. Vandewalle, C.; Comijn, J.; De Craene, B.; Vermassen, P.; Bruyneel, E.; Andersen, H.; Tulchinsky, E.; Van Roy, F.; Berx, G. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res. 2005, 33, 6566–6578. [Google Scholar] [CrossRef]
  51. Martínez-Estrada, O.M.; Cullerés, A.; Soriano, F.X.; Peinado, H.; Bolós, V.; Martínez, F.O.; Reina, M.; Cano, A.; Fabre, M.; Vilaró, S. The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem. J. 2006, 394, 449–457. [Google Scholar] [CrossRef] [PubMed]
  52. Ikenouchi, J.; Matsuda, M.; Furuse, M.; Tsukita, S. Regulation of tight junctions during the epithelium-mesenchyme transition: Direct repression of the gene expression of claudins/occludin by Snail. J. Cell Sci. 2003, 116, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
  53. Whiteman, E.L.; Fan, S.; Harder, J.L.; Walton, K.D.; Liu, C.J.; Soofi, A.; Fogg, V.C.; Hershenson, M.B.; Dressler, G.; Deutsch, G.H.; et al. Crumbs3 is essential for proper epithelial development and viability. Mol. Cell Biol. 2014, 34, 43–56. [Google Scholar] [CrossRef] [PubMed]
  54. Yook, J.I.; Li, X.Y.; Ota, I.; Hu, C.; Kim, H.; Kim, N.H.; Cha, S.Y.; Ryu, J.K.; Choi, Y.J.; Kim, J.; et al. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat. Cell Biol. 2006, 8, 1398–1406. [Google Scholar] [CrossRef]
  55. Min, A.L.; Choi, J.Y.; Woo, H.Y.; Kim, J.D.; Kwon, J.H.; Bae, S.H.; Yoon, S.K.; Shin, S.H.; Chung, Y.J.; Jung, C.K. High expression of Snail mRNA in blood from hepatocellular carcinoma patients with extra-hepatic metastasis. Clin. Exp. Metastasis 2009, 26, 759–767. [Google Scholar] [CrossRef]
  56. Guo, W.; Keckesova, Z.; Donaher, J.L.; Shibue, T.; Tischler, V.; Reinhardt, F.; Itzkovitz, S.; Noske, A.; Zürrer-Härdi, U.; Bell, G.; et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 2012, 148, 1015–1028. [Google Scholar] [CrossRef]
  57. Margetts, P.J.; Bonniaud, P.; Liu, L.; Hoff, C.M.; Holmes, C.J.; West-Mays, J.A.; Kelly, M.M. Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. J. Am. Soc. Nephrol. 2005, 16, 425–436. [Google Scholar] [CrossRef]
  58. Martínez-Alvarez, C.; Blanco, M.J.; Pérez, R.; Rabadán, M.A.; Aparicio, M.; Resel, E.; Martínez, T.; Nieto, M.A. Snail family members and cell survival in physiological and pathological cleft palates. Dev. Biol. 2004, 265, 207–218. [Google Scholar] [CrossRef]
  59. Blechschmidt, K.; Sassen, S.; Schmalfeldt, B.; Schuster, T.; Höfler, H.; Becker, K.F. The E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients. Br. J. Cancer 2008, 98, 489–495. [Google Scholar] [CrossRef]
  60. Fujita, N.; Jaye, D.L.; Kajita, M.; Geigerman, C.; Moreno, C.S.; Wade, P.A. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 2003, 113, 207–219. [Google Scholar] [CrossRef]
  61. Shioiri, M.; Shida, T.; Koda, K.; Oda, K.; Seike, K.; Nishimura, M.; Takano, S.; Miyazaki, M. Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br. J. Cancer 2006, 94, 1816–1822. [Google Scholar] [CrossRef] [PubMed]
  62. Hardy, R.G.; Vicente-Dueñas, C.; González-Herrero, I.; Anderson, C.; Flores, T.; Hughes, S.; Tselepis, C.; Ross, J.A.; Sánchez-García, I. Snail family transcription factors are implicated in thyroid carcinogenesis. Am. J. Pathol. 2007, 171, 1037–1046. [Google Scholar] [CrossRef]
  63. Hotz, B.; Arndt, M.; Dullat, S.; Bhargava, S.; Buhr, H.J.; Hotz, H.G. Epithelial to mesenchymal transition: Expression of the regulators snail, slug, and twist in pancreatic cancer. Clin. Cancer Res. 2007, 13, 4769–4776. [Google Scholar] [CrossRef] [PubMed]
  64. Kurrey, N.K.; Jalgaonkar, S.P.; Joglekar, A.V.; Ghanate, A.D.; Chaskar, P.D.; Doiphode, R.; Bapat, S.A. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 2009, 27, 2059–2068. [Google Scholar] [CrossRef]
  65. Bruyere, F.; Namdarian, B.; Corcoran, N.M.; Pedersen, J.; Ockrim, J.; Voelzke, B.B.; Mete, U.; Costello, A.J.; Hovens, C.M. Snail expression is an independent predictor of tumour recurrence in superficial bladder cancers. Urol. Oncol. 2010, 28, 591–596. [Google Scholar] [CrossRef]
  66. Kim, N.O.; Cha, Y.H.; Lee, J.; Lee, S.H.; Yang, J.; Yun, J.; Cho, E.S.; Zhang, X.; Nam, M.; Kim, N.; et al. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nat. Commun. 2017, 8, 14374. [Google Scholar] [CrossRef] [PubMed]
  67. Domínguez, D.; Montserrat-Sentís, B.; Virgós-Soler, A.; Guaita, S.; Grueso, J.; Porta, M.; Puig, I.; Baulida, J.; Francí, C.; García de Herreros, A.; et al. Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol. Cell Biol. 2003, 23, 5078–5089. [Google Scholar] [CrossRef]
  68. Bachelder, R.E.; Yoon, S.O.; Franci, C.; de Herreros, A.; Mercurio, A.M. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: Implications for the epithelial-mesenchymal transition. J. Cell Biol. 2005, 168, 29–33. [Google Scholar] [CrossRef]
  69. Barrallo-Gimeno, A.; Nieto, M.A. The Snail genes as inducers of cell movement and survival: Implications in development and cancer. Development 2005, 132, 3151–3161. [Google Scholar] [CrossRef]
  70. Wu, Y.; Evers, B.M.; Zhou, B.P. Small C-terminal domain phosphatase enhances snail activity through dephosphorylation. J. Biol. Chem. 2009, 284, 640–648. [Google Scholar] [CrossRef]
  71. Franco, H.L.; Casasnovas, J.; Rodríguez-Medina, J.R.; Cadilla, C.L. Redundant or separate entities? Roles of Twist1 and Twist2 as molecular switches during gene transcription. Nucleic Acids Res. 2011, 39, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
  72. Meng, J.; Chen, S.; Han, J.X.; Qian, B.; Wang, X.R.; Zhong, W.L.; Qin, Y.; Zhang, H.; Gao, W.F.; Lei, Y.Y.; et al. Twist1 Regulates Vimentin through Cul2 Circular RNA to Promote EMT in Hepatocellular Carcinoma. Cancer Res. 2018, 78, 4150–4162. [Google Scholar] [CrossRef] [PubMed]
  73. Khan, M.A.; Chen, H.C.; Zhang, D.; Fu, J. Twist: A molecular target in cancer therapeutics. Tumour Biol. 2013, 34, 2497–2506. [Google Scholar] [CrossRef] [PubMed]
  74. Deng, J.J.; Zhang, W.; Xu, X.M.; Zhang, F.; Tao, W.P.; Ye, J.J.; Ge, W. Twist mediates an aggressive phenotype in human colorectal cancer cells. Int. J. Oncol. 2016, 48, 1117–1124. [Google Scholar] [CrossRef]
  75. Hong, J.; Zhou, J.; Fu, J.; He, T.; Qin, J.; Wang, L.; Liao, L.; Xu, J. Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res. 2011, 71, 3980–3990. [Google Scholar] [CrossRef]
  76. Tang, H.; Massi, D.; Hemmings, B.A.; Mandalà, M.; Hu, Z.; Wicki, A.; Xue, G. AKT-ions with a TWIST between EMT and MET. Oncotarget 2016, 7, 62767–62777. [Google Scholar] [CrossRef]
  77. Eger, A.; Aigner, K.; Sonderegger, S.; Dampier, B.; Oehler, S.; Schreiber, M.; Berx, G.; Cano, A.; Beug, H.; Foisner, R. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 2005, 24, 2375–2385. [Google Scholar] [CrossRef]
  78. Wang, L.; Ni, X.; Covington, K.R.; Yang, B.Y.; Shiu, J.; Zhang, X.; Xi, L.; Meng, Q.; Langridge, T.; Drummond, J.; et al. Genomic profiling of Sézary syndrome identifies alterations of key T cell signalling and differentiation genes. Nat. Genet. 2015, 47, 1426–1434. [Google Scholar] [CrossRef]
  79. Dillner, N.B.; Sanders, M.M. The zinc finger/homeodomain protein deltaEF1 mediates estrogen-specific induction of the ovalbumin gene. Mol. Cell Endocrinol. 2002, 192, 85–91. [Google Scholar] [CrossRef]
  80. Heldin, C.H.; Vanlandewijck, M.; Moustakas, A. Regulation of EMT by TGFβ in cancer. FEBS Lett. 2012, 586, 1959–1970. [Google Scholar] [CrossRef]
  81. Zhang, P.; Sun, Y.; Ma, L. ZEB1: At the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle. 2015, 14, 481–487. [Google Scholar] [CrossRef] [PubMed]
  82. Dave, N.; Guaita-Esteruelas, S.; Gutarra, S.; Frias, À.; Beltran, M.; Peiró, S.; de Herreros, A.G. Functional cooperation between Snail1 and twist in the regulation of ZEB1 ex-pression during epithelial to mesenchymal transition. J. Biol. Chem. 2011, 286, 12024–12032. [Google Scholar] [CrossRef] [PubMed]
  83. Spaderna, S.; Schmalhofer, O.; Wahlbuhl, M.; Dimmler, A.; Bauer, K.; Sultan, A.; Hlubek, F.; Jung, A.; Strand, D.; Eger, A.; et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res. 2008, 68, 537–544. [Google Scholar] [CrossRef] [PubMed]
  84. Chaffer, C.L.; Marjanovic, N.D.; Lee, T.; Bell, G.; Kleer, C.G.; Reinhardt, F.; D’Alessio, A.C.; Young, R.A.; Weinberg, R.A. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumourigenicity. Cell 2013, 154, 61–74. [Google Scholar] [CrossRef]
  85. Zhang, G.J.; Zhou, T.; Tian, H.P.; Liu, Z.L.; Xia, S.S. High expression of ZEB1 correlates with liver metastasis and poor prognosis in colorectal cancer. Oncol Lett. 2013, 5, 564–568. [Google Scholar] [CrossRef]
  86. Jang, M.H.; Kim, H.J.; Kim, E.J.; Chung, Y.R.; Park, S.Y. Expression of epithelial-mesenchymal transition-related markers in triple-negative breast cancer: ZEB1 as a potential biomarker for poor clinical outcome. Hum. Pathol. 2015, 46, 1267–1274. [Google Scholar] [CrossRef]
  87. Pouyafar, A.; Heydarabad, M.Z.; Abdolalizadeh, J.; Zade, J.A.; Rahbarghazi, R.; Talebi, M. Modulation of lipolysis and glycolysis pathways in cancer stem cells changed multipotentiality and differentiation capacity toward endothelial lineage. Cell Biosci. 2019, 9, 30. [Google Scholar]
  88. Kurahara, H.; Takao, S.; Maemura, K.; Mataki, Y.; Kuwahata, T.; Maeda, K.; Ding, Q.; Sakoda, M.; Iino, S.; Ishigami, S.; et al. Epithelial-mesenchymal transition and mesenchymal-epithelial transition via regulation of ZEB-1 and ZEB-2 expression in pancreatic cancer. J. Surg. Oncol. 2012, 105, 655–661. [Google Scholar] [CrossRef]
  89. Chen, B.; Chen, B.; Zhu, Z.; Ye, W.; Zeng, J.; Liu, G.; Wang, S.; Gao, J.; Xu, G.; Huang, Z. Prognostic value of ZEB-1 in solid tumours: A meta-analysis. BMC Cancer 2019, 9, 635. [Google Scholar]
  90. Gheldof, A.; Hulpiau, P.; van Roy, F.; De Craene, B.; Berx, G. Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell Mol. Life Sci. 2012, 69, 2527–2541. [Google Scholar] [CrossRef]
  91. Chen, H.; Lu, W.; Huang, C.; Ding, K.; Xia, D.; Wu, Y.; Cai, M. Prognostic significance of ZEB1 and ZEB2 in digestive cancers: A cohort-based analysis and secondary analysis. Oncotarget 2017, 8, 31435–31448. [Google Scholar] [CrossRef] [PubMed]
  92. Semenza, G.L. The hypoxic tumour microenvironment: A driving force for breast cancer progression. Biochim. Biophys. Acta 2016, 183, 382–391. [Google Scholar] [CrossRef] [PubMed]
  93. Wu, M.Z.; Tsai, Y.P.; Yang, M.H.; Huang, C.H.; Chang, S.Y.; Chang, C.C.; Teng, S.C.; Wu, K.J. Interplay between HDAC3 and WDR5 is essential for hypoxia-induced epithelial-mesenchymal transition. Mol. Cell 2011, 43, 811–822. [Google Scholar] [CrossRef]
  94. Xu, M.; Pang, Q.; Xu, S.; Ye, C.; Lei, R.; Shen, Y.; Xu, J. Hypoxia-inducible factor-1α activates transforming growth factor-β1/ Smad signalling and in-creases collagen deposition in dermal fibroblasts. Oncotarget 2018, 9, 3188. [Google Scholar]
  95. Lester, R.D.; Jo, M.; Montel, V.; Takimoto, S.; Gonias, S.L. uPAR induces epithelial- mesenchymal transition in hypoxic breast cancer cells. J. Cell Biol. 2007, 178, 425–436. [Google Scholar] [CrossRef]
  96. Hapke, R.Y.; Haake, S.M. Hypoxia-induced epithelial to mesenchymal transition in cancer. Cancer Lett. 2020, 487, 10–20. [Google Scholar] [CrossRef] [PubMed]
  97. Yang, M.-H.; Wu, M.-Z.; Chiou, S.-H.; Chen, P.-M.; Chang, S.-Y.; Liu, C.J.; Teng, S.C.; Wu, K.J. Direct regulation of TWIST by HIF-1α promotes metastasis. Nat. Cell Biol. 2008, 10, 295–305. [Google Scholar] [CrossRef]
  98. Zhang, W.; Shi, X.; Peng, Y.; Wu, M.; Zhang, P.; Xie, R.; Wu, Y.; Yan, Q.; Liu, S.; Wang, J.; et al. HIF-1α promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS ONE. 2015, 10, e0129603. [Google Scholar] [CrossRef]
  99. Bogdanova, D.; Kolosova, E.D.; Pukhalskaia, T.V.; Levchuk, K.A.; Demidov, O.N.; Belotserkovskaya, E.V. The differential effect of senolytics on sasp cytokine secretion regulation of EMT by CAFs. Int. J. Mol. Sci. 2024, 25, 4031. [Google Scholar] [CrossRef]
  100. Xiang, H.; Ramil, C.P.; Hai, J.; Zhang, C.; Wang, H.; Watkins, A.A.; Afshar, R.; Georgiev, P.; Sze, M.A.; Song, X.S.; et al. Cancer associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol. Res. 2020, 8, 436–450. [Google Scholar] [CrossRef]
  101. Huang, H.; Wang, Z.; Zhang, Y.; Pradhan, R.N.; Ganguly, D.; Chandra, R.; Murimwa, G.; Wright, S.; Gu, X.; Maddipati, R.; et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of reg-ulatory T cells in pancreatic cancer. Cancer Cell 2022, 40, 656–673.e7. [Google Scholar] [CrossRef] [PubMed]
  102. Kerdidani, D.; Aerakis, E.; Verrou, K.M.; Angelidis, I.; Douka, K.; Maniou, M.A.; Stamoulis, P.; Goudevenou, K.; Prados, A.; Tzaferis, C.; et al. Lung tumour MHCII immunity depends on in situ antigen presentation by fibroblasts. J. Exp. Med. 2022, 219, e20210815. [Google Scholar] [CrossRef]
  103. Wen, S.; Hou, Y.; Fu, L.; Xi, L.; Yang, D.; Zhao, M.; Qin, Y.; Sun, K.; Teng, Y.; Liu, M. Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin beta3-p38 MAPK signalling. Cancer Lett. 2019, 442, 320–332. [Google Scholar] [CrossRef]
  104. Liao, H.; Li, H.; Dong, J.; Song, J.; Chen, H.; Si, H.; Wang, J.; Bai, X. Melatonin blunts the tumour-promoting effect of cancer-associated fibroblasts by reducing IL-8 expression and reversing epithelial-mesenchymal transition. Int. Immunopharmacol. 2023, 119, 110194. [Google Scholar] [CrossRef] [PubMed]
  105. Orimo, A.; Gupta, P.B.; Sgroi, D.C.; Arenzana-Seisdedos, F.; Delaunay, T.; Naeem, R.; Carey, V.J.; Richardson, A.L.; Weinberg, R.A. Stromal fibroblasts present in invasive human breast carcinomas promote tumour growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005, 121, 335–348. [Google Scholar] [CrossRef]
  106. Yu, Y.; Xiao, C.; Tan, L.; Wang, Q.; Li, X.; Feng, Y. Cancer-associated fibroblasts induce epithelial–mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br. J. Cancer 2014, 110, 724–732. [Google Scholar] [CrossRef] [PubMed]
  107. Wang, X.; Huang, C. Difference of TGF-β/Smads signalling pathway in epithelial-mesenchymal transition of normal colonic epithelial cells induced by tumour-associated fibroblasts and colon cancer cells. Mol. Biol. Rep. 2019, 46, 2749–2759. [Google Scholar] [CrossRef]
  108. Wang, L.; Cao, L.; Wang, H.; Liu, B.; Zhang, Q.; Meng, Z.; Wu, X.; Zhou, Q.; Xu, K. Cancer-associated fibroblasts enhance metastatic potential of lung cancer cells through IL-6/STAT3 signalling pathway. Oncotarget 2017, 8, 76116. [Google Scholar] [CrossRef]
  109. Qu, Z.; Wu, J.; Ji, A.; Qiang, G.; Jiang, Y.; Jiang, C.; Ding, Y. Exosomal miR-665 as a novel minimally invasive biomarker for hepatocellular carcinoma diagnosis and prognosis. Oncotarget 2017, 8, 80666–80678. [Google Scholar] [CrossRef]
  110. Goulet, C.R.; Champagne, A.; Bernard, G.; Vandal, D.; Chabaud, S.; Pouliot, F.; Bolduc, S. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling. BMC Cancer 2019, 19, 137. [Google Scholar] [CrossRef]
  111. Abulaiti, A.; Shintani, Y.; Funaki, S.; Nakagiri, T.; Inoue, M.; Sawabata, N.; Minami, M.; Okumura, M. Interaction between non-small-cell lung cancer cells and fibroblastsvia enhancement of TGF-β signalling by IL-6. Lung Cancer 2013, 82, 204–213. [Google Scholar] [CrossRef] [PubMed]
  112. Wang, X.; Zhang, W.; Sun, X.; Lin, Y.; Chen, W. Cancer-associated fibroblasts induce epithelial-mesenchymal transition through secreted cytokines in endometrial cancer cells. Oncol. Lett. 2018, 15, 5694–5702. [Google Scholar] [CrossRef]
  113. Sun, Y.; Fan, X.; Zhang, Q.; Shi, X.; Xu, G.; Zou, C. Cancer-associated fibroblasts secrete FGF-1 to promote ovarian proliferation, migration, and invasion through the activation of FGF-1/FGFR4 signalling. Tumour Biol. 2017, 39, 1010428317712592. [Google Scholar] [CrossRef]
  114. Takatsu, F.; Suzawa, K.; Tomida, S.; Thu, Y.M.; Sakaguchi, M.; Toji, T.; Ohki, M.; Tsudaka, S.; Date, K.; Matsuda, N.; et al. Periostin secreted by cancer-associated fibroblasts promotes cancer progression and drug resistance in non-small cell lung cancer. J. Mol. Med. 2023, 101, 1603–1614. [Google Scholar] [CrossRef] [PubMed]
  115. Shan, T.; Chen, S.; Chen, X.; Lin, W.R.; Li, W.; Ma, J.; Wu, T.; Ji, H.; Li, Y.; Cui, X.; et al. Prometastatic mechanisms of CAF-mediated EMT regulation in pancreatic cancer cells. Int. J. Oncol. 2017, 50, 121–128. [Google Scholar] [CrossRef] [PubMed]
  116. Lewinska, M.; Zhuravleva, E.; Satriano, L.; Martinez, M.B.; Bhatt, D.K.; Oliveira, D.V.N.P.; Antoku, Y.; Keggenhoff, F.L.; Castven, D.; Marquardt, J.U.; et al. Fibroblast-derived lysyl oxidase increases oxidative phosphorylation and stemness in cholangiocarcinoma. Gastroenterology 2024, 166, 886–901.e7. [Google Scholar] [CrossRef]
  117. Makutani, Y.; Kawakami, H.; Tsujikawa, T.; Yoshimura, K.; Chiba, Y.; Ito, A.; Kawamura, J.; Haratani, K.; Nakagawa, K. Contribution of MMP14-expressing cancer-associated fibroblasts in the tumour immune microenvironment to progression of colorectal cancer. Front. Oncol. 2022, 12, 956270. [Google Scholar] [CrossRef]
  118. Wright, K.; Ly, T.; Kriet, M.; Czirok, A.; Thomas, S.M. Cancer-associated fibroblasts: Master tumour microenvironment modifiers. Cancers 2023, 15, 1899. [Google Scholar] [CrossRef]
  119. Fiori, M.E.; Di Franco, S.; Villanova, L.; Bianca, P.; Stassi, G.; De Maria, R. Cancer-associated fibroblasts as abettors of tumour progression at the crossroads of EMT and therapy resistance. Mol. Cancer 2019, 18, 70. [Google Scholar] [CrossRef]
  120. Jo, H.; Shim, K.; Jeoung, D. Exosomes: Diagnostic and therapeutic implications in cancer. Pharmaceutics 2023, 15, 1465. [Google Scholar] [CrossRef]
  121. Fang, X.; Lan, H.; Jin, K.; Qian, J. Pancreatic cancer and exosomes: Role in progression, diagnosis, monitoring, and treatment. Front. Oncol. 2023, 13, 1149551. [Google Scholar] [CrossRef]
  122. Rizwan, M.N.; Ma, Y.; Nenkov, M.; Jin, L.; Schröder, D.C.; Westermann, M.; Gabler, N.; Chen, Y. Tumour-derived exosomes: Key players in non-small cell lung cancer metastasis and their implication for targeted therapy. Mol. Carcinog. 2022, 61, 269–280. [Google Scholar] [CrossRef] [PubMed]
  123. Yang, C.; Zhang, Y.; Yan, M.; Wang, J.; Wang, M.; Xuan, Y.; Cheng, H.; Ma, J.; Chai, C.; Li, M.; et al. Exosomes derived from cancer-associated fibroblasts promote tumourigenesis, metastasis and chemoresistance of colorectal cancer by upregulating circ_0067557 to target Lin28. BMC Cancer 2024, 24, 64. [Google Scholar]
  124. Li, Y.-Y.; Tao, Y.-W.; Gao, S.; Li, P.; Zheng, J.-M.; Zhang, S.-E.; Liang, J.; Zhang, Y. Cancer associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p. EBioMedicine 2018, 36, 209–220. [Google Scholar] [CrossRef]
  125. You, J.; Li, M.; Cao, L.; Gu, Q.; Deng, P.; Tan, Y.; Hu, C.P. Snail1-dependent cancer-associated fibroblasts induce epithelial-mesenchymal transition in lung cancer cells via exosomes. QJM Int. J. Med. 2019, 112, 581–590. [Google Scholar] [CrossRef]
  126. Ariston Gabriel, A.N.; Wang, F.; Jiao, Q.; Yvette, U.; Yang, X.; Al-Ameri, S.A.; Du, L.; Wang, Y.S.; Wang, C. The involvement of exosomes in the diagnosis and treatment of pancreatic cancer. Mol. Cancer 2020, 19, 132. [Google Scholar] [CrossRef]
  127. Mastronikolis, N.S.; Kyrodimos, E.; Spyropoulou, D.; Delides, A.; Giotakis, E.; Piperigkou, Z.; Karamanos, N.K. The role of exosomes in epithelial-to-mesenchymal transition and cell functional properties in head and neck cancer. Cancers 2023, 15, 2156. [Google Scholar] [CrossRef] [PubMed]
  128. Donnarumma, E.; Fiore, D.; Nappa, M.; Roscigno, G.; Adamo, A.; Iaboni, M.; Russo, V.; Affinito, A.; Puoti, I.; Quintavalle, C.; et al. Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget 2017, 8, 19592. [Google Scholar] [CrossRef]
  129. Hu, J.; Wang, W.; Lan, X.; Zeng, Z.; Liang, Y.; Yan, Y.R.; Song, F.Y.; Wang, F.F.; Zhu, X.H.; Liao, W.J.; et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol. Cancer 2019, 18, 91. [Google Scholar] [CrossRef]
  130. Zhou, L.; Li, J.; Tang, Y.; Yang, M. Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes colorectal cancer cell progression via miR-342-3p/ANXA2 axis. J. Transl. Med. 2021, 19, 8. [Google Scholar] [CrossRef]
  131. Paunescu, V.; Bojin, F.M.; Tatu, C.A.; Gavriliuc, O.I.; Rosca, A.; Gruia, A.T.; Tanasie, G.; Bunu, C.; Crisnic, D.; Gherghiceanu, M.; et al. Tumour-associated fibroblasts and mesenchymal stem cells: More similarities than differ-ences. J. Cell Mol. Med. 2011, 15, 635–646. [Google Scholar] [CrossRef] [PubMed]
  132. Kabashima-Niibe, A.; Higuchi, H.; Takaishi, H.; Masugi, Y.; Matsuzaki, Y.; Mabuchi, Y.; Funakoshi, S.; Adachi, M.; Hamamoto, Y.; Kawachi, S.; et al. Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumour progression of pancreatic cancer cells. Cancer Sci. 2013, 104, 157–164. [Google Scholar] [CrossRef] [PubMed]
  133. Martin, F.T.; Dwyer, R.M.; Kelly, J.; Khan, S.; Murphy, J.M.; Curran, C.; Miller, N.; Hennessy, E.; Dockery, P.; Barry, F.P.; et al. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: Stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res. Treat. 2010, 124, 317–326. [Google Scholar] [CrossRef]
  134. Schinköthe, T.; Bloch, W.; Schmidt, A. In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev. 2008, 17, 199–205. [Google Scholar] [CrossRef]
  135. Park, C.W.; Kim, K.S.; Bae, S.; Son, H.K.; Myung, P.K.; Hong, H.J.; Kim, H. Cytokine secretion profiling of human mesenchymal stem cells by antibody array. Int. J. Stem Cells 2009, 2, 59–68. [Google Scholar] [CrossRef]
  136. Ries, C.; Egea, V.; Karow, M.; Kolb, H.; Jochum, M.; Neth, P. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: Differential regulation by inflammatory cytokines. Blood 2007, 109, 4055–4063. [Google Scholar] [CrossRef] [PubMed]
  137. Lozito, T.P.; Jackson, W.M.; Nesti, L.J.; Tuan, R.S. Human mesenchymal stem cells generate a distinct pericellular zone of MMP activities via binding of MMPs and secretion of high levels of TIMPs. Matrix Biol. 2014, 34, 132–143. [Google Scholar] [CrossRef]
  138. Dittmer, A.; Hohlfeld, K.; Lützkendorf, J.; Müller, L.P.; Dittmer, J. Human mesenchymal stem cells induce E-cadherin degradation in breast carcinoma spheroids by activating AD-AM10. Cell Mol. Life Sci. 2009, 66, 3053–3065. [Google Scholar] [CrossRef]
  139. Makinoshima, H.; Dezawa, M. Pancreatic cancer cells activate CCL5 expression in mesenchymal stromal cells through the insulin-like growth factor-I pathway. FEBS Lett. 2009, 583, 3697–3703. [Google Scholar] [CrossRef]
  140. Fregni, G.; Quinodoz, M.; Möller, E.; Vuille, J.; Galland, S.; Fusco, C.; Martin, P.; Letovanec, I.; Provero, P.; Rivolta, C.; et al. Reciprocal modulation of mesenchymal stem cells and tumour cells promotes lung cancer metastasis. EBioMedicine 2018, 29, 128–145. [Google Scholar] [CrossRef]
  141. Isert, L.; Mehta, A.; Loiudice, G.; Oliva, A.; Roidl, A.; Merkel, O.M. An In Vitro Approach to Model EMT in Breast Cancer. Int. J. Mol. Sci. 2023, 24, 7757. [Google Scholar] [CrossRef] [PubMed]
  142. Popova, N.V.; Jücker, M. The functional role of extracellular matrix proteins in cancer. Cancers 2022, 14, 238. [Google Scholar] [CrossRef] [PubMed]
  143. Shintani, Y.; Maeda, M.; Chaika, N.; Johnson, K.R.; Wheelock, M.J. Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor-beta signalling. Am. J. Respi. Cel. Mol. Biol. 2008, 38, 95–104. [Google Scholar] [CrossRef]
  144. Koenig, A.; Mueller, C.; Hasel, C.; Adler, G.; Menke, A. Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res. 2006, 66, 4662–4671. [Google Scholar] [CrossRef]
  145. Menke, A.; Philippi, C.; Vogelmann, R.; Seidel, B.; Lutz, M.P.; Adler, G.; Wedlich, D. Down-regulation of E-cadherin gene expression by collagen type I and type III in pancreatic cancer cell lines. Cancer Res. 2001, 61, 3508–3517. [Google Scholar]
  146. Zhou, F.; Sun, J.; Ye, L.; Jiang, T.; Li, W.; Su, C.; Ren, S.; Wu, F.; Zhou, C.; Gao, G. Fibronectin promotes tumour angiogenesis and progression of non-small-cell lung cancer by elevating WISP3 expression via FAK/MAPK/ HIF-1α axis and activating wnt signalling pathway. Exp. Hema-tol. Oncol. 2023, 12, 61. [Google Scholar] [CrossRef]
  147. Li, C.L.; Yang, D.; Cao, X.; Wang, F.; Hong, D.Y.; Wang, J.; Shen, X.C.; Chen, Y. Fibronectin induces epithelial-mesenchymal transition in human breast cancer MCF-7 cells via activation of calpain. Oncol. Lett. 2017, 13, 3889–3895. [Google Scholar] [CrossRef]
  148. Nguyen, N.; Kumar, A.; Chacko, S.; Ouellette, R.J.; Ghosh, A. Human hyaluronic acid synthase-1 promotes malignant transformation via epithelial-to-mesenchymal transition, micronucleation and centrosome abnormalities. Cell Commun. Signal. 2017, 15, 48. [Google Scholar] [CrossRef] [PubMed]
  149. Chow, G.; Tauler, J.; Mulshine, J.L. Cytokines and growth factors stimulate hyaluronan production: Role of hyaluronan in epithelial to mesenchymal-like transition in non-small cell lung cancer. J. Biomed. Biotechnol. 2010, 1, 485468. [Google Scholar] [CrossRef]
  150. El-Haibi, C.P.; Bell, G.W.; Zhang, J.; Collmann, A.Y.; Wood, D.; Scherber, C.M.; Csizmadia, E.; Mariani, O.; Zhu, C.; Campagne, A.; et al. Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc. Natl. Acad. Sci. USA 2012, 109, 17460–17465. [Google Scholar] [CrossRef]
  151. DeNardo, D.G.; Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 2019, 19, 369–382. [Google Scholar] [CrossRef] [PubMed]
  152. Zhu, Y.; Herndon, J.M.; Sojka, D.K.; Kim, K.-W.; Knolhoff, B.L.; Zuo, C.; Cullinan, D.R.; Luo, J.; Bearden, A.R.; Lavine, K.J.; et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumour progression. Immunity 2017, 47, 597. [Google Scholar] [CrossRef]
  153. Qian, B.Z.; Li, J.; Zhang, H.; Kitamura, T.; Zhang, J.; Campion, L.R.; Kaiser, E.A.; Snyder, L.A.; Pollard, J.W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011, 475, 222–225. [Google Scholar] [CrossRef] [PubMed]
  154. Walens, A.; DiMarco, A.V.; Lupo, R.; Kroger, B.R.; Damrauer, J.S.; Alvarez, J.V. CCL5 pro-motes breast cancer recurrence through macrophage recruitment in residual tumours. eLife 2019, 8, e43653. [Google Scholar] [CrossRef] [PubMed]
  155. Chen, X.J.; Deng, Y.R.; Wang, Z.C.; Wei, W.F.; Zhou, C.F.; Zhang, Y.M.; Yan, R.M.; Liang, L.J.; Zhong, M.; Liang, L.; et al. Hypoxia-induced ZEB1 promotes cervical cancer progression via CCL8-dependent tumour-associated macrophage recruitment. Cell Death Dis. 2019, 10, 508. [Google Scholar] [CrossRef]
  156. Friedman-DeLuca, M.; Karagiannis, G.S.; Condeelis, J.S.; Oktay, M.H.; Entenberg, D. Macrophages in tumour cell migration and metastasis. Front. Immunol. 2024, 15, 1494462. [Google Scholar] [CrossRef]
  157. Hao, Y.; Baker, D.; Ten Dijke, P. TGF-b-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci. 2019, 20, 2767. [Google Scholar] [CrossRef]
  158. Ling, Z.; Yang, X.; Chen, X.; Xia, J.; Cheng, B.; Tao, X. CCL2 promotes cell migration by inducing epithelial-mesenchymal transition in oral squamous cell carcinoma. J. Oral Pathol. Med. 2019, 48, 477–482. [Google Scholar] [CrossRef]
  159. Rokavec, M.; Öner, M.G.; Li, H.; Jackstadt, R.; Jiang, L.; Lodygin, D.; Kaller, M.; Horst, D.; Ziegler, P.K.; Schwitalla, S.; et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J. Clin. Investig. 2014, 124, 1853–1867. [Google Scholar] [CrossRef]
  160. Weng, Y.-S.; Tseng, H.-Y.; Chen, Y.-A.; Shen, P.-C.; Al Haq, A.T.; Chen, L.-M.; Tung, Y.C.; Hsu, H.L. MCT- 1/miR-34a/IL-6/IL-6R signalling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol. Cancer 2019, 18, 42. [Google Scholar] [CrossRef]
  161. Kim, N.H.; Kim, H.S.; Li, X.-Y.; Lee, I.; Choi, H.-S.; Kang, S.E.; Cha, S.Y.; Ryu, J.K.; Yoon, D.; Fearon, E.; et al. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J. Cell Biol. 2011, 195, 417–433. [Google Scholar] [CrossRef] [PubMed]
  162. Wei, C.; Yang, C.; Wang, S.; Shi, D.; Zhang, C.; Lin, X.; Liu, Q.; Dou, R.; Xiong, B. Crosstalk between cancer cells and tumour associated macrophages is required for mesenchymal circulating tumour cell-mediated colorectal cancer metastasis. Mol. Cancer 2019, 18, 64. [Google Scholar] [CrossRef]
  163. Fu, X.-L.; Duan, W.; Su, C.-Y.; Mao, F.-Y.; Lv, Y.-P.; Teng, Y.-S.; Yu, P.W.; Zhuang, Y.; Zhao, Y.L. Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression. Cancer Immunol. Immunother. 2017, 66, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
  164. Su, S.; Liu, Q.; Chen, J.; Chen, J.; Chen, F.; He, C.; Huang, D.; Wu, W.; Lin, L.; Huang, W.; et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 2014, 25, 605–620. [Google Scholar] [CrossRef]
  165. Huang, B.; Lang, X.; Li, X. The role of IL-6/JAK2/STAT3 signalling pathway in cancers. Front. Oncol. 2022, 12, 1023177. [Google Scholar] [CrossRef]
  166. Yang, C.; Dou, R.; Wei, C.; Liu, K.; Shi, D.; Zhang, C.; Liu, Q.; Wang, S.; Xiong, B. Tumour-derived exosomal microRNA-106b-5p activates EMT-cancer cell and M2-subtype TAM interaction to facilitate CRC metastasis. Mol. Ther. 2021, 29, 2088–2107. [Google Scholar] [CrossRef]
  167. Hsieh, C.-H.; Tai, S.-K.; Yang, M.-H. Snail-overexpressing cancer cells promote M2-like polarization of tumour-associated macrophages by delivering miR-21-abundant exosomes. Neoplasia 2018, 20, 775–788. [Google Scholar] [CrossRef]
  168. Pires, B.R.; Mencalha, A.L.; Ferreira, G.M.; de Souza, W.F.; Morgado-Díaz, J.A.; Maia, A.M.; Corrêa, S.; Abdelhay, E.S. NF-kappaB Is Involved in the Regulation of EMT Genes in Breast Cancer Cells. PLoS ONE 2017, 12, e0169622. [Google Scholar] [CrossRef] [PubMed]
  169. Lin, Z.; Li, W.; Zhang, H.; Wu, W.; Peng, Y.; Zeng, Y.; Wan, Y.; Wang, J.; Ouyang, N. CCL18/PITPNM3 enhances migration, invasion, and EMT through the NF-kB signalling pathway in hepatocellular carcinoma. Tumour Biol. 2016, 37, 3461–3468. [Google Scholar] [CrossRef]
  170. Shi, L.; Zhang, B.; Sun, X.; Zhang, X.; Lv, S.; Li, H.; Wang, X.; Zhao, C.; Zhang, H.; Xie, X.; et al. CC chemokine ligand 18(CCL18) promotes migration and invasion of lung cancer cells by binding to Nir1 through Nir1-ELMO1/DOC180 signalling pathway. Mol. Carcinog. 2016, 55, 2051–2062. [Google Scholar] [CrossRef]
  171. Li, W.; Zhang, X.; Wu, F.; Zhou, Y.; Bao, Z.; Li, H.; Zheng, P.; Zhao, S. Gastric cancer-derived mesen-chymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 2019, 10, 918. [Google Scholar] [CrossRef] [PubMed]
  172. Che, D.; Zhang, S.; Jing, Z.; Shang, L.; Jin, S.; Liu, F.; Shen, J.; Li, Y.; Hu, J.; Meng, Q.; et al. Macrophages induce EMT to promote invasion of lung cancer cells through the IL-6-mediated COX-2/PGE. Mol. Immunol. 2017, 90, 197–210. [Google Scholar] [CrossRef]
  173. Gao, L.; Zhang, W.; Zhong, W.Q.; Liu, Z.J.; Li, H.M.; Yu, Z.L.; Li, H.M.; Yu, Z.L.; Zhao, Y.F. Tumour associated macrophages induce epithelial to mesenchymal transition via the EGFR/ERK1/2 pathway in head and neck squamous cell carcinoma. Oncol. Rep. 2018, 40, 2558–2572. [Google Scholar]
  174. Kuziel, G.; Moore, B.N.; Arendt, L.M. Obesity and fibrosis: Setting the stage for breast cancer. Cancers 2023, 15, 2929. [Google Scholar] [CrossRef] [PubMed]
  175. LaRue, M.M.; Parker, S.; Puccini, J.; Cammer, M.; Kimmelman, A.C.; Bar-Sagi, D. Metabolic reprogramming of tumour-associated macrophages by collagen turnover promotes fibrosis in pancreatic cancer. Proc. Natl. Acad. Sci. USA 2022, 119, e2119168119. [Google Scholar] [CrossRef] [PubMed]
  176. Jia, Z.-H.; Jia, Y.; Guo, F.-J.; Chen, J.; Zhang, X.-W.; Cui, M.-H. Phosphorylation of STAT3 at Tyr705 regulates MMP-9 production in epithelial ovarian cancer. PLoS ONE. 2017, 12, e0183622. [Google Scholar] [CrossRef]
  177. Liu, X.; Lv, Z.; Zou, J.; Liu, X.; Ma, J.; Sun, C.; Sa, N.; Xu, W. Elevated AEG-1 expression in macro-phages promotes hypopharyngeal cancer invasion through the STAT3-MMP-9 signalling pathway. Oncotarget 2016, 7, 77244–77256. [Google Scholar] [CrossRef]
  178. Zhang, F.; Wang, Z.; Fan, Y.; Xu, Q.; Ji, W.; Tian, R.; Niu, R. Elevated STAT3 signalling-mediated upregulation of MMP-2/9 confers enhanced invasion ability in multidrug-resistant breast cancer cells. Int. J. Mol. Sci. 2015, 16, 24772–24790. [Google Scholar] [CrossRef]
  179. Zhu, X.; Liang, R.; Lan, T.; Ding, D.; Huang, S.; Shao, J.; Zheng, Z.; Chen, T.; Huang, Y.; Liu, J.; et al. Tumour-associated macro-phage-specific CD155 contributes to M2-phenotype transition, immunosuppression, and tumour progression in colorectal cancer. J. Immunother Cancer 2022, 10, e004219. [Google Scholar] [CrossRef]
  180. Yamanaka, N.; Morisaki, T.; Nakashima, H.; Tasaki, A.; Kubo, M.; Kuga, H.; Nakahara, C.; Nakamura, K.; Noshiro, H.; Yao, T.; et al. Interleukin 1beta enhances invasive ability of gastric carcinoma through nuclear factor kappa B activation. Clin. Cancer Res. 2004, 10, 1853–1859. [Google Scholar] [CrossRef]
  181. Kang, S.U.; Cho, S.Y.; Jeong, H.; Han, J.; Chae, H.Y.; Yang, H.; Sung, C.O.; Choi, Y.L.; Shin, Y.K.; Kwon, M.J. Matrix metalloproteinase 11 (MMP11) in macrophages promotes the migration of HER2- positive breast cancer cells and monocyte recruitment through CCL2-CCR2 signalling. Lab. Invest. 2022, 102, 376–390. [Google Scholar] [CrossRef] [PubMed]
  182. Tian, K.; Du, G.; Wang, X.; Wu, X.; Li, L.; Liu, W.; Wu, R. MMP-9 secreted by M2-type macrophages promotes Wilms’ tumour metastasis through the PI3K/AKT pathway. Mol. Biol. Rep. 2022, 49, 3469–3480. [Google Scholar] [CrossRef] [PubMed]
  183. Liu, L.; Ye, Y.; Zhu, X. MMP-9 secreted by tumour associated macrophages promoted gastric cancer metastasis through a PI3K/AKT/Snail pathway. BioMed. Pharmacother. 2019, 117, 109096. [Google Scholar] [CrossRef] [PubMed]
  184. Arwert, E.N.; Harney, A.S.; Entenberg, D.; Wang, Y.; Sahai, E.; Pollard, J.W.; Condeelis, J.S. A unidirectional transition from migratory to perivascular macrophage is required for tumour cell intravasation. Cell Rep. 2018, 23, 1239–1248. [Google Scholar] [CrossRef]
  185. Harney, A.S.; Arwert, E.N.; Entenberg, D.; Wang, Y.; Guo, P.; Qian, B.-Z.; Oktay, M.H.; Pollard, J.W.; Jones, J.G.; Condeelis, J.S. Realtime imaging reveals local, transient vascular permeability, and tumour cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 2015, 5, 932–943. [Google Scholar] [CrossRef]
  186. Roh-Johnson, M.; Bravo-Cordero, J.J.; Patsialou, A.; Sharma, V.P.; Guo, P.; Liu, H.; Hodgson, L.; Condeelis, J. Macrophage contact induces RhoA GTPase signalling to trigger tumour cell intravasation. Oncogene 2014, 33, 4203–4212. [Google Scholar] [CrossRef]
  187. Pignatelli, J.; Bravo-Cordero, J.J.; Roh-Johnson, M.; Gandhi, S.J.; Wang, Y.; Chen, X.; Eddy, R.J.; Xue, A.; Singer, R.H.; Hodgson, L.; et al. Macrophage-dependent tumour cell transendothelial migration is mediated by Notch1/Mena(INV)-initiated invadopodium formation. Sci. Rep. 2016, 6, 37874. [Google Scholar] [CrossRef]
  188. Yamaguchi, H.; Lorenz, M.; Kempiak, S.; Sarmiento, C.; Coniglio, S.; Symons, M.; Segall, J.; Eddy, R.; Miki, H.; Takenawa, T.; et al. Molecular mechanisms of invadopodium formation: The role of the N-WASP-Arp2/3 com-plex pathway and cofilin. J. Cell Biol. 2005, 168, 441–452. [Google Scholar] [CrossRef]
  189. Jeannot, P.; Besson, A. Cortactin function in invadopodia. Small GTPases 2020, 11, 256–270. [Google Scholar] [CrossRef]
  190. Weidmann, M.D.; Surve, C.; Eddy, R.; Chen, X.; Gertler, F.; Sharma, V.; Condeelis, J.S. Mena (INV) dysregulates cortactin phosphorylation to promote invadopodium maturation. Sci. Rep. 2016, 6, 36142. [Google Scholar] [CrossRef]
  191. Goswami, S.; Sahai, E.; Wyckoff, J.B.; Cammer, M.; Cox, D.; Pixley, F.J.; Stanley, E.R.; Segall, J.E.; Condeelis, J.S. Macrophages promote the invasion of breast carcinoma cells via a colony stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 2005, 65, 5278–5283. [Google Scholar] [CrossRef] [PubMed]
  192. Roussos, E.T.; Balsamo, M.; Alford, S.K.; Wyckoff, J.B.; Gligorijevic, B.; Wang, Y.; Pozzuto, M.; Stobezki, R.; Goswami, S.; Segall, J.E.; et al. Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer. J. Cell Sci. 2011, 124, 2120–2131. [Google Scholar] [CrossRef] [PubMed]
  193. Yang, L.; Wu, Q.; Xu, L.; Zhang, W.; Zhu, Y.; Liu, H.; Xu, J.; Gu, J. Increased expression of colony stimulating factor-1 is a predictor of poor prognosis in patients with clear-cell renal cell carcinoma. BMC Cancer 2015, 15, 67. [Google Scholar] [CrossRef]
  194. Mroczko, B.; Groblewska, M.; Wereszczyńska-Siemiatkowska, U.; Okulczyk, B.; Kedra, B.; Łaszewicz, W.; Dabrowski, A.; Szmitkowski, M. Serum macrophage-colony stimulating factor levels incolorectal cancer patients correlate with lymph node metastasis and poor prognosis. Clin. Chim. Acta. 2007, 380, 208–212. [Google Scholar] [CrossRef]
  195. Lo, H.-W.; Xia, W.; Wei, Y.; Ali-Seyed, M.; Huang, S.-F.; Hung, M.-C. Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res. 2005, 65, 338–348. [Google Scholar] [CrossRef]
  196. Leung, E.; Xue, A.; Wang, Y.; Rougerie, P.; Sharma, V.P.; Eddy, R.; Cox, D.; Condeelis, J. Blood vessel endothelium-directed tumour cell streaming in breast tumours requires the HGF/C-Met signalling pathway. Oncogene 2017, 36, 2680–2692. [Google Scholar] [CrossRef]
  197. Katopodi, T.; Petanidis, S.; Anestakis, D.; Charalampidis, C.; Chatziprodromidou, I.; Floros, G.; Eskitzis, P.; Zarogoulidis, P.; Koulouris, C.; Sevva, C.; et al. Tumour cell metabolic reprogramming and hypoxic immunosuppression: Driving carcinogenesis to metastatic colonization. Front. Immunol. 2023, 14, 1325360. [Google Scholar]
  198. Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 2004, 4, 891–899. [Google Scholar] [CrossRef]
  199. Estrella, V.; Chen, T.; Lloyd, M.; Wojtkowiak, J.; Cornnell, H.H.; Ibrahim-Hashim, A.; Baiey, K.; Balagurunathan, Y.; Rothberg, J.M.; Sloane, B.F.; et al. Acidity generated by the tumour microenvironment drives local invasion. Cancer Res. 2013, 73, 1524–1535. [Google Scholar] [CrossRef]
  200. Xiang, L.; Mou, J.; Shao, B.; Wei, Y.; Liang, H.; Takano, N.; Semenza, G.L.; Xie, G. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumour growth, invasion, and metastatic colonization. Cell Death Dis. 2019, 10, 40. [Google Scholar] [CrossRef]
  201. Du, F.; Chen, J.; Liu, H.; Cai, Y.; Cao, T.; Han, W.; Qian, M.; Tian, D.; Nie, Y.; Wu, K.; et al. SOX12 promotes colorectal cancer cell proliferation and metastasis by regulating asparagine synthesis. Cell Death Dis. 2019, 10, 239. [Google Scholar] [CrossRef] [PubMed]
  202. Wu, Y.; Pu, X.; Wang, X.; Xu, M. Reprogramming of lipid metabolism in the tumour microenvironment: A strategy for tumour immunotherapy. Lipids Health Dis. 2024, 23, 35. [Google Scholar] [CrossRef]
  203. Jin, H.-R.; Wang, J.; Wang, Z.-J.; Xi, M.-J.; Xia, B.-H.; Deng, K.; Yang, J.-L. Lipid metabolic reprogramming in tumour microenvironment: From mechanisms to therapeutics. J. Hematol. Oncol. 2023, 16, 103. [Google Scholar] [CrossRef]
  204. Torino, F.; Fuggetta, M.P.; Aquino, A.; Roselli, M.; Bonmassar, E.; Giuliani, A.; D’Atri, S. Tumour Immunotherapy: Drug-Induced Neoantigens (Xenogenization) and Immune Checkpoint Inhibitors. Oncotarget 2017, 8, 41641–41669. [Google Scholar]
  205. Geraud, A.; Gougis, P.; Vozy, A.; Anquetil, C.; Allenbach, Y.; Romano, E.; Funck-Brentano, E.; Moslehi, J.J.; Johnson, D.B.; Salem, J.E. Clinical Pharmacology and Interplay of Immune Checkpoint Agents: A Yin-Yang Balance. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 85–112. [Google Scholar] [CrossRef] [PubMed]
  206. Franzese, O. Tumour Microenvironment Drives the Cross-Talk Between Co-Stimulatory and Inhibitory Molecules in Tumour-Infiltrating Lymphocytes: Implications for Optimizing Immunotherapy Outcomes. Int. J. Mol. Sci. 2024, 25, 12848. [Google Scholar] [CrossRef]
  207. Wang, J.; Chen, Q.; Shan, Q.; Liang, T.; Forde, P.; Zheng, L. Clinical Development of Immuno-Oncology Therapeutics. Cancer Lett. 2025, 617, 217616. [Google Scholar] [CrossRef]
  208. Khosravi, G.R.; Mostafavi, S.; Bastan, S.; Ebrahimi, N.; Gharibvand, R.S.; Eskandari, N. Immunologic Tumour Microenvironment Modulators for Turning Cold Tumours Hot. Cancer Commun. 2024, 44, 521–553. [Google Scholar] [CrossRef]
  209. Zheng, S.; Wang, W.; Shen, L.; Yao, Y.; Xia, W.; Ni, C. Tumour Battlefield within In-flamed, Excluded or Desert Immune Phenotypes: The Mechanisms and Strategies. Exp. Hematol. Oncol. 2024, 13, 80. [Google Scholar] [CrossRef]
  210. Yang, W.; Liu, S.; Mao, M.; Gong, Y.; Li, X.; Lei, T.; Liu, C.; Wu, S.; Hu, Q. T-Cell Infiltration and Its Regulatory Mechanisms in Cancers: Insights at Single-Cell Resolution. J. Exp. Clin. Cancer Res. 2024, 43, 38. [Google Scholar] [CrossRef]
  211. Ouyang, P.; Wang, L.; Wu, J.; Tian, Y.; Chen, C.; Li, D.; Yao, Z.; Chen, R.; Xiang, G.; Gong, J.; et al. Overcoming Cold Tumours: A Combination Strategy of Immune Checkpoint Inhibitors. Front. Immunol. 2024, 15, 1344272. [Google Scholar] [CrossRef]
  212. Ma, K.; Wang, L.; Li, W.; Tang, T.; Ma, B.; Zhang, L.; Zhang, L. Turning Cold into Hot: Emerging Strategies to Fire Up the Tumour Microenvironment. Trends Cancer 2025, 11, 117–134. [Google Scholar] [CrossRef]
  213. Melssen, M.M.; Sheybani, N.D.; Leick, K.M.; Slingluff, C.L., Jr. Barriers to Immune Cell Infiltration in Tumours. J. Immunother. Cancer 2023, 11, e006401. [Google Scholar] [CrossRef] [PubMed]
  214. Wang, M.M.; Coupland, S.E.; Aittokallio, T.; Figueiredo, C.R. Resistance to Immune Checkpoint Therapies by Tumour-Induced T-Cell Desertification and Exclusion: Key Mechanisms, Prognostication and New Therapeutic Opportunities. Br. J. Cancer 2023, 129, 1212–1224. [Google Scholar] [CrossRef] [PubMed]
  215. Kohli, K.; Pillarisetty, V.G.; Kim, T.S. Key Chemokines Direct Migration of Immune Cells in Solid Tumours. Cancer Gene Ther. 2022, 29, 10–21. [Google Scholar] [CrossRef] [PubMed]
  216. Patterson, S.J.; Pesenacker, A.M.; Wang, A.Y.; Gillies, J.; Mojibian, M.; Morishita, K.; Tan, R.; Kieffer, T.J.; Verchere, C.B.; Panagiotopoulos, C.; et al. T Regulatory Cell Chemokine Production Mediates Pathogenic T Cell Attraction and Suppression. J. Clin. Investig. 2016, 126, 1039–1051. [Google Scholar] [CrossRef]
  217. Salemme, V.; Centonze, G.; Cavallo, F.; Defilippi, P.; Conti, L. The Crosstalk Between Tumour Cells and the Immune Microenvironment in Breast Cancer: Implications for Immunotherapy. Front. Oncol. 2021, 11, 610303. [Google Scholar] [CrossRef]
  218. Fejza, A.; Carobolante, G.; Poletto, E.; Camicia, L.; Schinello, G.; Di Siena, E.; Ricci, G.; Mongiat, M.; Andreuzzi, E. The Entanglement of Extracellular Matrix Molecules and Immune Checkpoint Inhibitors in Cancer: A Systematic Review of the Literature. Front. Immunol. 2023, 14, 1270981. [Google Scholar] [CrossRef]
  219. Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; et al. PD-1 Blockade Induces Responses by Inhibiting Adaptive Immune Resistance. Nature 2014, 515, 568–571. [Google Scholar] [CrossRef]
  220. Eroglu, Z.; Zaretsky, J.M.; Hu-Lieskovan, S.; Kim, D.W.; Algazi, A.; Johnson, D.B.; Liniker, E.; Kong, B.; Munhoz, R.; Rapisuwon, S.; et al. High Response Rate to PD-1 Blockade in Desmoplastic Melanomas. Nature 2018, 553, 347–350. [Google Scholar] [CrossRef]
  221. Hughes, C.E.; Nibbs, R.J.B. A Guide to Chemokines and Their Receptors. FEBS J. 2018, 285, 2944–2971. [Google Scholar] [CrossRef] [PubMed]
  222. Reynders, N.; Abboud, D.; Baragli, A.; Noman, M.Z.; Rogister, B.; Niclou, S.P.; Heveker, N.; Janji, B.; Hanson, J.; Szpakowska, M.; et al. The Distinct Roles of CXCR3 Variants and Their Ligands in the Tumour Microenvironment. Cells 2019, 8, 613. [Google Scholar] [CrossRef]
  223. Fitzgerald, A.A.; Wang, S.; Agarwal, V.; Marcisak, E.F.; Zuo, A.; Jablonski, S.A.; Loth, M.; Fertig, E.J.; MacDougall, J.; Zhukovsky, E.; et al. DPP Inhibition Alters the CXCR3 Axis and Enhances NK and CD8+ T Cell Infiltration to Improve Anti-PD1 Efficacy in Murine Models of Pancreatic Ductal Adenocarcinoma. J. Immunother. Cancer 2021, 9, e002837. [Google Scholar] [CrossRef]
  224. Stoll, G.; Pol, J.; Soumelis, V.; Zitvogel, L.; Kroemer, G. Impact of Chemotactic Factors and Receptors on the Cancer Immune Infiltrate: A Bioinformatics Study Revealing Homogeneity and Heterogeneity Among Patient Cohorts. Oncoimmunology 2018, 7, e1484980. [Google Scholar] [CrossRef] [PubMed]
  225. Wang, X.; Zhang, Y.; Wang, S.; Ni, H.; Zhao, P.; Chen, G.; Xu, B.; Yuan, L. The Role of CXCR3 and Its Ligands in Cancer. Front. Oncol. 2022, 12, 1022688. [Google Scholar] [CrossRef] [PubMed]
  226. Groom, J.R.; Luster, A.D. CXCR3 ligands: Redundant, collaborative and antagonistic functions. Immunol. Cell Biol. 2011, 89, 207–215. [Google Scholar] [CrossRef]
  227. Bikfalvi, A.; Billottet, C. The CC and CXC chemokines: Major regulators of tumour progression and the tumour microenvironment. American journal of physiology. Cell physiol. 2020, 318, C542–C554. [Google Scholar] [CrossRef] [PubMed]
  228. Chow, M.T.; Ozga, A.J.; Servis, R.L.; Frederick, D.T.; Lo, J.A.; Fisher, D.E.; Freeman, G.J.; Boland, G.M.; Luster, A.D. Intratumoural Activity of the CXCR3 Chemokine System Is Re-quired for the Efficacy of Anti-PD-1 Therapy. Immunity 2019, 50, 1498–1512.e5. [Google Scholar] [CrossRef]
  229. Melaiu, O.; Lucarini, V.; Cifaldi, L.; Fruci, D. Influence of the Tumour Microenvironment on NK Cell Function in Solid Tumours. Front. Immunol. 2020, 10, 3038. [Google Scholar] [CrossRef]
  230. Bonanni, V.; Antonangeli, F.; Santoni, A.; Bernardini, G. Targeting of CXCR3 Improves Anti-Myeloma Efficacy of Adoptively Transferred Activated Natural Killer Cells. J. Immunother. Cancer 2019, 7, 290. [Google Scholar] [CrossRef]
  231. Sektioglu, I.M.; Carretero, R.; Bulbuc, N.; Bald, T.; Tüting, T.; Rudensky, A.Y.; Hämmerling, G.J. Basophils Promote Tumour Rejection via Chemotaxis and Infiltration of CD8+ T Cells. Cancer Res. 2017, 77, 291–302. [Google Scholar] [CrossRef]
  232. Reschke, R.; Enk, A.H.; Hassel, J.C. Chemokines and Cytokines in Immunotherapy of Melanoma and Other Tumours: From Biomarkers to Therapeutic Targets. Int. J. Mol. Sci. 2024, 25, 6532. [Google Scholar] [CrossRef] [PubMed]
  233. Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 2015, 523, 231–235. [Google Scholar] [CrossRef] [PubMed]
  234. Xue, J.; Yu, X.; Xue, L.; Ge, X.; Zhao, W.; Peng, W. Intrinsic β-Catenin Signalling Suppresses CD8+ T-Cell Infiltration in Colorectal Cancer. Biomed. Pharmacother. 2019, 115, 108921. [Google Scholar] [CrossRef]
  235. Huang, B.; Han, W.; Sheng, Z.F.; Shen, G.L. Identification of Immune-Related Biomarkers Associated with Tumourigenesis and Prognosis in Cutaneous Melanoma Patients. Cancer Cell Int. 2020, 20, 195. [Google Scholar] [CrossRef] [PubMed]
  236. Fairfax, B.P.; Taylor, C.A.; Watson, R.A.; Nassiri, I.; Danielli, S.; Fang, H.; Mahé, E.A.; Cooper, R.; Woodcock, V.; Traill, Z.; et al. Peripheral CD8+ T Cell Characteristics Associated with Durable Responses to Immune Checkpoint Blockade in Patients with Metastatic Melanoma. Nat. Med. 2020, 26, 193–199. [Google Scholar] [CrossRef]
  237. Chen, R.; Ma, L.; Jiang, C.; Zhang, S. Expression and Potential Role of CCL4 in CD8+ T Cells in NSCLC. Clin. Transl. Oncol. 2022, 24, 2420–2431. [Google Scholar] [CrossRef]
  238. Williford, J.M.; Ishihara, J.; Ishihara, A.; Mansurov, A.; Hosseinchi, P.; Marchell, T.M.; Potin, L.; Swartz, M.A.; Hubbell, J.A. Recruitment of CD103+ Dendritic Cells via Tumour-Targeted Chemokine Delivery Enhances Efficacy of Checkpoint Inhibitor Immunotherapy. Sci. Adv. 2019, 5, eaay1357. [Google Scholar] [CrossRef]
  239. Zhang, X.F.; Zhang, X.L.; Wang, Y.J.; Fang, Y.; Li, M.L.; Liu, X.Y.; Luo, H.Y.; Tian, Y. The Regulatory Network of the Chemokine CCL5 in Colorectal Cancer. Ann. Med. 2023, 55, 2205168. [Google Scholar] [CrossRef]
  240. Halama, N.; Zoernig, I.; Berthel, A.; Kahlert, C.; Klupp, F.; Suarez-Carmona, M.; Suetter-lin, T.; Brand, K.; Krauss, J.; Lasitschka, F.; et al. Tumoural Immune Cell Exploitation in Colorectal Cancer Metastases Can Be Targeted Ef-fectively by Anti-CCR5 Therapy in Cancer Patients. Cancer Cell 2016, 29, 587–601. [Google Scholar] [CrossRef]
  241. Aldinucci, D.; Borghese, C.; Casagrande, N. The CCL5/CCR5 Axis in Cancer Progression. Cancers 2020, 12, 1765. [Google Scholar] [CrossRef]
  242. Harlin, H.; Meng, Y.; Peterson, A.C.; Zha, Y.; Tretiakova, M.; Slingluff, C.; McKee, M.; Gajewski, T.F. Chemokine Expression in Melanoma Metastases Associated with CD8+ T-Cell Recruitment. Cancer Res. 2009, 69, 3077–3085. [Google Scholar] [CrossRef]
  243. Shan, J.; Xu, Y.; Lun, Y. Comprehensive Analysis of the Potential Biological Significance of CCL5 in Pan-Cancer Prognosis and Immunotherapy. Sci. Rep. 2024, 14, 22138. [Google Scholar] [CrossRef] [PubMed]
  244. Dangaj, D.; Bruand, M.; Grimm, A.J.; Ronet, C.; Barras, D.; Duttagupta, P.A.; Lanitis, E.; Duraiswamy, J.; Tanyi, J.L.; Benencia, F.; et al. Cooperation between Constitutive and Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumours. Cancer Cell 2019, 35, 885–900. [Google Scholar] [CrossRef] [PubMed]
  245. Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; et al. IFN-γ-Related mRNA Profile Predicts Clinical Response to PD-1 Blockade. J. Clin. Investig. 2017, 127, 2930–2940. [Google Scholar] [CrossRef]
  246. Jiao, X.; Nawab, O.; Patel, T.; Kossenkov, A.V.; Halama, N.; Jaeger, D.; Pestell, R.G. Recent Advances Targeting CCR5 for Cancer and Its Role in Immuno-Oncology. Cancer Res. 2019, 79, 4801–4807. [Google Scholar] [CrossRef] [PubMed]
  247. Röhrle, N.; Knott, M.M.L.; Anz, D. CCL22 Signalling in the Tumour Environment. Adv. Exp. Med. Biol. 2020, 1231, 79–96. [Google Scholar]
  248. Ozga, A.J.; Chow, M.T.; Luster, A.D. Chemokines and the immune response to cancer. Immunity 2021, 54, 859–874. [Google Scholar] [CrossRef]
  249. Klarquist, J.; Tobin, K.; Farhangi Oskuei, P.; Henning, S.W.; Fernandez, M.F.; Dellacecca, E.R.; Navarro, F.C.; Eby, J.M.; Chatterjee, S.; Mehrotra, S.; et al. CCL22 Di-verts T Regulatory Cells and Controls the Growth of Melanoma. Cancer Res. 2016, 76, 6230–6240. [Google Scholar] [CrossRef]
  250. Mizukami, Y.; Kono, K.; Kawaguchi, Y.; Akaike, H.; Kamimura, K.; Sugai, H.; Fujii, H. CCL17 and CCL22 chemokines within tumour microenvironment are related to accumula-tion of Foxp3+ regulatory T cells in gastric cancer. Int. J. Cancer 2008, 122, 2286–2293. [Google Scholar] [CrossRef]
  251. Wiedemann, G.M.; Knott, M.M.; Vetter, V.K.; Rapp, M.; Haubner, S.; Fesseler, J.; Kühnemuth, B.; Layritz, P.; Thaler, R.; Kruger, S.; et al. Cancer Cell-Derived IL-1α Induces CCL22 and the Recruitment of Regulatory T Cells. Cancer Res. 2023, 83, 123–134. [Google Scholar] [CrossRef]
  252. Adler, E.P.; Lemken, C.A.; Katchen, N.S.; Kurt, R.A. A dual role for tumour-derived chemokine RANTES (CCL5). Immunol. Lett. 2003, 90, 187–194. [Google Scholar] [CrossRef]
  253. Paolini, L.; Saldmann, A.; Tartour, E. CD8+ T Cell in Cancer Immunotherapy: Role and Value of Its Therapeutic Targeting. Bull. Acad. Natl. Med. 2021, 205, 354–363. [Google Scholar]
  254. Mami-Chouaib, F.; Blanc, C.; Corgnac, S.; Hans, S.; Malenica, I.; Granier, C.; Tihy, I.; Tartour, E. Resident Memory T Cells, Critical Components in Tumour Immunology. J. Immunother. Cancer 2018, 6, 87. [Google Scholar] [CrossRef] [PubMed]
  255. Mabrouk, N.; Tran, T.; Sam, I.; Pourmir, I.; Gruel, N.; Granier, C.; Pineau, J.; Gey, A.; Kob-old, S.; Fabre, E.; et al. CXCR6 Expressing T Cells: Functions and Role in the Control of Tumours. Front. Immunol. 2022, 13, 1022136. [Google Scholar] [CrossRef]
  256. Di Pilato, M.; Kfuri-Rubens, R.; Pruessmann, J.N.; Ozga, A.J.; Messemaker, M.; Cadilha, B.L.; Sivakumar, R.; Cianciaruso, C.; Warner, R.D.; Marangoni, F.; et al. CXCR6 Positions Cytotoxic T Cells to Receive Critical Survival Signals in the Tumour Microenvironment. Cell 2021, 184, 4512–4530. [Google Scholar] [CrossRef]
  257. Cullen, R.; Germanov, E.; Shimaoka, T.; Johnston, B. Enhanced Tumour Metastasis in Response to Blockade of the Chemokine Receptor CXCR6 Is Overcome by NKT Cell Activation. J. Immunol. 2009, 183, 5807–5815. [Google Scholar] [CrossRef] [PubMed]
  258. Christian, L.S.; Wang, L.; Lim, B.; Deng, D.; Wu, H.; Wang, X.F.; Li, Q.J. Resident Memory T Cells in Tumour-Distant Tissues Fortify against Metastasis Formation. Cell Rep. 2021, 35, 109118. [Google Scholar] [CrossRef]
  259. Christo, S.N.; Park, S.L.; Mueller, S.N.; Mackay, L.K. The Multifaceted Role of Tissue-Resident Memory T Cells. Annu. Rev. Immunol. 2024, 42, 317–345. [Google Scholar] [CrossRef]
  260. Takamura, S.; Kato, S.; Motozono, C.; Shimaoka, T.; Ueha, S.; Matsuo, K.; Miyauchi, K.; Masumoto, T.; Katsushima, A.; Nakayama, T.; et al. Interstitial-Resident Memory CD8+ T Cells Sustain Frontline Epithelial Memory in the Lung. J. Exp. Med. 2019, 216, 2736–2747. [Google Scholar] [CrossRef]
  261. Djenidi, F.; Adam, J.; Gour, A.; Durgeau, A.; Meurice, G.; de Montpréville, V.; Validire, P.; Besse, B.; Mami-Chouaib, F. CD8+CD103+ Tumour-Infiltrating Lymphocytes Are Tumour-Specific Tissue-Resident Memory T Cells and a Prognostic Factor for Survival in Lung Cancer Patients. J. Immunol. 2015, 194, 3475–3486. [Google Scholar] [CrossRef] [PubMed]
  262. Ariotti, S.; Hogenbirk, M.A.; Dijkgraaf, F.E.; Visser, L.L.; Hoekstra, M.E.; Song, J.Y.; Jacobs, H.; Haanen, J.B.; Schumacher, T.N. Skin-Resident Memory CD8+ T Cells Trigger a State of Tissue-Wide Pathogen Alert. Science 2014, 346, 101–105. [Google Scholar] [CrossRef]
  263. Hartana, C.A.; Ahlén Bergman, E.; Broomé, A.; Berglund, S.; Johansson, M.; Alamdari, F.; Jakubczyk, T.; Huge, Y.; Aljabery, F.; Palmqvist, K.; et al. Tissue-Resident Memory T Cells Are Epigenetically Cytotoxic with Signs of Exhaus-tion in Human Urinary Bladder Cancer. Clin. Exp. Immunol. 2018, 194, 39–53. [Google Scholar] [CrossRef]
  264. Edwards, J.; Wilmott, J.S.; Madore, J.; Gide, T.N.; Quek, C.; Tasker, A.; Ferguson, A.; Chen, J.; Hewavisenti, R.; Hersey, P.; et al. CD103+ Tumour-Resident CD8+ T Cells Are Associated with Improved Survival in Immunotherapy-Naïve Melanoma Patients and Expand Significantly during Anti-PD-1 Treatment. Clin. Cancer Res. 2018, 24, 3036–3045. [Google Scholar] [CrossRef] [PubMed]
  265. Kurd, N.S.; He, Z.; Louis, T.L.; Milner, J.J.; Omilusik, K.D.; Jin, W.; Tsai, M.S.; Widjaja, C.E.; Kanbar, J.N.; Olvera, J.G.; et al. Early Precursors and Molecular Determinants of Tissue-Resident Memory CD8+ T Lymphocytes Revealed by Single-Cell RNA Sequencing. Sci. Immunol. 2020, 5, eaaz6894. [Google Scholar] [CrossRef] [PubMed]
  266. Palermo, B.; Franzese, O.; Frisullo, G.; D’Ambrosio, L.; Panetta, M.; Campo, G.; D’Andrea, D.; Sperduti, I.; De Nicola, F.; Goeman, F.; et al. CD28/PD1 Co-Expression: Dual Impact on CD8+ T Cells in Peripheral Blood and Tumour Tissue, and its Significance in NSCLC Patients’ Survival and ICB Response. J. Exp. Clin. Cancer Res. 2023, 42, 287. [Google Scholar] [CrossRef]
  267. Marceaux, C.; Weeden, C.E.; Gordon, C.L.; Asselin-Labat, M.L. Holding Our Breath: The Promise of Tissue-Resident Memory T Cells in Lung Cancer. Transl. Lung Cancer Res. 2021, 10, 2819–2829. [Google Scholar] [CrossRef]
  268. Pettersen, J.S.; Fuentes-Duculan, J.; Suárez-Fariñas, M.; Pierson, K.C.; Pitts-Kiefer, A.; Fan, L.; Belkin, D.A.; Wang, C.Q.; Bhuvanendran, S.; Johnson-Huang, L.M.; et al. Tumour-Associated Macrophages in the Cutaneous SCC Microenvironment Are Heterogeneously Activated. J. Investig. Dermatol. 2011, 131, 1322–1330. [Google Scholar] [CrossRef]
  269. Gabrusiewicz, K.; Rodriguez, B.; Wei, J.; Hashimoto, Y.; Healy, L.M.; Maiti, S.N.; Thom-as, G.; Zhou, S.; Wang, Q.; Elakkad, A.; et al. Glioblastoma-Infiltrated Innate Immune Cells Resemble M0 Macrophage Phenotype. JCI Insight 2016, 1, e85841. [Google Scholar] [CrossRef]
  270. Yang, C.M.; Ji, S.; Li, Y.; Fu, L.Y.; Jiang, T.; Meng, F.D. β-Catenin Promotes Cell Proliferation, Migration, and Invasion but Induces Apoptosis in Renal Cell Carcinoma. OncoTargets Ther. 2017, 10, 711–724. [Google Scholar] [CrossRef]
  271. Hong, R.; Shen, M.H.; Xie, X.H.; Ruan, S.M. Inhibition of Breast Cancer Metastasis via PITPNM3 by Pachymic Acid. Asian Pac. J. Cancer Prev. 2012, 13, 1877–1880. [Google Scholar] [CrossRef] [PubMed]
  272. Jiang, X.; Huang, Z.; Sun, X.; Zheng, X.; Liu, J.; Shen, J.; Jia, B.; Luo, H.; Mai, Z.; Chen, G.; et al. CCL18-NIR1 Promotes Oral Cancer Cell Growth and Metastasis by Activating the JAK2/STAT3 Signalling Pathway. BMC Cancer 2020, 20, 632. [Google Scholar] [CrossRef] [PubMed]
  273. Korbecki, J.; Olbromski, M.; Dzięgiel, P. CCL18 in the Progression of Cancer. Int. J. Mol. Sci. 2020, 21, 7955. [Google Scholar] [CrossRef] [PubMed]
  274. Duluc, D.; Corvaisier, M.; Blanchard, S.; Catala, L.; Descamps, P.; Gamelin, E.; Ponsoda, S.; Delneste, Y.; Hebbar, M.; Jeannin, P. Interferon-Gamma Reverses the Immunosuppressive and Protumoural Properties and Prevents the Generation of Human Tumour-Associated Macrophages. Int. J. Cancer 2009, 125, 367–373. [Google Scholar] [CrossRef]
  275. Su, S.; Liao, J.; Liu, J.; Huang, D.; He, C.; Chen, F.; Yang, L.; Wu, W.; Chen, J.; Lin, L.; et al. Blocking the Recruitment of Naive CD4+ T Cells Reverses Immunosuppression in Breast Cancer. Cell Res. 2017, 27, 461–482. [Google Scholar] [CrossRef]
  276. Tiemessen, M.M.; Jagger, A.L.; Evans, H.G.; van Herwijnen, M.J.; John, S.; Taams, L.S. CD4+CD25+Foxp3+ Regulatory T Cells Induce Alternative Activation of Human Monocytes/Macrophages. Proc. Natl. Acad. Sci. USA 2007, 104, 19446–19451. [Google Scholar] [CrossRef]
  277. Hoves, S.; Krause, S.W.; Schütz, C.; Halbritter, D.; Schölmerich, J.; Herfarth, H.; Fleck, M. Monocyte-Derived Human Macrophages Mediate Anergy in Allogeneic T Cells and Induce Regulatory T Cells. J. Immunol. 2006, 177, 2691–2698. [Google Scholar] [CrossRef]
  278. Vulcano, M.; Struyf, S.; Scapini, P.; Cassatella, M.; Bernasconi, S.; Bonecchi, R.; Calleri, A.; Penna, G.; Adorini, L.; Luini, W.; et al. Unique Regulation of CCL18 Production by Maturing Dendritic Cells. J. Immunol. 2003, 170, 3843–3849. [Google Scholar] [CrossRef]
  279. Yu, G.; Fang, M.; Gong, M.; Liu, L.; Zhong, J.; Feng, W.; Xiong, P.; Wang, C.Y.; Gong, F. Steady-State Dendritic Cells with Forced IDO Expression Induce Skin Allograft Tolerance by Upregulation of Regulatory T Cells. Transpl. Immunol. 2008, 18, 208–219. [Google Scholar] [CrossRef]
  280. Meng, W.; Xue, S.; Chen, Y. The role of CXCL12 in tumor microenvironment. Gene 2018, 641, 105–110. [Google Scholar] [CrossRef]
  281. Mezzapelle, R.; Leo, M.; Caprioglio, F.; Colley, L.S.; Lamarca, A.; Sabatino, L.; Colantuoni, V.; Crippa, M.P.; Bianchi, M.E. CXCR4/CXCL12 Activities in the Tumour Microenvironment and Implications for Tumour Immunotherapy. Cancers 2022, 14, 2314. [Google Scholar] [CrossRef]
  282. Locati, M.; Curtale, G.; Mantovani, A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu. Rev. Pathol. 2020, 15, 123–147. [Google Scholar] [CrossRef]
  283. Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the Immune System in Cancer: From Tumour Initiation to Metastatic Progression. Genes Dev. 2018, 32, 1267–1284. [Google Scholar] [CrossRef] [PubMed]
  284. D’Agostino, G.; Cecchinato, V.; Uguccioni, M. Chemokine Heterocomplexes and Cancer: A Novel Chapter to Be Written in Tumour Immunity. Front. Immunol. 2018, 9, 2185. [Google Scholar] [CrossRef] [PubMed]
  285. Levoye, A.; Balabanian, K.; Baleux, F.; Bachelerie, F.; Lagane, B. CXCR7 Heterodimerizes with CXCR4 and Regulates CXCL12-Mediated G Protein Signalling. Blood 2009, 113, 6085–6093. [Google Scholar] [CrossRef]
  286. Gao, S.H.; Liu, S.Z.; Wang, G.Z.; Zhou, G.B. CXCL13 in Cancer and Other Diseases: Biological Functions, Clinical Significance, and Therapeutic Opportunities. Life 2021, 11, 1282. [Google Scholar] [CrossRef] [PubMed]
  287. O’Connor, R.A.; Martinez, B.R.; Koppensteiner, L.; Mathieson, L.; Akram, A.R. Cancer-Associated Fibroblasts Drive CXCL13 Production in Activated T Cells via TGF-Beta. Front. Immunol. 2023, 14, 1221532. [Google Scholar] [CrossRef]
  288. Groeneveld, C.S.; Fontugne, J.; Cabel, L.; Bernard-Pierrot, I.; Radvanyi, F.; Allory, Y.; de Reyniès, A. Tertiary Lymphoid Structures Marker CXCL13 is Associated with Better Survival for Patients with Advanced-Stage Bladder Cancer Treated with Immunotherapy. Eur. J. Cancer 2021, 148, 181–189. [Google Scholar] [CrossRef]
  289. Helmink, B.A.; Reddy, S.M.; Gao, J.; Zhang, S.; Basar, R.; Thakur, R.; Yizhak, K.; Sade-Feldman, M.; Blando, J.; Han, G.; et al. B Cells and Tertiary Lymphoid Structures Promote Immunotherapy Response. Nature 2020, 577, 549–555. [Google Scholar] [CrossRef]
  290. Yang, M.; Lu, J.; Zhang, G.; Wang, Y.; He, M.; Xu, Q.; Xu, C.; Liu, H. CXCL13 shapes im-munoactive tumour microenvironment and enhances the efficacy of PD-1 checkpoint blockade in high-grade serous ovarian cancer. J. Immunother. Cancer 2021, 9, e001136. [Google Scholar] [CrossRef]
  291. Vahidian, F.; Lamaze, F.C.; Bouffard, C.; Coulombe, F.; Gagné, A.; Blais, F.; Tonneau, M.; Orain, M.; Routy, B.; Manem, V.S.K.; et al. CXCL13 Positive Cells Localization Predict Response to Anti-PD-1/PD-L1 in Pulmonary Non-Small Cell Carcinoma. Cancers 2024, 16, 708. [Google Scholar] [CrossRef] [PubMed]
  292. Dustin, M.L. T-Cell Activation through Immunological Synapses and Kinapses. Immunol. Rev. 2008, 221, 77–89. [Google Scholar] [CrossRef] [PubMed]
  293. Shakhar, G.; Lindquist, R.L.; Skokos, D.; Dudziak, D.; Huang, J.H.; Nussenzweig, M.C.; Dustin, M.L. Stable T Cell-Dendritic Cell Interactions Precede the Development of Both Tol-erance and Immunity in Vivo. Nat. Immunol. 2005, 6, 707–714. [Google Scholar] [CrossRef]
  294. Nourshargh, S.; Alon, R. Leukocyte migration into inflamed tissues. Immunity 2014, 41, 694–707. [Google Scholar] [CrossRef] [PubMed]
  295. Comrie, W.A.; Babich, A.; Burkhardt, J.K. F-Actin Flow Drives Affinity Maturation and Spatial Organization of LFA-1 at the Immunological Synapse. J. Cell Biol. 2015, 208, 475–491. [Google Scholar] [CrossRef]
  296. Shi, H.; Shao, B. LFA-1 Activation in T-Cell Migration and Immunological Synapse Formation. Cells 2023, 12, 1136. [Google Scholar] [CrossRef]
  297. Shulman, Z.; Shinder, V.; Klein, E.; Grabovsky, V.; Yeger, O.; Geron, E.; Montresor, A.; Bolomini-Vittori, M.; Feigelson, S.W.; Kirchhausen, T.; et al. Lymphocyte Crawling and Transendothelial Migration Require Chemokine Triggering of High-Affinity LFA-1 Integrin. Immunity 2009, 30, 384–396. [Google Scholar] [CrossRef]
  298. Franzese, O.; Ancona, P.; Bianchi, N.; Aguiari, G. Apoptosis, a Metabolic “Head-to-Head” between Tumour and T Cells: Implications for Immunotherapy. Cells 2024, 13, 1430. [Google Scholar] [CrossRef]
  299. Beckermann, K.E.; Hongo, R.; Ye, X.; Young, K.; Carbonell, K.; Healey, D.C.C.; Siska, P.J.; Barone, S.; Roe, C.E.; Smith, C.C.; et al. CD28 Costimulation Drives Tumour-Infiltrating T Cell Glycolysis to Promote Inflammation. J. Clin. Investig. 2020, 5, e138729. [Google Scholar]
  300. Kong, K.F.; Yokosuka, T.; Canonigo-Balancio, A.J.; Isakov, N.; Saito, T.; Altman, A. A Motif in the V3 Domain of the Kinase PKC-θ Determines Its Localization in the Immuno-logical Synapse and Functions in T Cells via Association with CD28. Nat. Immunol. 2011, 12, 1105–1112. [Google Scholar] [CrossRef]
  301. Aquino, A.; Bianchi, N.; Terrazzan, A.; Franzese, O. Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy, and Immune Response. Biology 2023, 12, 1047. [Google Scholar] [CrossRef] [PubMed]
  302. Esensten, J.H.; Helou, Y.A.; Chopra, G.; Weiss, A.; Bluestone, J.A. CD28 Costimulation: From Mechanism to Therapy. Immunity 2016, 44, 973–988. [Google Scholar] [CrossRef] [PubMed]
  303. Mirenda, V.; Jarmin, S.J.; David, R.; Dyson, J.; Scott, D.; Gu, Y.; Lechler, R.I.; Okkenhaug, K.; Marelli-Berg, F.M. Physiologic and Aberrant Regulation of Memory T-Cell Trafficking by the Costimulatory Molecule CD28. Blood 2007, 109, 2968–2977. [Google Scholar] [CrossRef] [PubMed]
  304. Krummel, M.F.; Bartumeus, F.; Gérard, A. T Cell Migration, Search Strategies, and Mechanisms. Nat. Rev. Immunol. 2016, 16, 193–201. [Google Scholar] [CrossRef]
  305. Masteller, E.L.; Chuang, E.; Mullen, A.C.; Reiner, S.L.; Thompson, C.B. Structural Analysis of CTLA-4 Function in Vivo. J. Immunol. 2000, 164, 5319–5327. [Google Scholar] [CrossRef]
  306. Jain, N.; Nguyen, H.; Chambers, C.; Kang, J. Dual Function of CTLA-4 in Regulatory T Cells and Conventional T Cells to Prevent Multiorgan Autoimmunity. Proc. Natl. Acad. Sci. USA 2010, 107, 1524–1528. [Google Scholar] [CrossRef]
  307. Schneider, H.; Valk, E.; Leung, R.; Rudd, C.E. CTLA-4 Activation of Phosphatidylinositol 3-Kinase (PI 3-K) and Protein Kinase B (PKB/AKT) Sustains T-Cell Anergy without Cell Death. PLoS ONE 2008, 3, e3842. [Google Scholar] [CrossRef]
  308. Schneider, H.; Valk, E.; da Rocha Dias, S.; Wei, B.; Rudd, C.E. CTLA-4 Up-Regulation of Lymphocyte Function-Associated Antigen 1 Adhesion and Clustering as an Alternate Basis for Coreceptor Function. Proc. Natl. Acad. Sci. USA 2005, 102, 12861–12866. [Google Scholar] [CrossRef]
  309. Brunner-Weinzierl, M.C.; Rudd, C.E. CTLA-4 and PD-1 Control of T-Cell Motility and Migration: Implications for Tumour Immunotherapy. Front. Immunol. 2018, 9, 2737. [Google Scholar] [CrossRef]
  310. Pentcheva-Hoang, T.; Simpson, T.R.; Montalvo-Ortiz, W.; Allison, J.P. Cytotoxic T Lymphocyte Antigen-4 Blockade Enhances Antitumour Immunity by Stimulating Melanoma-Specific T-Cell Motility. Cancer Immunol. Res. 2014, 2, 970–980. [Google Scholar] [CrossRef]
  311. Lu, Y.; Schneider, H.; Rudd, C.E. Murine Regulatory T Cells Differ from Conventional T Cells in Resisting the CTLA-4 Reversal of TCR Stop-Signal. Blood 2012, 120, 4560–4570. [Google Scholar] [CrossRef] [PubMed]
  312. Fife, B.T.; Pauken, K.E.; Eagar, T.N.; Obu, T.; Wu, J.; Tang, Q.; Azuma, M.; Krummel, M.F.; Bluestone, J.A. Interactions between PD-1 and PD-L1 Promote Tolerance by Blocking the TCR-Induced Stop Signal. Nat. Immunol. 2009, 10, 1185–1192. [Google Scholar] [CrossRef]
  313. Gimsa, U.; ØRen, A.; Pandiyan, P.; Teichmann, D.; Bechmann, I.; Nitsch, R.; Brunner-Weinzierl, M.C. Astrocytes Protect the CNS: Antigen-Specific T Helper Cell Responses Are Inhibited by Astrocyte-Induced Upregulation of CTLA-4 (CD152). J. Mol. Med. 2004, 82, 364–372. [Google Scholar] [CrossRef]
  314. Gimsa, U.; Mitchison, N.A.; Brunner-Weinzierl, M.C. Immune Privilege as an Intrinsic CNS Property: Astrocytes Protect the CNS against T-Cell-Mediated Neuroinflammation. Mediators Inflamm. 2013, 2013, 320519. [Google Scholar] [CrossRef]
  315. Ruocco, M.G.; Pilones, K.A.; Kawashima, N.; Cammer, M.; Huang, J.; Babb, J.S.; Liu, M.; Formenti, S.C.; Dustin, M.L.; Demaria, S. Suppressing T cell motility induced by anti-CTLA-4 monotherapy improves antitumour effects. J. Clin. Investig. 2012, 122, 3718–3730. [Google Scholar] [CrossRef] [PubMed]
  316. Pires, A.; Greenshields-Watson, A.; Jones, E.; Smart, K.; Lauder, S.N.; Somerville, M.; Mi-lutinovic, S.; Kendrick, H.; Hindley, J.P.; French, R.; et al. Immune remodeling of the extracellular matrix drives loss of cancer stem cells and tumour rejection. Cancer Immunol. Res. 2020, 8, 1520–1531. [Google Scholar] [CrossRef]
  317. Lv, D.; Fei, Y.; Chen, H.; Wang, J.; Han, W.; Cui, B.; Feng, Y.; Zhang, P.; Chen, J. Crosstalk between T lymphocytes and extracellular matrix in the tumour microenvironment. Front. Immunol. 2024, 15, 1340702. [Google Scholar] [CrossRef] [PubMed]
  318. Horn, L.A.; Chariou, P.L.; Gameiro, S.R.; Qin, H.; Iida, M.; Fousek, K.; Meyer, T.J.; Cam, M.; Flies, D.; Langermann, S.; et al. Remodeling the tumour microenvironment via blockade of LAIR-1 and TGF-β signalling enables PD-L1-mediated tumour eradication. J. Clin. Investig. 2022, 132, e155148. [Google Scholar] [CrossRef]
  319. Walker, C.; Mojares, E.; Del Río Hernández, A. Role of extracellular matrix in develop-ment and cancer progression. Int. J. Mol. Sci. 2018, 19, 3028. [Google Scholar] [CrossRef]
  320. Ali, A.J.; Abuelela, A.F.; Merzaban, J.S. An analysis of trafficking receptors shows that CD44 and P-selectin glycoprotein ligand-1 collectively control the migration of activated human T-cells. Front. Immunol. 2017, 8, 492. [Google Scholar] [CrossRef]
  321. Wang, S.; Li, J.; Zhao, Y. Targeting Collagen in “Armored & Cold” Tumours: Overcoming Barriers to Cancer Therapy. Cancer Pathog. Ther. 2024, in press. [Google Scholar]
  322. Sorokin, L. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 2010, 10, 712–723. [Google Scholar] [CrossRef] [PubMed]
  323. Espinosa-Carrasco, G.; Le Saout, C.; Fontanaud, P.; Michau, A.; Mollard, P.; Hernandez, J.; Schaeffer, M. Integrin β1 optimizes diabetogenic T cell migration and function in the pancreas. Front. Immunol. 2018, 9, 1156. [Google Scholar] [CrossRef] [PubMed]
  324. Yuan, Z.; Li, Y.; Zhang, S.; Wang, X.; Dou, H.; Yu, X.; Zhang, Z.; Yang, S.; Xiao, M. Extracellular matrix in tumour progression and immune escape: From mechanisms to treatments. Mol. Cancer 2023, 22, 48. [Google Scholar] [CrossRef]
  325. Mao, X.; Xu, J.; Wang, W.; Liang, C.; Hua, J.; Liu, J.; Zhang, B.; Meng, Q.; Yu, X.; Shi, S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumour microenvironment: New findings and future perspectives. Mol. Cancer 2021, 20, 131. [Google Scholar] [CrossRef]
  326. Huang, Y.; Yuan, J.; Righi, E.; Kamoun, W.S.; Ancukiewicz, M.; Nezivar, J.; Santosuosso, M.; Martin, J.D.; Martin, M.R.; Vianello, F.; et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumour microenvironment and enhance immunotherapy. Proc. Natl. Acad. Sci. USA 2012, 109, 17561–17566. [Google Scholar] [CrossRef]
  327. Khan, K.A.; Kerbel, R.S. Improving Immunotherapy Outcomes with Anti-Angiogenic Treatments and Vice Versa. Nat. Rev. Clin. Oncol. 2018, 15, 310–324. [Google Scholar] [CrossRef] [PubMed]
  328. Wachholz, G.E.; Akbari, P.; Huijbers, E.J.M.; Jalan, P.; van Beijnum, J.R.; Griffioen, A.W. Targeting Endothelial Cell Anergy to Improve CAR T Cell Therapy for Solid Tumours. Biochim. Biophys. Acta 2024, 1879, 189155. [Google Scholar]
  329. Peske, J.D.; Woods, A.B.; Engelhard, V.H. Control of CD8 T-cell infiltration into tumours by vasculature and microenvironment. Adv. Cancer Res. 2015, 128, 263–307. [Google Scholar]
  330. Sui, X.; Ma, J.; Han, W.; Wang, X.; Fang, Y.; Li, D.; Pan, H.; Zhang, L. The anticancer immune response of anti-PD-1/PD-L1 and the genetic determinants of response to anti-PD-1/PD-L1 antibodies in cancer patients. Oncotarget 2015, 6, 19393–19404. [Google Scholar] [CrossRef]
  331. Ley, K.; Laudanna, C.; Cybulsky, M.I.; Nourshargh, S. Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nat. Rev. Immunol. 2007, 7, 678–689. [Google Scholar] [CrossRef]
  332. Brinkman, C.C.; Peske, J.D.; Engelhard, V.H. Peripheral tissue homing receptor control of naïve, effector, and memory CD8 T cell localization in lymphoid and non-lymphoid tissues. Front. Immunol. 2013, 4, 241. [Google Scholar] [CrossRef]
  333. Woods, A.N.; Wilson, A.L.; Srivinisan, N.; Zeng, J.; Dutta, A.B.; Peske, J.D.; Tewalt, E.F.; Gregg, R.K.; Ferguson, A.R.; Engelhard, V.H. Differential expression of homing receptor ligands on tumour-associated vasculature that control CD8 effector T-cell entry. Cancer Immunol. Res. 2017, 5, 1062–1073. [Google Scholar] [CrossRef] [PubMed]
  334. Sautès-Fridman, C.; Petitprez, F.; Calderaro, J.; Fridman, W.H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer. 2019, 19, 307–325. [Google Scholar] [CrossRef] [PubMed]
  335. van de Walle, T.; Vaccaro, A.; Ramachandran, M.; Pietilä, I.; Essand, M.; Dimberg, A. Tertiary lymphoid structures in the central nervous system: Implications for glioblastoma. Front. Immunol. 2021, 12, 724739. [Google Scholar] [CrossRef]
  336. Georganaki, M.; van Hooren, L.; Dimberg, A. Vascular targeting to increase the efficiency of immune checkpoint blockade in cancer. Front. Immunol. 2018, 9, 3081. [Google Scholar] [CrossRef] [PubMed]
  337. Magar, A.G.; Morya, V.K.; Kwak, M.K.; Oh, J.U.; Noh, K.C. A Molecular Perspective on HIF-1α and Angiogenic Stimulator Networks and Their Role in Solid Tumours: An Update. Int. J. Mol. Sci. 2024, 25, 3313. [Google Scholar] [CrossRef]
  338. Huang, H.; Langenkamp, E.; Georganaki, M.; Loskog, A.; Fuchs, P.F.; Dieterich, L.C.; Kreuger, J.; Dimberg, A. VEGF suppresses T-lymphocyte infiltration in the tumour microenvironment through inhibition of NF-κB-induced endothelial activation. FASEB J. 2015, 29, 227–238. [Google Scholar] [CrossRef]
  339. Yu, J.S.; Lee, P.K.; Ehtesham, M.; Samoto, K.; Black, K.L.; Wheeler, C.J. Intratumoural T cell subset ratios and Fas ligand expression on brain tumour endothelium. J. Neuro-Oncol. 2003, 64, 55–61. [Google Scholar] [CrossRef]
  340. Motz, G.T.; Santoro, S.P.; Wang, L.P.; Garrabrant, T.; Lastra, R.R.; Hagemann, I.S.; Lal, P.; Feldman, M.D.; Benencia, F.; Coukos, G. Tumour endothelium FasL establishes a selec-tive immune barrier promoting tolerance in tumours. Nat. Med. 2014, 20, 607–615. [Google Scholar] [CrossRef]
  341. Simula, L.; Fumagalli, M.; Vimeux, L.; Rajnpreht, I.; Icard, P.; Birsen, G.; An, D.; Pendino, F.; Rouault, A.; Bercovici, N.; et al. Mitochondrial Metabolism Sustains CD8+ T Cell Migration for an Efficient Infiltration into Solid Tumours. Nat. Commun. 2024, 15, 2203. [Google Scholar] [CrossRef]
  342. Vuononvirta, J.; Marelli-Berg, F.M.; Poobalasingam, T. Metabolic Regulation of T Lymphocyte Motility and Migration. Mol. Asp. Med. 2021, 77, 100888. [Google Scholar] [CrossRef]
  343. Cham, C.M.; Driessens, G.; O’Keefe, J.P.; Gajewski, T.F. Glucose Deprivation Inhibits Multiple Key Gene Expression Events and Effector Functions in CD8+ T Cells. Eur. J. Immunol. 2008, 38, 2438–2450. [Google Scholar] [CrossRef]
  344. Marelli-Berg, F.M.; Jangani, M. Metabolic Regulation of Leukocyte Motility and Migration. J. Leukoc. Biol. 2018, 104, 285–293. [Google Scholar] [CrossRef]
  345. Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef]
  346. Haas, R.; Smith, J.; Rocher-Ros, V.; Nadkarni, S.; Montero-Melendez, T.; D’Acquisto, F.; Bland, E.J.; Bombardieri, M.; Pitzalis, C.; Perretti, M.; et al. Lactate Regulates Metabolic and Pro-Inflammatory Circuits in Control of T Cell Migration and Effector Functions. PLoS Biol. 2015, 13, e1002202. [Google Scholar] [CrossRef]
  347. Kishore, M.; Cheung, K.C.P.; Fu, H.; Bonacina, F.; Wang, G.; Coe, D.; Ward, E.J.; Colamatteo, A.; Jangani, M.; Baragetti, A.; et al. Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated Glycolysis. Immunity 2017, 47, 875–889. [Google Scholar] [CrossRef]
  348. Norris, V.; Amar, P.; Legent, G.; Ripoll, C.; Thellier, M.; Ovádi, J. Sensor Potency of the Moonlighting Enzyme-Decorated Cytoskeleton: The Cytoskeleton as a Metabolic Sensor. BMC Biochem. 2013, 14, 3. [Google Scholar] [CrossRef]
  349. Real-Hohn, A.; Zancan, P.; Da Silva, D.; Martins, E.R.; Salgado, L.T.; Mermelstein, C.S.; Gomes, A.M.; Sola-Penna, M. Filamentous Actin and Its Associated Binding Proteins Are the Stimulatory Site for 6-Phosphofructo-1-Kinase Association within the Membrane of Human Erythrocytes. Biochimie 2010, 92, 538–544. [Google Scholar] [CrossRef]
  350. Barbieri, L.; Veliça, P.; Gameiro, P.A.; Cunha, P.P.; Foskolou, I.P.; Rullman, E.; Bargiela, D.; Johnson, R.S.; Rundqvist, H. Lactate Exposure Shapes the Metabolic and Tran-scriptomic Profile of CD8+ T Cells. Front. Immunol. 2023, 14, 1101433. [Google Scholar] [CrossRef]
  351. Watson, M.J.; Vignali, P.D.A.; Mullett, S.J.; Overacre-Delgoffe, A.E.; Peralta, R.M.; Grebinoski, S.; Menk, A.V.; Rittenhouse, N.L.; DePeaux, K.; Whetstone, R.D.; et al. Metabolic Support of Tumour-Infiltrating Regulatory T Cells by Lactic Acid. Nature 2021, 591, 645–651. [Google Scholar] [CrossRef]
  352. Piconese, S.; Campello, S.; Natalini, A. Recirculation and Residency of T Cells and Tregs: Lessons Learnt in Anacapri. Front. Immunol. 2020, 11, 682. [Google Scholar] [CrossRef]
  353. Cipolat, S.; Martins de Brito, O.; Dal Zilio, B.; Scorrano, L. OPA1 Requires Mitofusin 1 to Promote Mitochondrial Fusion. Proc. Natl. Acad. Sci. USA 2004, 101, 15927–15932. [Google Scholar] [CrossRef]
  354. Eura, Y.; Ishihara, N.; Yokota, S.; Mihara, K. Two Mitofusin Proteins, Mammalian Homo-logues of FZO, with Distinct Functions Are Both Required for Mitochondrial Fusion. J. Biochem. 2003, 134, 333–344. [Google Scholar] [CrossRef]
  355. Kingnate, C.; Charoenkwan, K.; Kumfu, S.; Chattipakorn, N.; Chattipakorn, S.C. Possible Roles of Mitochondrial Dynamics and the Effects of Pharmacological Interventions in Chemoresistant Ovarian Cancer. EBioMedicine 2018, 34, 256–266. [Google Scholar] [CrossRef]
  356. Wang, R.; Dillon, C.P.; Shi, L.Z.; Milasta, S.; Carter, R.; Finkelstein, D.; McCormick, L.L.; Fitzgerald, P.; Chi, H.; Munger, J.; et al. The Transcription Factor Myc Controls Metabolic Reprogramming upon T Lymphocyte Activation. Immunity 2011, 35, 871–882. [Google Scholar] [CrossRef]
  357. Campello, S.; Lacalle, R.A.; Bettella, M.; Mañes, S.; Scorrano, L.; Viola, A. Orchestration of Lymphocyte Chemotaxis by Mitochondrial Dynamics. J. Exp. Med. 2006, 203, 2879–2886. [Google Scholar] [CrossRef]
  358. Feng, Z.; Yin, Y.; Liu, B.; Zheng, Y.; Shi, D.; Zhang, H.; Qin, J. Prognostic and Immunological Role of FAT Family Genes in Non-Small Cell Lung Cancer. Cancer Control. 2022, 29, 10732748221076682. [Google Scholar] [CrossRef]
  359. Chanoch-Myers, R.; Wider, A.; Suva, M.L.; Tirosh, I. Elucidating the Diversity of Malignant Mesenchymal States in Glioblastoma by Integrative Analysis. Genome Med. 2022, 14, 106. [Google Scholar] [CrossRef]
  360. Huang, X.; Chen, C.; Xu, Y.; Shen, L.; Chen, Y.; Su, H. Infiltrating T-cell abundance combined with EMT-related gene expression as a prognostic factor of colon cancer. Bioengineered 2021, 12, 2688–2701. [Google Scholar] [CrossRef]
  361. Chae, Y.K.; Chang, S.; Ko, T.; Anker, J.; Agte, S.; Iams, W.; Choi, W.M.; Lee, K.; Cruz, M. Epithelial-mesenchymal transition (EMT) signature is inversely associated with T-cell infiltration in non-small cell lung cancer (NSCLC). Sci. Rep. 2018, 8, 2918. [Google Scholar] [CrossRef]
  362. Jerby-Arnon, L.; Shah, P.; Cuoco, M.S.; Rodman, C.; Su, M.J.; Melms, J.C.; Leeson, R.; Kanodia, A.; Mei, S.; Lin, J.R.; et al. A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell 2018, 175, 984–997.e24. [Google Scholar] [CrossRef]
  363. Gunderson, A.J.; Yamazaki, T.; McCarty, K.; Fox, N.; Phillips, M.; Alice, A.; Blair, T.; White-ford, M.; O’Brien, D.; Ahmad, R.; et al. TGFβ Suppresses CD8+ T Cell Expression of CXCR3 and Tumour Trafficking. Nat. Commun. 2020, 11, 1749. [Google Scholar] [CrossRef]
  364. Wang, C.; Tan, J.Y.M.; Chitkara, N.; Bhatt, S. TP53 Mutation-Mediated Immune Evasion in Cancer: Mechanisms and Therapeutic Implications. Cancers 2024, 16, 3069. [Google Scholar] [CrossRef]
  365. Krenz, B.; Lee, J.; Kannan, T.; Eilers, M. Immune Evasion: An Imperative and Consequence of MYC Deregulation. Mol. Oncol. 2024, 18, 2338–2355. [Google Scholar] [CrossRef]
  366. Han, S.H.; Kim, M.; Chung, Y.R.; Woo, J.W.; Choi, H.Y.; Park, S.Y. Expression of HLA Class I Is Associated with Immune Cell Infiltration and Patient Outcome in Breast Cancer. Sci. Rep. 2022, 12, 20367. [Google Scholar] [CrossRef]
  367. Riesenberg, S.; Groetchen, A.; Siddaway, R.; Bald, T.; Reinhardt, J.; Smorra, D.; Kohlmeyer, J.; Renn, M.; Phung, B.; Aymans, P.; et al. MITF and c-Jun Antagonism Interconnects Melanoma Dedifferentiation with Pro-Inflammatory Cytokine Responsiveness and Myeloid Cell Recruitment. Nat. Commun. 2015, 6, 8755. [Google Scholar] [CrossRef]
  368. Valkenburg, K.C.; de Groot, A.E.; Pienta, K.J. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 2018, 15, 366–381. [Google Scholar] [CrossRef]
  369. Yang, D.; Liu, J.; Qian, H.; Zhuang, Q. Cancer-associated fibroblasts: From basic science to anticancer therapy. Exp. Mol. Med. 2023, 55, 1322–1332. [Google Scholar] [CrossRef]
  370. Xu, M.; Zhang, T.; Xia, R.; Wei, Y.; Wei, X. Targeting the tumour stroma for cancer therapy. Mol. Cancer 2022, 21, 208. [Google Scholar] [CrossRef]
  371. Wu, H.; Xiang, Z.; Huang, G.; He, Q.; Song, J.; Dou, R.; Yang, C.; Wang, S.; Xiong, B. BGN/FAP/STAT3 positive feedback loop mediated mutual interaction between tumour cells and mesothelial cells contributes to peritoneal metastasis of gastric cancer. Int. J. Biol Sci. 2023, 19, 465–483. [Google Scholar] [CrossRef]
  372. Bejarano, L.; Jordāo, M.J.C.; Joyce, J.A. Therapeutic targeting of the tumour microenvi-ronment. Cancer Discov. 2021, 11, 933–959. [Google Scholar] [CrossRef]
  373. Chen, X.; Song, E. Turning foes to friends: Targeting cancer-associated fibroblasts. Nat. Rev. Drug Discov. 2019, 18, 99–115. [Google Scholar] [CrossRef]
  374. Scott, A.M.; Wiseman, G.; Welt, S.; Adjei, A.; Lee, F.-T.; Hopkins, W.; Divgi, C.R.; Hanson, L.H.; Mitchell, P.; Gansen, D.N.; et al. A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin. Cancer Res. 2003, 9, 1639–1647. [Google Scholar]
  375. Hofheinz, R.D.; al-Batran, S.E.; Hartmann, F.; Hartung, G.; Jäger, D.; Renner, C.; Tanswell, P.; Kunz, U.; Amelsberg, A.; Kuthan, H.; et al. Stromal antigen targeting by a humanised monoclonal antibody: An early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie 2003, 26, 44–48. [Google Scholar] [CrossRef]
  376. Loeffler, M.; Krüger, J.A.; Niethammer, A.G.; Reisfeld, R.A. Targeting tumourassociated fibroblasts improves cancer chemotherapy by increasing intratumoural drug uptake. J. Clin. Investig. 2006, 116, 1955–1962. [Google Scholar] [CrossRef]
  377. Shintani, Y.; Kimura, T.; Funaki, S.; Ose, N.; Kanou, T.; Fukui, E. Therapeutic targeting of cancer-associated fibroblasts in the non-small cell lung cancer tumour microenvironment. Cancers 2023, 15, 335. [Google Scholar] [CrossRef]
  378. Mori, Y.; Okimoto, Y.; Sakai, H.; Kanda, Y.; Ohata, H.; Shiokawa, D.; Suzuki, M.; Yoshida, H.; Ueda, H.; Sekizuka, T.; et al. Targeting PDGF signalling of cancer-associated fibroblasts blocks feedback activation of HIF-1α and tumour progression of clear cell ovarian cancer. Cell Rep. Med. 2024, 5, 101532. [Google Scholar] [CrossRef]
  379. Su, C.; Mo, J.; Dong, S.; Liao, Z.; Zhang, B.; Zhu, P. Integrinβ-1 in disorders and cancers: Molecular mechanisms and therapeutic targets. Cell Commun. Signal. 2024, 22, 71. [Google Scholar] [CrossRef]
  380. Sayegh, N.; Tripathi, N.; Agarwal, N.; Swami, U. Clinical evidence and selecting patients for treatment with erdafitinib in advanced urothelial carcinoma. Oncol. Targets Ther. 2022, 15, 1047–1055. [Google Scholar] [CrossRef]
  381. Frampton, J.E.; Basset-Séguin, N. Vismodegib: A review in advanced basal cell carci-noma. Drugs 2018, 78, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
  382. Rixe, O.; Bukowski, R.M.; Michaelson, M.D.; Wilding, G.; Hudes, G.R.; Bolte, O.; Motzer, R.J.; Bycott, P.; Liau, K.F.; Freddo, J.; et al. Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: A phase II study. Lancet Oncol. 2007, 8, 975–984. [Google Scholar] [CrossRef]
  383. Gorchs, L.; Ahmed, S.; Mayer, C.; Knauf, A.; Fernández Moro, C.; Svensson, M.; Heuchel, R.; Rangelova, E.; Bergman, P.; Kaipe, H.; et al. The vitamin D analogue calcipotriol promotes an anti-tumourigenic phenotype of human pan-creatic CAFs but reduces T cell mediated immunity. Sci. Rep. 2020, 10, 1744. [Google Scholar] [CrossRef]
  384. Kelley, R.; Gane, E.; Assenat, E.; Siebler, J.; Galle, P.R.; Merle, P.; Hourmand, I.O.; Cleverly, A.; Zhao, Y.; Gueorguieva, I.; et al. A phase 2 study of galunisertib (TGF-β1 receptor type I inhibitor) and sorafenib in patients with advanced hepatocellular carcinoma. Clin. Transl. Gastroenterol. 2019, 10, e00056. [Google Scholar] [CrossRef] [PubMed]
  385. Yamazaki, T.; Gunderson, A.J.; Gilchrist, M.; Whiteford, M.; Kiely, M.X.; Hayman, A.; O’Brien, D.; Ahmad, R.; Manchio, J.V.; Fox, N.; et al. Galunisertib plus neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: A single-arm, phase 2 trial. Lancet Oncol. 2022, 23, 1189–1200. [Google Scholar] [CrossRef] [PubMed]
  386. DiPersio, J.; Stadtmauer, E.A.; Nademanee, A.P.; Stiff, P.; Micallef, I.; Angell, J.; Bridger, G.; Calandra, G. A phase III multicenter randomized, double-blind placebo controlled comparative trial of AMD3100 (Plerixafor)+G-CSF vs G-CSF+placebo for mobilization in multiple myeloma (MM) patients for autologous hematopoietic stem cell (aHSC) transplantation (Abstract). Blood 2007, 110, 445. [Google Scholar] [CrossRef]
  387. DiPersio, J.F.; Micallef, I.N.; Stiff, P.J.; Bolwell, B.J.; Maziarz, R.T.; Jacobsen, E.; Nademanee, A.; McCarty, J.; Bridger, G.; Calandra, G. Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granu-locyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin’s lymphoma. J. Clin. Oncol. 2009, 27, 4767–4773. [Google Scholar]
  388. Kumar, R.; Mateo, J.; Smith, A.D.; Khan, K.H.; Ruddle, R.; Swales, K.E.; Decordova, S.; Backholer, Z.; Jones, P.; Tran, C.; et al. First-in-human, first-in-class phase 1 study of a novel oral multi-AGC kinase inhibitor AT13148 in patients (pts) with advanced solid tumours (Abstract). J. Clin. Oncol. 2014, 32, 15. [Google Scholar] [CrossRef]
  389. Ye, L.; Zhang, L.; Li, R.; Zhu, G. Preliminary results of the efficacy and safety of all-trans retinoic acid combined with low-dose apatinib in the treatment of patients with recurrent/metastatic adenoid cystic carcinoma of the head and neck (Abstract). J. Clin. Oncol. 2021, 39, 6026. [Google Scholar] [CrossRef]
  390. Platzbecker, U.; Avvisati, G.; Cicconi, L.; Thiede, C.; Paoloni, F.; Vignetti, M.; Ferrara, F.; Divona, M.; Albano, F.; Efficace, F.; et al. Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia: Final results of the random-ized Italian-German APL0406 trial. J. Clin. Oncol. 2017, 35, 605–612. [Google Scholar] [CrossRef]
  391. Cheng, L.; Hill, A.F. Therapeutically harnessing extracellular vesicles. Nat. Rev. Drug Discov. 2022, 21, 379–399. [Google Scholar] [CrossRef] [PubMed]
  392. Wu, Y.; Cao, Y.; Chen, L.; Lai, X.; Zhang, S.; Wang, S. Role of exosomes in cancer and aptamer-modified exosomes as a promising platform for cancer targeted therapy. Biol. Proced. Online 2024, 26, 15. [Google Scholar] [CrossRef] [PubMed]
  393. Rahimian, S.; Najafi, H.; Afzali, B.; Doroudian, M. Extracellular vesicles and exosomes: Novel insights and perspectives on lung cancer from early detection to targeted treatment. Biomedicines 2024, 12, 123. [Google Scholar] [CrossRef]
  394. Lee, Y.J.; Shin, K.J.; Chae, Y.C. Regulation of cargo selection in exosome biogenesis and its biomedical applications in cancer. Exp. Mol. Med. 2024, 56, 877–889. [Google Scholar] [CrossRef] [PubMed]
  395. Parolini, I.; Federici, C.; Raggi, C.; Lugini, L.; Palleschi, S.; De Milito, A.; Coscia, C.; Iessi, E.; Logozzi, M.; Molinari, A.; et al. Microenvi-ronmental pH is a key factor for exosome traffic in tumour cells. J. Biol. Chem. 2009, 284, 34211–34222. [Google Scholar] [CrossRef]
  396. Bobrie, A.; Krumeich, S.; Reyal, F.; Recchi, C.; Moita, L.F.; Seabra, M.C.; Ostrowski, M.; Théry, C. Rab27a supports exosome-dependent and-independent mechanisms that modify the tumour mi-croenvironment and can promote tumour progression. Cancer Res. 2012, 72, 4920–4930. [Google Scholar] [CrossRef]
  397. Peinado, H.; Alečković, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.; Williams, C.; García-Santos, G.; Ghajar, C.; et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 2012, 18, 883–891. [Google Scholar] [CrossRef]
  398. Sento, S.; Sasabe, E.; Yamamoto, T. Application of a persistent heparin treatment in-hibits the malignant potential of oral squamous carcinoma cells induced by tumour cell-derived exosomes. PLoS ONE. 2016, 11, e0148454. [Google Scholar] [CrossRef]
  399. Xu, S.; Wang, C.; Yang, L.; Wu, J.; Li, M.; Xiao, P.; Xu, Z.; Xu, Y.; Wang, K. Targeting immune checkpoints on tumour-associated macrophages in tumour immunotherapy. Front. Immunol. 2023, 14, 1199631. [Google Scholar]
  400. Cassetta, L.; Pollard, J.W. Targeting macrophages: Therapeutic approaches in cancer. Nat. Rev. Drug Discov. 2018, 17, 887–904. [Google Scholar] [CrossRef]
  401. Truxova, I.; Cibula, D.; Spisek, R.; Fucikova, J. Targeting tumour-associated macro-phages for successful immunotherapy of ovarian carcinoma. J. Immunother Cancer 2023, 11, e005968. [Google Scholar] [CrossRef] [PubMed]
  402. Ma, R.Y.; Zhang, H.; Li, X.F.; Zhang, C.B.; Selli, C.; Tagliavini, G.; Lam, A.D.; Prost, S.; Sims, A.H.; Hu, H.Y.; et al. Monocyte derived macrophages promote breast cancer bone metastasis outgrowth. J. Exp. Med. 2020, 217, e20191820. [Google Scholar] [CrossRef] [PubMed]
  403. Nywening, T.M.; Wang-Gillam, A.; Sanford, D.E.; Belt, B.A.; Panni, R.Z.; Cusworth, B.M.; Toriola, A.T.; Nieman, R.K.; Worley, L.A.; Yano, M.; et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: A single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 2016, 17, 651–662. [Google Scholar] [CrossRef]
  404. Brana, I.; Calles, A.; LoRusso, P.M.; Yee, L.K.; Puchalski, T.A.; Seetharam, S.; Zhong, B.; de Boer, C.J.; Tabernero, J.; Calvo, E.; et al. Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, incombination with four chemotherapy regimens for the treatment of patients with solid tumours: An open-label, multicenter phase 1b study. Target Oncol. 2015, 10, 111–123. [Google Scholar] [CrossRef]
  405. Zhao, L.; Lim, S.Y.; Gordon-Weeks, A.N.; Tapmeier, T.T.; Im, J.H.; Cao, Y.; Beech, J.; Allen, D.; Smart, S.; Muschel, R.J. Recruit-ment of a myeloid cell subset (CD11b/Gr1 mid) via CCL2/CCR2 promotes the develop-ment ofcolorectal cancer liver metastasis. Hepatology 2013, 57, 829–839. [Google Scholar] [CrossRef]
  406. Bonapace, L.; Coissieux, M.M.; Wyckoff, J.; Mertz, K.D.; Varga, Z.; Junt, T.; Bentires-Alj, M. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 2014, 515, 130–133. [Google Scholar] [CrossRef]
  407. Mantovani, A.; Allavena, P.; Marchesi, F.; Garlanda, C. Macrophages as tools and tar-gets in cancer therapy. Nat. Rev. Drug Discov. 2022, 21, 799–820. [Google Scholar] [CrossRef]
  408. Wen, J.; Wang, S.; Guo, R.; Liu, D. CSF1R inhibitors are emerging immunotherapeutic drugs for cancer treatment. Eur. J. Med. Chem. 2023, 245, 114884. [Google Scholar] [CrossRef] [PubMed]
  409. Rodriguez-Perdigon, M.; Haeni, L.; Rothen-Rutishauser, B.; Rüegg, C. Dual CSF1R inhi-bition and CD40 activation demonstrates anti-tumour activity in a 3D macrophage- HER2. Front. Bioeng. Biotechnol. 2023, 11, 1159819. [Google Scholar] [CrossRef]
  410. Moeller, A.; Kurzrock, R.; Botta, G.P.; Adashek, J.J.; Patel, H.; Lee, S.; Pabla, S.; Nesline, M.K.; Conroy, J.; Sicklick, J.K.; et al. Challenges and prospects of CSF1R targeting for advanced malignancies. Am. J. Cancer Res. 2023, 13, 3257–3265. [Google Scholar]
  411. Zhou, B.; Yang, Y.; Kang, Y.; Hou, J. Targeting the macrophage immunocheckpoint: A novel insight into solid tumour immunotherapy. Cell Commun. Signal. 2024, 22, 66. [Google Scholar] [CrossRef]
  412. Cersosimo, F.; Lonardi, S.; Ulivieri, C.; Martini, P.; Morrione, A.; Vermi, W.; Giordano, A.; Giurisato, E. CSF-1R in cancer: More than a myeloid cell receptor. Cancers 2024, 16, 282. [Google Scholar] [CrossRef] [PubMed]
  413. Kowal, J.; Kornete, M.; Joyce, J.A. Re-education of macrophages as a therapeutic strat-egy in cancer. Immunotherapy. 2019, 11, 677–689. [Google Scholar] [CrossRef] [PubMed]
  414. Pyonteck, S.M.; Akkari, L.; Schuhmacher, A.J.; Bowman, R.L.; Sevenich, L.; Quail, D.F.; Olson, O.C.; Quick, M.L.; Huse, J.T.; Teijeiro, V.; et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 2013, 19, 1264–1272. [Google Scholar] [CrossRef]
  415. Xiang, X.; Wang, J.; Lu, D.; Xu, X. Targeting tumour-associated macrophages to syner-gize tumour immunotherapy. Signal Transduct. Target Ther. 2021, 6, 75. [Google Scholar] [CrossRef] [PubMed]
  416. Perdiguero, E.G.; Geissmann, F. The development and maintenance of resident macro-phages. Nat. Immunol. 2016, 17, 2–8. [Google Scholar] [CrossRef]
  417. Yu, M.; Wu, Y.; Li, Q.; Hong, W.; Yang, Y.; Hu, X.; Yang, Y.; Lu, T.; Zhao, X.; Wei, X. Colony-stimulating factor-1 re-ceptor inhibition combined with paclitaxel exerts effective antitumour effects in the treat-ment of ovarian cancer. Genes Dis. 2024, 11, 100989. [Google Scholar] [CrossRef]
  418. Yang, T.; Ke, H.; Liu, J.; An, X.; Xue, J.; Ning, J.; Hao, F.; Xiong, L.; Chen, C.; Wang, Y.; et al. Narazaciclib, a novel multikinase inhibitor with potent activity against CSF1R, FLT3 and CDK6, shows strong anti-AML activ-ity in defined preclinical models. Sci. Rep. 2024, 14, 9032. [Google Scholar]
  419. Akkari, L.; Bowman, R.L.; Tessier, J.; Klemm, F.; Handgraaf, S.M.; de Groot, M.; Quail, D.F.; Tillard, L.; Gadiot, J.; Huse, J.T.; et al. Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci. Transl. Med. 2020, 12, eaaw7843. [Google Scholar] [CrossRef]
  420. Yan, D.; Kowal, J.; Akkari, L.; Schuhmacher, A.J.; Huse, J.T.; West, B.L.; Joyce, J.A. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment- mediated therapeutic resistance in gliomas. Oncogene 2017, 36, 6049–6058. [Google Scholar] [CrossRef]
  421. Olson, O.C.; Kim, H.; Quail, D.F.; Foley, E.A.; Joyce, J.A. Tumour-associated macrophages suppress the cytotoxic activity of antimitotic agents. Cell Rep. 2017, 19, 101–113. [Google Scholar] [CrossRef] [PubMed]
  422. Tap, W.D.; Gelderblom, H.; Palmerini, E.; Desai, J.; Bauer, S.; Blay, J.Y.; Alcindor, T.; Ganjoo, K.; Martín-Broto, J.; Ryan, C.W.; et al. Pexidartinib versus placebo for advanced tenosynovial giant cell tumour (ENLIVEN): A randomised phase 3 trial. Lancet 2019, 394, 478–487. [Google Scholar] [CrossRef] [PubMed]
  423. Lamb, Y.N. Pexidartinib: First approval. Drugs 2019, 79, 1805–1812. [Google Scholar] [CrossRef]
  424. Butowski, N.; Colman, H.; De Groot, J.F.; Omuro, A.M.; Nayak, L.; Wen, P.Y.; Cloughesy, T.F.; Marimuthu, A.; Haidar, S.; Perry, A.; et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblas-toma: An Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro-Oncology 2016, 18, 557–564. [Google Scholar] [CrossRef]
  425. Beatty, G.L.; Chiorean, E.G.; Fishman, M.P.; Saboury, B.; Teitelbaum, U.R.; Sun, W.; Huhn, R.D.; Song, W.; Li, D.; Sharp, L.L.; et al. CD40 agonists alter tumour stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011, 331, 1612–1616. [Google Scholar] [CrossRef] [PubMed]
  426. Hoves, S.; Ooi, C.H.; Wolter, C.; Sade, H.; Bissinger, S.; Schmittnaegel, M.; Ast, O.; Giusti, A.M.; Wartha, K.; Runza, V.; et al. Rapid activation of tumour-associated macrophages boosts preexisting tumour immunity. J. Exp. Med. 2018, 215, 859–876. [Google Scholar] [CrossRef]
  427. Vonderheide, R.H.; Burg, J.M.; Mick, R.; Trosko, J.A.; Li, D.; Shaik, M.N.; Tolcher, A.W.; Hamid, O. Phase I study of the CD40 agonist antibody CP-870,893 combined with carboplatin and paclitaxel in patients with advanced solid tumours. Oncoimmunology 2013, 2, e23033. [Google Scholar] [CrossRef]
  428. O’Hara, M.H.; O’Reilly, E.M.; Varadhachary, G.; Wolff, R.A.; Wainberg, Z.A.; Ko, A.H.; Fisher, G.; Rahma, O.; Lyman, J.P.; Cabanski, C.R.; et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: An open-label, multicentre, phase 1b study. Lancet Oncol. 2021, 22, 118–131. [Google Scholar] [CrossRef]
  429. Vonderheide, R.H.; Dutcher, J.P.; Anderson, J.E.; Eckhardt, S.G.; Stephans, K.F.; Razvillas, B.; Garl, S.; Butine, M.D.; Perry, V.P.; Armitage, R.J.; et al. Phase I study of recombinant human CD40 ligand in cancer patients. J. Clin. Oncol. 2001, 19, 3280–3287. [Google Scholar] [CrossRef]
  430. Kotowicz, K.; Dixon, G.L.; Klein, N.J.; Peters, M.J.; Callard, R.E. Biological Function of CD40 on Human Endothelial Cells: Costimulation with CD40 Ligand and Interleukin-4 Selectively Induces Expression of Vascular Cell Adhesion Molecule-1 and P-Selectin Resulting in Preferential Adhesion of Lymphocytes. Immunology 2000, 100, 441–448. [Google Scholar] [CrossRef]
  431. Eriksson, E.; Moreno, R.; Milenova, I.; Liljenfeldt, L.; Dieterich, L.C.; Christiansson, L.; Karlsson, H.; Ullenhag, G.; Mangsbo, S.M.; Dimberg, A.; et al. Activation of Myeloid and Endothelial Cells by CD40L Gene Therapy Supports T-Cell Expansion and Migra-tion into the Tumour Microenvironment. Gene Ther. 2017, 24, 92–103. [Google Scholar] [CrossRef] [PubMed]
  432. van Hooren, L.; Georganaki, M.; Huang, H.; Mangsbo, S.M.; Dimberg, A. Sunitinib Enhances the Antitumour Responses of Agonistic CD40-Antibody by Reducing MDSCs and Synergistically Improving Endothelial Activation and T-Cell Recruitment. Oncotarget 2016, 7, 50277–50289. [Google Scholar] [CrossRef] [PubMed]
  433. Patnaik, A.; Hamilton, E.P.; Winer, I.S.; Tan, W.; Hubbard, J.M.; Schenk, E.L.; Sonbol, M.B.; Jahchan, N.; Pierce, K.; Li, Y.; et al. A phase 1a dose-escalation study of PY314, a TREM2 (triggering receptor expressed on macrophages 2) targeting monoclonal antibody. J. Clin. Oncol. 2022, 40, 2648. [Google Scholar] [CrossRef]
  434. Lanahan, S.M.; Wymann, M.P.; Lucas, C.L. The role of PI3Kγ in the immune system: New insights and translational implications. Nat. Rev. Immunol. 2022, 22, 687–700. [Google Scholar] [CrossRef]
  435. Hong, D.S.; Postow, M.; Chmielowski, B.; Sullivan, R.; Patnaik, A.; Cohen, E.E.W.; Shapiro, G.; Steuer, C.; Gutierrez, M.; Yeckes-Rodin, H.; et al. Eganelisib, a First-in-Class PI3Kγ Inhibitor, in Patients with Advanced Solid Tumours: Re-sults of the Phase 1/1b MARIO-1 Trial. Clin. Cancer Res. 2023, 29, 2210–2219. [Google Scholar] [CrossRef]
  436. Provenzano, P.P.; Hingorani, S.R. Hyaluronan, fluid pressure, and stromal resistance in pancreas cancer. Br. J. Cancer 2013, 108, 1–8. [Google Scholar] [CrossRef]
  437. Hingorani, S.R.; Zheng, L.; Bullock, A.J.; Seery, T.E.; Harris, W.P.; Sigal, D.S.; Braiteh, F.; Ritch, P.S.; Zalupski, M.M.; Bahary, N.; et al. HALO202: Randomized phase IIstudy of PEGPH20 plus nab-paclitaxel/ gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated metastatic pancreatic ductal adenocarcinoma. J. Clin. Oncol. 2018, 36, 359–366. [Google Scholar] [CrossRef] [PubMed]
  438. Doherty, G.J.; Tempero, M.; Corrie, P.G. HALO-109-301: A Phase III trial of PEGPH20 (with gemcitabine and nab-paclitaxel) in hyaluronic acid-high stage IV pancreatic cancer. Future Oncol. 2018, 14, 13–22. [Google Scholar] [CrossRef]
  439. Benson, A.B.; Wainberg, Z.A.; Hecht, J.R.; Vyushkov, D.; Dong, H.; Bendell, J.; Kudrik, F. A phase II randomized, double-blind, placebo-controlled study of simtuzumab or placebo in combination with gemcitabine for the first-line treatment of pancreatic adenocarcinoma. Oncologist 2017, 22, 241-e15. [Google Scholar] [CrossRef]
  440. Hecht, J.R.; Benson, A.B.; Vyushkov, D.; Yang, Y.; Bendell, J.; Verma, U. A phase II, ran-domized, double-blind, placebo-controlled study of simtuzumab in combination with FOLFIRI for the second-line treatment of metastatic KRAS mutant colorectal adenocarcinoma. Oncologist 2017, 22, 243-e23. [Google Scholar] [CrossRef]
  441. Murphy, J.E.; Wo, J.Y.; Ryan, D.P.; Clark, J.W.; Jiang, W.; Yeap, B.Y.; Drapek, L.C.; Ly, L.; Baglini, C.V.; Blaszkowsky, L.S.; et al. Total neoad ju-vant therapy with FOLFIRINOX in combination with losartan followed by chemoradiother-apy for locally advanced pancreatic cancer: A phase 2 clinical trial. JAMA Oncol. 2019, 5, 1020–1027. [Google Scholar] [CrossRef]
  442. Goodwin, P.J.; Chen, B.E.; Gelmon, K.A.; Whelan, T.J.; Ennis, M.; Lemieux, J.; Ligibel, J.A.; Hershman, D.L.; Mayer, I.A.; Hobday, T.J.; et al. Effect of t metformin vs placebo on invasive disease free survival in patients with breast cancer: The MA32 randomized clinical trial. JAMA 2022, 327, 1963–1973. [Google Scholar] [CrossRef] [PubMed]
  443. Hu, H.H.; Wang, S.Q.; Shang, H.L.; Lv, H.F.; Chen, B.B.; Gao, S.G.; Chen, X.B. Roles and inhibi-tors of FAK in cancer: Current advances and future directions. Front. Pharmacol. 2024, 15, 1274209. [Google Scholar]
  444. Lampi, M.C.; Reinhart-King, C.A. Targeting extracellular matrix stiffness to attenuate disease: From molecular mechanisms to clinical trials. Sci. Transl. Med. 2018, 10, eaao0475. [Google Scholar] [CrossRef] [PubMed]
  445. Bergonzini, C.; Kroese, K.; Zweemer, A.J.M.; Danen, E.H.J. Targeting integrins for cancer therapy—disappointments and opportunities. Front. Cell Dev. Biol. 2022, 10, 863850. [Google Scholar] [CrossRef]
  446. Patnaik, A.; Calvo, E.; Piha-Paul, S.A.A.; Hollebecque, A.; Galvao, V.; Lopez, J.S. A phase 1 study of SGN-B6A, an antibody-drug conjugate targeting integrin beta-6, in patients with advanced solid tumours (SGNB6A-001, Trial in Progress). J. Clin. Oncol. 2021, 39, TPS3144. [Google Scholar] [CrossRef]
  447. Hosen, N.; Matsunaga, Y.; Hasegawa, K.; Matsuno, H.; Nakamura, Y.; Makita, M.; Watanabe, K.; Yoshida, M.; Satoh, K.; Morimoto, S.; et al. The activated conformation of integrin β7 is a novel multiple myeloma–specific target for CAR T cell therapy. Nat. Med. 2017, 23, 1436–1443. [Google Scholar] [CrossRef]
  448. Chuang, H.H.; Zhen, Y.Y.; Tsai, Y.C.; Chuang, C.H.; Hsiao, M.; Huang, M.S.; Yang, C.J. FAK in cancer: From mechanisms to therapeutic strategies. Int. J. Mol. Sci. 2022, 23, 1726. [Google Scholar] [CrossRef]
  449. Wang-Gillam, A.; Lim, K.H.; McWilliams, R.; Suresh, R.; Lockhart, A.C.; Brown, A.; Breden, M.; Belle, J.I.; Herndon, J.; Bogner, S.J.; et al. Defactinib, pembrolizumab, and gemcitabine in patients with advanced treatment refracto-ry pancreatic cancer: A phase i dose escalation and expansion study. Clin. Cancer Res. 2022, 28, 5254–5262. [Google Scholar] [CrossRef]
  450. Zhang, S.; Kohli, K.; Black, R.G.; Yao, L.; Spadinger, S.M.; He, Q.; Pillarisetty, V.G.; Cranmer, L.D.; Van Tine, B.A.; Yee, C.; et al. Systemic Interferon-γ Increases MHC Class I Expression and T-cell Infiltration in Cold Tumours: Results of a Phase 0 Clinical Trial. Cancer Immunol. Res. 2019, 7, 1237–1243. [Google Scholar] [CrossRef]
  451. Arenberg, D.A.; White, E.S.; Burdick, M.D.; Strom, S.R.; Strieter, R.M. Improved Survival in Tumour-Bearing SCID Mice Treated with Interferon-Gamma-Inducible Protein 10 (IP-10/CXCL10). Cancer Immunol. Immunother. 2001, 50, 533–538. [Google Scholar] [CrossRef]
  452. Peng, W.; Liu, C.; Xu, C.; Lou, Y.; Chen, J.; Yang, Y.; Yagita, H.; Overwijk, W.W.; Lizée, G.; Radvanyi, L.; et al. PD-1 Blockade Enhances T-cell Migration to Tumours by Elevating IFN-γ Inducible Chemokines. Cancer Res. 2012, 72, 5209–5218. [Google Scholar] [CrossRef] [PubMed]
  453. Ji, R.R.; Chasalow, S.D.; Wang, L.; Hamid, O.; Schmidt, H.; Cogswell, J.; Alaparthy, S.; Berman, D.; Jure-Kunkel, M.; Siemers, N.O.; et al. An Immune-Active Tumour Microenvironment Favors Clinical Response to Ipilimumab. Cancer Immunol. Immunother. 2012, 61, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
  454. Andersson, A.; Srivastava, M.K.; Harris-White, M.; Huang, M.; Zhu, L.; Elashoff, D.; Stri-eter, R.M.; Dubinett, S.M.; Sharma, S. Role of CXCR3 Ligands in IL-7/IL-7Rα-Fc-Mediated Antitumour Activity in Lung Cancer. Clin. Cancer Res. 2011, 17, 3660–3672. [Google Scholar] [CrossRef] [PubMed]
  455. Parkes, E.E.; Walker, S.M.; Taggart, L.E.; McCabe, N.; Knight, L.A.; Wilkinson, R.; McCloskey, K.D.; Buckley, N.E.; Savage, K.I.; Salto-Tellez, M.; et al. Activation of STING-Dependent Innate Immune Signalling By S-Phase-Specific DNA Damage in Breast Cancer. J. Nat. Cancer Inst. 2016, 109, djw199. [Google Scholar] [CrossRef]
  456. Huang, J.; Wang, L.; Cong, Z.; Amoozgar, Z.; Kiner, E.; Xing, D.; Orsulic, S.; Matu-lonis, U.; Goldberg, M.S. The PARP1 inhibitor BMN 673 exhibits immunoregulatory ef-fects in a Brca1(-/-) murine model of ovarian cancer. Biochem. Biophys Res. Comm. 2015, 463, 551–556. [Google Scholar] [CrossRef]
  457. Franzese, O.; Graziani, G. Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers 2022, 14, 5633. [Google Scholar] [CrossRef]
  458. Strickland, K.C.; Howitt, B.E.; Shukla, S.A.; Rodig, S.; Ritterhouse, L.L.; Liu, J.F.; Garber, J.E.; Chowdhury, D.; Wu, C.J.; D’Andrea, A.D.; et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumour-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 2016, 7, 13587–13598. [Google Scholar] [CrossRef]
  459. Pantelidou, C.; Sonzogni, O.; De Oliveria Taveira, M.; Mehta, A.K.; Kothari, A.; Wang, D.; Visal, T.; Li, M.K.; Pinto, J.; Castrillon, J.A.; et al. PARP Inhibitor Ef-ficacy Depends on CD8+ T-cell Recruitment via Intratumoural STING Pathway Activa-tion in BRCA-Deficient Models of Triple-Negative Breast Cancer. Cancer Discov. 2019, 9, 722–737. [Google Scholar] [CrossRef]
  460. Staniszewska, A.D.; Armenia, J.; King, M.; Michaloglou, C.; Reddy, A.; Singh, M.; San Martin, M.; Prickett, L.; Wilson, Z.; Proia, T.; et al. PARP inhibition is a modulator of anti-tumour immune response in BRCA-deficient tumours. Oncoimmunology 2022, 11, 2083755. [Google Scholar] [CrossRef]
  461. Shen, J.; Zhao, W.; Ju, Z.; Wang, L.; Peng, Y.; Labrie, M.; Yap, T.A.; Mills, G.B.; Peng, G. PARPi Triggers the STING-Dependent Immune Response and Enhances the Therapeutic Ef-ficacy of Immune Checkpoint Blockade Independent of BRCAness. Cancer Res. 2019, 79, 311–319. [Google Scholar] [CrossRef] [PubMed]
  462. Bailey, S.R.; Nelson, M.H.; Majchrzak, K.; Bowers, J.S.; Wyatt, M.M.; Smith, A.S.; Neal, L.R.; Shirai, K.; Carpenito, C.; June, C.H.; et al. Human CD26 high T Cells Elicit Tumour Im-munity against Multiple Malignancies via Enhanced Migration and Persistence. Nat. Commun. 2017, 8, 1961. [Google Scholar] [CrossRef]
  463. Galati, D.; Zanotta, S.; Capone, M.; Madonna, G.; Mallardo, D.; Romanelli, M.; Sime-one, E.; Festino, L.; Sparano, F.; Azzaro, R.; et al. A PoPotential clinical implicationf CD4+CD26high T cells for nivolumab treated melanoma patients. J. Transl Med. 2023, 21, 318. [Google Scholar] [CrossRef]
  464. Franzese, O.; Palermo, B.; Frisullo, G.; Panetta, M.; Campo, G.; D’Andrea, D.; Sperduti, I.; Taje, R.; Visca, P.; Nisticò, P. ADA/CD26 axis increases intra-tumour PD-1+CD28+CD8+ T-cell fitness and affects NSCLC prognosis and response to ICB. Oncoimmunology 2024, 13, 2371051. [Google Scholar] [CrossRef] [PubMed]
  465. Torphy, R.J.; Sun, Y.; Lin, R.; Caffrey-Carr, A.; Fujiwara, Y.; Ho, F.; Miller, E.N.; McCarter, M.D.; Lyons, T.R.; Schulick, R.D.; et al. GPR182 limits antitumour immunity via chemokine scavenging in mouse melanoma models. Nat. Commun. 2022, 13, 97. [Google Scholar] [CrossRef] [PubMed]
  466. Sterner, R.C.; Sterner, R.M. CAR-T cell therapy: Current limitations and potential strat-egies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef]
  467. Uslu, U.; June, C.H. Beyond the blood: Expanding CAR T cell therapy to solid tu-mours. Nat. Biotechnol. 2025, 43, 506–515. [Google Scholar] [CrossRef]
  468. Foeng, J.; Comerford, I.; McColl, S.R. Harnessing the chemokine system to home CAR-T cells into solid tumours. Cell Rep. Med. 2022, 3, 100543. [Google Scholar] [CrossRef]
  469. Tian, Y.; Zhang, L.; Ping, Y.; Zhang, Z.; Yao, C.; Shen, C.; Li, F.; Wen, C.; Zhang, Y. CCR5 and IL-12 co-expression in CAR T cells improves antitumour efficacy by reprogramming tumour microenvironment in solid tumours. Cancer Immunol. Immunother. 2025, 74, 55. [Google Scholar] [CrossRef]
  470. Michaelides, S.; Obeck, H.; Kechur, D.; Endres, S.; Kobold, S. Migratory Engineering of T Cells for Cancer Therapy. Vaccines 2022, 10, 1845. [Google Scholar] [CrossRef]
  471. Zeng, Y.; Li, B.; Liang, Y.; Reeves, P.M.; Qu, X.; Ran, C.; Liu, Q.; Callahan, M.V.; Sluder, A.E.; Gelfand, J.A.; et al. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumour-bearing mice by prevention of immunosuppression in the tumour microenvironment. FASEB J. 2019, 33, 6596–6608. [Google Scholar] [CrossRef] [PubMed]
  472. Zheng, Y.; Xu, R.; Chen, X.; Lu, Y.; Zheng, J.; Lin, Y.; Lin, P.; Zhao, X.; Cui, L. Metabolic gatekeepers: Harnessing tumour-derived metabolites to optimize T cell-based immunotherapy efficacy in the tumour microenvironment. Cell Death Dis. 2024, 15, 775. [Google Scholar] [CrossRef]
  473. Liu, H.; Pan, M.; Liu, M.; Zeng, L.; Li, Y.; Huang, Z.; Guo, C.; Wang, H. Lactate: A rising star in tumours and inflammation. Fron. Immunol. 2024, 15, 1496390. [Google Scholar] [CrossRef]
  474. Doherty, J.R.; Cleveland, J.L. Targeting Lactate Metabolism for Cancer Therapeutics. J. Clin. Investig. 2013, 123, 685–692. [Google Scholar] [CrossRef] [PubMed]
  475. Wang, K.; Zhang, Y.; Chen, Z.N. Metabolic Interaction: Tumour-Derived Lactate Inhibiting CD8+ T Cell Cytotoxicity in a Novel Route. Signal Transduct. Target. Ther. 2023, 8, 52. [Google Scholar] [CrossRef]
  476. Cao, Z.; Xu, D.; Harding, J.; Chen, W.; Liu, X.; Wang, Z.; Wang, L.; Qi, T.; Chen, S.; Guo, X.; et al. Lactate oxidase nanocapsules boost T cell immunity and efficacy of cancer immunotherapy. Sci. Trans. Med. 2023, 15, eadd2712. [Google Scholar] [CrossRef] [PubMed]
  477. Rostamian, H.; Khakpoor-Koosheh, M.; Jafarzadeh, L.; Masoumi, E.; Fallah-Mehrjardi, K.; Tavassolifar, M.J.; MPawelek, J.; Mirzaei, H.R.; Hadjati, J. Restricting tumour lactic acid metabolism using dichloroacetate improves T cell functions. BMC Cancer 2022, 22, 39. [Google Scholar] [CrossRef]
  478. Corbin, A.; Hughes, S.; Quareshy, M.; Bopp, T.; Cipriani, B.; Miller, D.; Naylor, A.; Milne, G.; Turner, D.; Young, B.; et al. 1324 Inhibition of acid sensing by GPR65 normalises gene expression in macrophages, increases immune cell infiltration in tumours, and restrains subcutaneous MC38 growth in mice. J. Immunother. Cancer 2022, 10, A1375. [Google Scholar]
  479. Hack, S.P.; Zhu, A.X.; Wang, Y. Augmenting Anticancer Immunity through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities. Front. Immunol. 2020, 11, 2813. [Google Scholar] [CrossRef]
  480. Shrimali, R.K.; Yu, Z.; Theoret, M.R.; Chinnasamy, D.; Restifo, N.P.; Rosenberg, S.A. Anti-angiogenic agents can increase lymphocyte infiltration into tumour and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 2010, 70, 6171–6180. [Google Scholar] [CrossRef]
  481. Avram, G.; Sánchez-Sendra, B.; Martín, J.M.; Terrádez, L.; Ramos, D.; Monteagudo, C. The density and type of MECA-79-positive high endothelial venules correlate with lymphocytic infiltration and tumour regression in primary cutaneous melanoma. Histopathology 2013, 63, 852–861. [Google Scholar] [CrossRef] [PubMed]
  482. Martinet, L.; Le Guellec, S.; Filleron, T.; Lamant, L.; Meyer, N.; Rochaix, P.; Garrido, I.; Girard, J.P. High Endothelial Venules (HEVs) in Human Melanoma Lesions: Major Gateways for Tumour-Infiltrating Lymphocytes. Oncoimmunology 2012, 1, 829–839. [Google Scholar] [CrossRef] [PubMed]
  483. Johansson-Percival, A.; Ganss, R. Therapeutic induction of tertiary lymphoid structures in cancer through stromal remodeling. Front. Immunol. 2021, 12, 674375. [Google Scholar] [CrossRef] [PubMed]
  484. Yu, P.; Lee, Y.; Liu, W.; Chin, R.K.; Wang, J.; Wang, Y.; Schietinger, A.; Philip, M.; Schreiber, H.; Fu, Y.X. Priming of Naive T Cells Inside Tumours Leads to Eradication of Established Tumours. Nat. Immunol. 2004, 5, 141–149. [Google Scholar] [CrossRef]
  485. Yang, T.; Xiao, H.; Liu, X.; Wang, Z.; Zhang, Q.; Wei, N.; Guo, X. Vascular Normalization: A New Window Opened for Cancer Therapies. Front. Oncol. 2021, 11, 719836. [Google Scholar] [CrossRef]
  486. Neophytou, C.M.; Panagi, M.; Stylianopoulos, T.; Papageorgis, P. The Role of Tumour Microenvironment in Cancer Metastasis: Molecular Mechanisms and Therapeutic Opportunities. Cancers 2021, 13, 2053. [Google Scholar] [CrossRef]
  487. Reina, M.; Espel, E. Role of LFA-1 and ICAM-1 in Cancer. Cancers 2017, 9, 153. [Google Scholar] [CrossRef]
  488. Du, W.; Nair, P.; Johnston, A.; Wu, P.H.; Wirtz, D. Cell Trafficking at the Intersection of the Tumor-Immune Compartments. Ann. Rev. Biomed. Intersec. 2022, 24, 275–305. [Google Scholar] [CrossRef]
  489. Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular principles of metastasis: A hallmark of cancer revisited. Sign. Transd. Targ. Ther. 2020, 5, 28. [Google Scholar] [CrossRef]
  490. Zanotelli, M.R.; Zhang, J.; Ortiz, I.; Wang, W.; Chada, N.C.; Reinhart-King, C.A. Highly motile cells are metabolically responsive to collagen density. Proc. Natl. Acad. Sci. USA 2022, 119, e2114672119. [Google Scholar] [CrossRef]
  491. Kao, K.C.; Vilbois, S.; Tsai, C.H.; Ho, P.C. Metabolic communication in the tumour-immune microenvironment. Nat. Cell Biol. 2022, 24, 1574–1583. [Google Scholar] [CrossRef]
  492. Marzban, S.; Srivastava, S.; Kartika, S.; Bravo, R.; Safriel, R.; Zarski, A.; Anderson, A.R.A.; Chung, C.H.; Amelio, A.L.; West, J. Spatial interactions modulate tumor growth and immune infiltration. NPJ Syst. Biol. Appl. 2024, 10, 106. [Google Scholar] [CrossRef]
  493. Seager, R.J.; Hajal, C.; Spill, F.; Kamm, R.D.; Zaman, M.H. Dynamic interplay between tumour, stroma and immune system can drive or prevent tumour progression. Conv. Sci. Phys. Oncol. 2017, 3, 034002. [Google Scholar] [CrossRef] [PubMed]
  494. Frascoli, F.; Flood, E.; Kim, P.S. A model of the effects of cancer cell motility and cellular adhesion properties on tumour-immune dynamics. Math. Med. Biol. 2017, 34, 215–240. [Google Scholar] [CrossRef] [PubMed]
  495. Gorbachev, A.V.; Fairchild, R.L. Regulation of chemokine expression in the tumor microenvironment. Crit. Rev. Immunol. 2014, 34, 103–120. [Google Scholar] [CrossRef]
  496. Peng, D.; Kryczek, I.; Nagarsheth, N.; Zhao, L.; Wei, S.; Wang, W.; Sun, Y.; Zhao, E.; Vatan, L.; Szeliga, W.; et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 2015, 527, 249–253. [Google Scholar] [CrossRef] [PubMed]
  497. Tanese, K.; Grimm, E.A.; Ekmekcioglu, S. The role of melanoma tumor-derived nitric oxide in the tumor inflammatory microenvironment: Its impact on the chemokine expression profile, including suppression of CXCL10. Int. J. Cancer 2012, 131, 891–901. [Google Scholar] [CrossRef]
  498. Tseng, P.C.; Chen, C.L.; Lee, K.Y.; Feng, P.H.; Wang, Y.C.; Satria, R.D.; Lin, C.F. Epithelial-to-mesenchymal transition hinders IFN-γ-dependent immunosurveillance in lung cancer cells. Cancer Lett. 2022, 539, 215712. [Google Scholar] [CrossRef]
  499. Jorgovanovic, D.; Song, M.; Wang, L.; Zhang, Y. Roles of IFN-γ in tumor progression and regression: A review. Biomarker Res. 2020, 8, 49. [Google Scholar] [CrossRef]
  500. Wurzer, H.; Hoffmann, C.; Al Absi, A.; Thomas, C. Actin Cytoskeleton Straddling the Immunological Synapse between Cytotoxic Lymphocytes and Cancer Cells. Cells 2019, 8, 463. [Google Scholar] [CrossRef]
  501. Liang, H.; Huang, J.; Li, H.; He, W.; Ao, X.; Xie, Z.; Chen, Y.; Lv, Z.; Zhang, L.; Zhong, Y.; et al. Spatial Proximity of CD8+ T Cells to Tumor Cells Predicts Neoadjuvant Therapy Efficacy in Breast Cancer. NPJ Breast Cancer 2025, 11, 13. [Google Scholar] [CrossRef] [PubMed]
  502. Jin, S.; Guerrero-Juarez, C.F.; Zhang, L.; Chang, I.; Ramos, R.; Kuan, C.H.; Myung, P.; Plikus, M.V.; Nie, Q. Inference and Analysis of Cell-Cell Communication Using CellChat. Nat. Commun. 2021, 12, 1088. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Highlighted are key mechanisms regulating tumour cell motility in the TME, as discussed in the main text. EMT is regulated by TWIST, SNAIL, and ZEB1 transcription factors. CAFs play a crucial role in the activation of EMT by releasing IL-6, TGF-β, CXCL12, among others. Macrophages trigger EMT by releasing TGF-β, CCL2, and IL-6, which result in the upregulation of SNAIL. TMEM doorways consist of stable tri-cellular structures that predominantly form at vascular bifurcations, comprising a Mena expressing tumour cell, a perivascular Tie2High macrophage, and an endothelial cell, promoting tumour cell extravasation and membrane degradation. The pointed arrow indicates activation. This figure was created on Biorender.com (accessed 29 March 2025).
Figure 1. Highlighted are key mechanisms regulating tumour cell motility in the TME, as discussed in the main text. EMT is regulated by TWIST, SNAIL, and ZEB1 transcription factors. CAFs play a crucial role in the activation of EMT by releasing IL-6, TGF-β, CXCL12, among others. Macrophages trigger EMT by releasing TGF-β, CCL2, and IL-6, which result in the upregulation of SNAIL. TMEM doorways consist of stable tri-cellular structures that predominantly form at vascular bifurcations, comprising a Mena expressing tumour cell, a perivascular Tie2High macrophage, and an endothelial cell, promoting tumour cell extravasation and membrane degradation. The pointed arrow indicates activation. This figure was created on Biorender.com (accessed 29 March 2025).
Cancers 17 01547 g001
Figure 2. Highlighted are key mechanisms regulating intra-tumoural T-cell infiltration, as discussed in the main text. IFN-γ is a major driver of the CXCR3–CXCL9/10/11 axis, promoting T-cell recruitment. CCL4 recruits CD103+ DCs via CCR5, facilitating CD8+ T-cell accumulation. β-catenin signalling suppresses CCL4 transcription through ATF3, impairing CD103+ DC recruitment and subsequent T-cell infiltration. CCL5 is associated with cancer cell migration, but it also enhances CD8+ T-cell recruitment into the TME. CCL22 primarily binds CCR4, which is expressed on Tregs, promoting their accumulation. CD103 binds to E-cadherin, facilitating the retention of tissue resident TRM within the TME. The CXCR6/CXCL16 axis plays a critical role in intra-tumoural T-cell retention. TRM cells enhance the recruitment of circulating T lymphocytes by producing IFN-γ, which upregulates chemokine release. The pointed arrow indicates activation; the flat-tipped arrow indicates inhibition. This figure was created on Biorender.com (accessed 18 April 2025).
Figure 2. Highlighted are key mechanisms regulating intra-tumoural T-cell infiltration, as discussed in the main text. IFN-γ is a major driver of the CXCR3–CXCL9/10/11 axis, promoting T-cell recruitment. CCL4 recruits CD103+ DCs via CCR5, facilitating CD8+ T-cell accumulation. β-catenin signalling suppresses CCL4 transcription through ATF3, impairing CD103+ DC recruitment and subsequent T-cell infiltration. CCL5 is associated with cancer cell migration, but it also enhances CD8+ T-cell recruitment into the TME. CCL22 primarily binds CCR4, which is expressed on Tregs, promoting their accumulation. CD103 binds to E-cadherin, facilitating the retention of tissue resident TRM within the TME. The CXCR6/CXCL16 axis plays a critical role in intra-tumoural T-cell retention. TRM cells enhance the recruitment of circulating T lymphocytes by producing IFN-γ, which upregulates chemokine release. The pointed arrow indicates activation; the flat-tipped arrow indicates inhibition. This figure was created on Biorender.com (accessed 18 April 2025).
Cancers 17 01547 g002
Figure 3. Highlighted are key mechanisms regulating intra-tumoural T-cell infiltration, as discussed in the main text. CCL18 produced by M2 TAMs facilitates the recruitment of Treg, CAFs, and immature DCs via its receptor PITPNM3 to the tumour niche. Immature DCs then differentiate into tumour-associated dendritic cells (TADCs), which promote tumour progression by secreting IL-10 and IDO. CXCL12 secreted by tumour cells facilitates the recruitment of Tregs and MDSCs while inducing immunosuppressive M2 TAM switch. The pointed arrow indicates activation. This figure was created on Biorender.com (accessed 18 April 2025).
Figure 3. Highlighted are key mechanisms regulating intra-tumoural T-cell infiltration, as discussed in the main text. CCL18 produced by M2 TAMs facilitates the recruitment of Treg, CAFs, and immature DCs via its receptor PITPNM3 to the tumour niche. Immature DCs then differentiate into tumour-associated dendritic cells (TADCs), which promote tumour progression by secreting IL-10 and IDO. CXCL12 secreted by tumour cells facilitates the recruitment of Tregs and MDSCs while inducing immunosuppressive M2 TAM switch. The pointed arrow indicates activation. This figure was created on Biorender.com (accessed 18 April 2025).
Cancers 17 01547 g003
Figure 4. Highlighted are key mechanisms regulating intra-tumoural T-cell infiltration, as discussed in the main text. T-cell migration and infiltration into the TME are influenced by a complex interplay of chemokines, adhesion molecules, metabolic pathways, and ECM remodelling. CXCL13, mainly produced by Tfh in TLS and TRM cells, binds CXCR5, facilitating immune cell trafficking. LFA-1 forms specialised structures called podosomes, which interact with ICAM-1-enriched endothelial invaginations, enabling transcellular migration. Within migrating T-cells, LFA-1 in the focal zone controls adhesion, while LFA-1 at the leading edge regulates speed and direction. CD28 signalling promotes T-cell migration from lymphoid tissues to sites of inflammation, requiring PI3K-dependent motility and trafficking regulation. The ECM significantly influences T-cell migration to tumours. Abnormal ECM remodelling in the TME generates a dense, stiff matrix, acting as a physical barrier that restricts T-cell infiltration. The collagen receptor DDR1 contributes to immune evasion by aligning collagen fibres, further limiting T-cell movement. CCL18 enhances collagen receptor LAIR1 expression. HIF-1α upregulation promotes pro-angiogenic VEGF-A, leading to excessive neovascularisation and the formation of structurally abnormal blood vessels. Additionally, endothelial FASL expression correlates with CD8+ T-cell exclusion from tumours. The glycolytic pathway is required for CXCL10-induced migration of activated T-cells. However, lactate accumulation impairs CD4+ T-cell motility by disrupting glycolysis, particularly upon CXCR3-CXCL10 engagement, whereas CD8+ T-cell motility primarily relies on TCA cycle metabolism. Treg migration depends on a PI3K/mTORC2 pathway, activated through integrins and chemokine receptors. The pointed arrow indicates activation; the flat-tipped arrow indicates inhibition. This figure was created on Biorender.com (accessed 29 March 2025).
Figure 4. Highlighted are key mechanisms regulating intra-tumoural T-cell infiltration, as discussed in the main text. T-cell migration and infiltration into the TME are influenced by a complex interplay of chemokines, adhesion molecules, metabolic pathways, and ECM remodelling. CXCL13, mainly produced by Tfh in TLS and TRM cells, binds CXCR5, facilitating immune cell trafficking. LFA-1 forms specialised structures called podosomes, which interact with ICAM-1-enriched endothelial invaginations, enabling transcellular migration. Within migrating T-cells, LFA-1 in the focal zone controls adhesion, while LFA-1 at the leading edge regulates speed and direction. CD28 signalling promotes T-cell migration from lymphoid tissues to sites of inflammation, requiring PI3K-dependent motility and trafficking regulation. The ECM significantly influences T-cell migration to tumours. Abnormal ECM remodelling in the TME generates a dense, stiff matrix, acting as a physical barrier that restricts T-cell infiltration. The collagen receptor DDR1 contributes to immune evasion by aligning collagen fibres, further limiting T-cell movement. CCL18 enhances collagen receptor LAIR1 expression. HIF-1α upregulation promotes pro-angiogenic VEGF-A, leading to excessive neovascularisation and the formation of structurally abnormal blood vessels. Additionally, endothelial FASL expression correlates with CD8+ T-cell exclusion from tumours. The glycolytic pathway is required for CXCL10-induced migration of activated T-cells. However, lactate accumulation impairs CD4+ T-cell motility by disrupting glycolysis, particularly upon CXCR3-CXCL10 engagement, whereas CD8+ T-cell motility primarily relies on TCA cycle metabolism. Treg migration depends on a PI3K/mTORC2 pathway, activated through integrins and chemokine receptors. The pointed arrow indicates activation; the flat-tipped arrow indicates inhibition. This figure was created on Biorender.com (accessed 29 March 2025).
Cancers 17 01547 g004
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Aquino, A.; Franzese, O. Reciprocal Modulation of Tumour and Immune Cell Motility: Uncovering Dynamic Interplays and Therapeutic Approaches. Cancers 2025, 17, 1547. https://doi.org/10.3390/cancers17091547

AMA Style

Aquino A, Franzese O. Reciprocal Modulation of Tumour and Immune Cell Motility: Uncovering Dynamic Interplays and Therapeutic Approaches. Cancers. 2025; 17(9):1547. https://doi.org/10.3390/cancers17091547

Chicago/Turabian Style

Aquino, Angelo, and Ornella Franzese. 2025. "Reciprocal Modulation of Tumour and Immune Cell Motility: Uncovering Dynamic Interplays and Therapeutic Approaches" Cancers 17, no. 9: 1547. https://doi.org/10.3390/cancers17091547

APA Style

Aquino, A., & Franzese, O. (2025). Reciprocal Modulation of Tumour and Immune Cell Motility: Uncovering Dynamic Interplays and Therapeutic Approaches. Cancers, 17(9), 1547. https://doi.org/10.3390/cancers17091547

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop