Analysis of Stereotyped B-Cell Receptor Frequencies Among Portuguese De Novo-Diagnosed Chronic Lymphocytic Leukemia Patients (PAIS Study)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Study Endpoints
2.3. Statistical Analysis
3. Results
3.1. Study Population and Baseline Characteristics
3.2. BcR Stereotypes Frequency Among Portuguese Patients with De Novo CLL Diagnosis
3.3. IGHV Mutational Profile Among Portuguese Patients with De Novo CLL Diagnosis
3.4. Demographic Characterization of Newly Diagnosed Portuguese CLL Patients According to the BcR Profile (Heterogeneous)
3.5. Clinical Characterization of Newly Diagnosed Portuguese CLL Patients According to the BcR Profile (Heterogeneous)
3.6. Demographic Characterization of Newly Diagnosed Portuguese CLL Patients According to the IGHV Mutational Status (Mutated vs. Unmutated)
3.7. Clinical Characterization of Newly Diagnosed Portuguese CLL Patients According to the IGHV Mutational Status (Mutated vs. Unmutated)
4. Discussion
5. Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Byrd, J.C.; Flynn, J.M. 102—Chronic Lymphocytic Leukemia. In Abeloff’s Clinical Oncology, 5th ed.; Niederhuber, J.E., Armitage, J.O., Doroshow, J.H., Kastan, M.B., Tepper, J.E., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 2014; pp. 1958–1978.e7. [Google Scholar]
- Ou, Y.; Long, Y.; Ji, L.; Zhan, Y.; Qiao, T.; Wang, X.; Chen, H.; Cheng, Y. Trends in Disease Burden of Chronic Lymphocytic Leukemia at the Global, Regional, and National Levels from 1990 to 2019, and Projections Until 2030: A Population-Based Epidemiologic Study. Front. Oncol. 2022, 12, 840616. [Google Scholar] [CrossRef] [PubMed]
- Cardoso Borges, F.; Ramos, A.; Lourenço, A.; Gomes da Silva, M.; Miranda, A. Detailing the epidemiological and clinical characteristics of chronic lymphocytic leukaemia in Portugal-Results from a population-based cancer registry cohort study. PLoS ONE 2021, 16, e0258423. [Google Scholar] [CrossRef] [PubMed]
- The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. Cancer Stat Facts: Leukemia—Chronic Lymphocytic Leukemia (CLL). 2021. Available online: https://seer.cancer.gov/statfacts/html/clyl.html (accessed on 10 January 2025).
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef]
- Rawstron, A.C.; Kreuzer, K.A.; Soosapilla, A.; Spacek, M.; Stehlikova, O.; Gambell, P.; McIver-Brown, N.; Villamor, N.; Psarra, K.; Arroz, M.; et al. Reproducible diagnosis of chronic lymphocytic leukemia by flow cytometry: An European Research Initiative on CLL (ERIC) & European Society for Clinical Cell Analysis (ESCCA) Harmonisation project. Cytom. B Clin. Cytom. 2018, 94, 121–128. [Google Scholar] [CrossRef]
- van Dongen, J.J.M.; Lhermitte, L.; Böttcher, S.; Almeida, J.; van der Velden, V.H.J.; Flores-Montero, J.; Rawstron, A.; Asnafi, V.; Lécrevisse, Q.; Lucio, P.; et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012, 26, 1908–1975. [Google Scholar] [CrossRef]
- Rai, K.R.; Sawitsky, A.; Cronkite, E.P.; Chanana, A.D.; Levy, R.N.; Pasternack, B.S. Clinical staging of chronic lymphocytic leukemia. Blood 1975, 46, 219–234. [Google Scholar] [CrossRef]
- Binet, J.L.; Auquier, A.; Dighiero, G.; Chastang, C.; Piguet, H.; Goasguen, J.; Vaugier, G.; Potron, G.; Colona, P.; Oberling, F.; et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981, 48, 198–206. [Google Scholar] [CrossRef]
- deAndrés-Galiana, E.J.; Fernández-Martínez, J.L.; Luaces, O.; del Coz, J.J.; Huergo-Zapico, L.; Acebes-Huerta, A.; González, S.; González-Rodríguez, A.P. Analysis of clinical prognostic variables for Chronic Lymphocytic Leukemia decision-making problems. J. Biomed. Inform. 2016, 60, 342–351. [Google Scholar] [CrossRef]
- Hampel, P.J.; Parikh, S.A. Chronic lymphocytic leukemia treatment algorithm 2022. Blood Cancer J. 2022, 12, 161. [Google Scholar] [CrossRef]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef] [PubMed]
- Ten Hacken, E.; Gounari, M.; Ghia, P.; Burger, J.A. The importance of B cell receptor isotypes and stereotypes in chronic lymphocytic leukemia. Leukemia 2019, 33, 287–298. [Google Scholar] [CrossRef]
- Hamblin, T.J.; Davis, Z.; Gardiner, A.; Oscier, D.G.; Stevenson, F.K. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999, 94, 1848–1854. [Google Scholar] [CrossRef]
- Seifert, M.; Sellmann, L.; Bloehdorn, J.; Wein, F.; Stilgenbauer, S.; Dürig, J.; Küppers, R. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J. Exp. Med. 2012, 209, 2183–2198. [Google Scholar] [CrossRef]
- Agathangelidis, A.; Chatzidimitriou, A.; Gemenetzi, K.; Giudicelli, V.; Karypidou, M.; Plevova, K.; Davis, Z.; Yan, X.J.; Jeromin, S.; Schneider, C.; et al. Higher-order connections between stereotyped subsets: Implications for improved patient classification in CLL. Blood 2021, 137, 1365–1376. [Google Scholar] [CrossRef]
- Iyer, P.; Wang, L. Emerging Therapies in CLL in the Era of Precision Medicine. Cancers 2023, 15, 1583. [Google Scholar] [CrossRef]
- Agathangelidis, A.; Chatzidimitriou, A.; Chatzikonstantinou, T.; Tresoldi, C.; Davis, Z.; Giudicelli, V.; Kossida, S.; Belessi, C.; Rosenquist, R.; Ghia, P.; et al. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: The 2022 update of the recommendations by ERIC, the European Research Initiative on CLL. Leukemia 2022, 36, 1961–1968. [Google Scholar] [CrossRef]
- Galieni, P.; Troiani, E.; Picardi, P.; Angelini, M.; Mestichelli, F.; Dalsass, A.; Maravalle, D.; Camaioni, E.; Bigazzi, C.; Caraffa, P.; et al. Unmutated IGHV at diagnosis in patients with early stage CLL independently predicts for shorter follow-up time to first treatment (TTFT). Leuk. Res. 2024, 143, 107541. [Google Scholar] [CrossRef]
- Jiménez de Oya, N.; De Giovanni, M.; Fioravanti, J.; Übelhart, R.; Di Lucia, P.; Fiocchi, A.; Iacovelli, S.; Efremov, D.G.; Caligaris-Cappio, F.; Jumaa, H.; et al. Pathogen-specific B-cell receptors drive chronic lymphocytic leukemia by light-chain-dependent cross-reaction with autoantigens. EMBO Mol. Med. 2017, 9, 1482–1490. [Google Scholar] [CrossRef]
- Del Giudice, I.; Chiaretti, S.; Santangelo, S.; Tavolaro, S.; Peragine, N.; Marinelli, M.; Ilari, C.; Raponi, S.; Messina, M.; Nanni, M.; et al. Stereotyped subset #1 chronic lymphocytic leukemia: A direct link between B-cell receptor structure, function, and patients’ prognosis. Am. J. Hematol. 2014, 89, 74–82. [Google Scholar] [CrossRef]
- Agathangelidis, A.; Chatzikonstantinou, T.; Stamatopoulos, K. B-cell receptor immunoglobulin stereotypy in chronic lymphocytic leukemia: Key to understanding disease biology and stratifying patients. Semin. Hematol. 2024, 61, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am. J. Hematol. 2019, 94, 1266–1287. [Google Scholar] [CrossRef] [PubMed]
- Agathangelidis, A.; Darzentas, N.; Hadzidimitriou, A.; Brochet, X.; Murray, F.; Yan, X.J.; Davis, Z.; van Gastel-Mol, E.J.; Tresoldi, C.; Chu, C.C.; et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: A molecular classification with implications for targeted therapies. Blood 2012, 119, 4467–4475. [Google Scholar] [CrossRef] [PubMed]
- Stamatopoulos, K.; Belessi, C.; Moreno, C.; Boudjograh, M.; Guida, G.; Smilevska, T.; Belhoul, L.; Stella, S.; Stavroyianni, N.; Crespo, M.; et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: Pathogenetic implications and clinical correlations. Blood 2007, 109, 259–270. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ 2007, 335, 806–808. [Google Scholar] [CrossRef]
- Marinelli, M.; Ilari, C.; Xia, Y.; Del Giudice, I.; Cafforio, L.; Della Starza, I.; Raponi, S.; Mariglia, P.; Bonina, S.; Yu, Z.; et al. Immunoglobulin gene rearrangements in Chinese and Italian patients with chronic lymphocytic leukemia. Oncotarget 2016, 7, 20520–20531. [Google Scholar] [CrossRef]
- Yao, C.Y.; Agathangelidis, A.; Chuang, S.S.; Tsou, H.H.; Feng, W.L.; Liu, T.C.; Chen, T.Y.; Yu, Y.B.; Yeh, S.P.; Yao, M.; et al. Distinct Immunogenetic Profiles of Chronic Lymphocytic Leukemia in Asia: A Taiwan Cooperative Oncology Group Registry Study. Hemasphere 2022, 6, e803. [Google Scholar] [CrossRef]
- Wu, S.J.; Lin, C.T.; Agathangelidis, A.; Lin, L.I.; Kuo, Y.Y.; Tien, H.F.; Ghia, P. Distinct molecular genetics of chronic lymphocytic leukemia in Taiwan: Clinical and pathogenetic implications. Haematologica 2017, 102, 1085–1090. [Google Scholar] [CrossRef]
- Huang, Y.J.; Kuo, M.C.; Chang, H.; Wang, P.N.; Wu, J.H.; Huang, Y.M.; Ma, M.C.; Tang, T.C.; Kuo, C.Y.; Shih, L.Y. Distinct immunoglobulin heavy chain variable region gene repertoire and lower frequency of del(11q) in Taiwanese patients with chronic lymphocytic leukaemia. Br. J. Haematol. 2019, 187, 82–92. [Google Scholar] [CrossRef]
- Baliakas, P.; Hadzidimitriou, A.; Sutton, L.A.; Minga, E.; Agathangelidis, A.; Nichelatti, M.; Tsanousa, A.; Scarfò, L.; Davis, Z.; Yan, X.J.; et al. Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: A retrospective multicentre study. Lancet Haematol. 2014, 1, e74–e84. [Google Scholar] [CrossRef]
- Bomben, R.; Dal Bo, M.; Capello, D.; Forconi, F.; Maffei, R.; Laurenti, L.; Rossi, D.; Del Principe, M.I.; Zucchetto, A.; Bertoni, F.; et al. Molecular and clinical features of chronic lymphocytic leukaemia with stereotyped B cell receptors: Results from an Italian multicentre study. Br. J. Haematol. 2009, 144, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Ntoufa, S.; Papakonstantinou, N.; Apollonio, B.; Gounari, M.; Galigalidou, C.; Fonte, E.; Anagnostopoulos, A.; Belessi, C.; Muzio, M.; Ghia, P.; et al. B Cell Anergy Modulated by TLR1/2 and the miR-17∼92 Cluster Underlies the Indolent Clinical Course of Chronic Lymphocytic Leukemia Stereotyped Subset #4. J. Immunol. 2016, 196, 4410–4417. [Google Scholar] [CrossRef] [PubMed]
- Murray, F.; Darzentas, N.; Hadzidimitriou, A.; Tobin, G.; Boudjogra, M.; Scielzo, C.; Laoutaris, N.; Karlsson, K.; Baran-Marzsak, F.; Tsaftaris, A.; et al. Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: Implications for the role of antigen selection in leukemogenesis. Blood 2008, 111, 1524–1533. [Google Scholar] [CrossRef] [PubMed]
- Gaidano, G.; Rossi, D. The mutational landscape of chronic lymphocytic leukemia and its impact on prognosis and treatment. Hematol. Am. Soc. Hematol. Educ. Program 2017, 2017, 329–337. [Google Scholar] [CrossRef]
- Wierda, W.G.; Wang, X.; Obrien, S.; Faderl, S.; Ferrajoli, A.; Thomas, D.; Ravandi, F.; Cortes, J.; Giles, F.; Koller, C.; et al. Serum Beta-2 Microglobulin: The Universal Independent Prognostic Factor for Patients with CLL. Blood 2005, 106, 5018. [Google Scholar] [CrossRef]
- White, A.M.; Best, O.G.; Hotinski, A.K.; Kuss, B.J.; Thurgood, L.A. The Role of Cholesterol in Chronic Lymphocytic Leukemia Development and Pathogenesis. Metabolites 2023, 13, 799. [Google Scholar] [CrossRef]
BcR Subtypes | IGHV Mutational Status | Signaling Properties | Genetic Alterations | Clinical Features |
---|---|---|---|---|
#1 | Unmutated | Functional | Deletion of 11q, 17p, NOTCH1, NFKBIE mutations | Aggressive (median TTFT of 1.6 yrs) |
#2 | Mutated and Unmutated | Functional | Deletion of 11q and 13q, SF3B1 mutations | Aggressive (median TTFT of 1.9 yrs) |
#4 | Mutated | Anergic BCRs | Deletion of 13q | Indolent (median TTFT of 11 yrs) |
#8 | Unmutated | Functional | Trisomy 12, NOTCH1 mutations | Aggressive (median TTFT of 1.5 yrs), increased risk of Richter’s transformation |
Baseline Demographic Characteristics | Overall (n = 463) n (%) |
---|---|
Age at diagnosis | |
Median (Q1–Q3) | 72 (62.0–79.0) |
Male sex | 277 (59.8) |
BMI | |
Median (Q1–Q3) | 26.6 (24.2–29.7) |
Missing (n) | 98 |
Birthplace | |
Aveiro | 86 (18.57) |
Beja | 26 (5.62) |
Braga | 23 (4.97) |
Bragança | 6 (1.30) |
Castelo Branco | 10 (2.16) |
Coimbra | 20 (4.32) |
Évora | 7 (1.51) |
Faro | 11 (2.38) |
Guarda | 10 (2.16) |
Leiria | 18 (3.89) |
Lisboa | 97 (20.95) |
Portalegre | 8 (1.73) |
Porto | 41 (8.86) |
Santarém | 34 (7.34) |
Setúbal | 16 (3.46) |
Viana do Castelo | 0 (0.00) |
Vila Real | 11 (2.38) |
Viseu | 37 (7.99) |
Açores | 1 (0.22) |
Madeira | 1 (0.22) |
Missing (n) | 0 |
Baseline Clinical Characteristics | Overall (n = 463) n (%) |
---|---|
Comorbidities | |
Hypertension | 282 (61.7) |
Missing (n) | 6 |
Atrial Fibrillation | 48 (10.5) |
Missing (n) | 8 |
Other cardiovascular disease | 95 (20.8) |
Missing (n) | 7 |
Dyslipidemia | 22 (23.2) |
Missing (n) | 0 |
Diabetes | 104 (23.1) |
Missing (n) | 13 |
Psychiatric disease | 30 (6.6) |
Missing (n) | 7 |
Respiratory disease | 46 (10.1) |
Missing (n) | 6 |
Renal disease | 28 (6.6) |
Missing (n) | 40 |
Neurological disease | 36 (7.8) |
Missing (n) | 4 |
Rai staging system | |
Stage 0 | 250 (54.0) |
Stage I | 152 (32.8) |
Stage II | 37 (8.0) |
Stage III | 11 (2.4) |
Stage IV | 13 (2.8) |
Missing (n) | 0 |
Mutational status (del(17p)/TP53) | |
del(17p) | 2 (0.4) |
Missing (n) | 365 |
TP53 mutations | 3 (0.7) |
Missing (n) | 445 |
β2-microglobulin concentration (mg/L) | |
Median (Q1–Q3) | 2.4 (2.0–3.4) |
Missing (n) | 199 |
BcR Subtypes | Overall (n = 463) n (%) |
---|---|
#1 | 17 (3.9) |
#2 | 2 (0.5) |
#3 | 1 (0.2) |
#4 | 3 (0.7) |
#5 | 1 (0.2) |
#6 | 4 (0.9) |
#7H | 0 (0.0) |
#8 | 4 (0.9) |
#12 | 0 (0.0) |
#14 | 1 (0.2) |
#16 | 1 (0.2) |
#28A | 1 (0.2) |
#31 | 0 (0.0) |
#59 | 2 (0.5) |
#64B | 1 (0.2) |
#77 | 3 (0.7) |
#99 | 1 (0.2) |
#201 | 1 (0.2) |
#202 | 0 (0.0) |
Other subset | 0 (0.0) |
Heterogeneous * | 393 (90.1) |
Missing (n) | 27 |
IGHV Mutational Status | Overall (n = 463) |
---|---|
Mutated (n, %) | 265 (57.2) |
Homology 1 (n) | 265 |
Median (% (Q1–Q3)) | 93.8 (91.3–95.5) |
Missing (n) | 0 |
Homology 2 (n) | 32 |
Median (% (Q1–Q3)) | 94.1 (90.5–96.5) |
Missing (n) | 233 |
Unmutated (n, %) | 171 (36.9) |
Homology 1 (n) | 171 |
Median (% (Q1–Q3)) | 100.0 (100.0–100.0) |
Missing (n) | 0 |
Homology 2 (n) | 27 |
Median (% (Q1–Q3)) | 100.0 (96.4–100.0) |
Missing (n) | 144 |
Demographic Characteristics | Overall (n = 463) n (%) | Heterogeneous BcR (n = 393) n (%) |
---|---|---|
Age at diagnosis | ||
Median (Q1–Q3) | 72 (62.0–79.0) | 71.0 (62.0–79.0) |
Male sex | 277 (59.8) | 238 (60.6) |
Missing (n) | 0 | 0 |
BMI | ||
Median (Q1–Q3) | 26.6 (24.2–29.7) | 26.8 (24.2–29.8) |
Missing (n) | 98 | 82 |
Clinical Characteristics | Overall (n = 463) n (%) | Heterogeneous BcR (n = 393) n (%) |
---|---|---|
Comorbidities * | ||
Hypertension | 282 (61.7) | 246 (63.4) |
Missing (n) | 6 | 5 |
Atrial Fibrillation | 48 (10.5) | 41 (10.6) |
Missing (n) | 8 | 7 |
Other CVD | 95 (20.8) | 78 (20.2) |
Missing (n) | 7 | 6 |
Dyslipidemia | 22 (23.2) | 18 (23.1) |
Diabetes | 104 (23.1) | 92 (24.1) |
Missing (n) | 13 | 11 |
Psychiatric disease | 30 (6.6) | 26 (6.7) |
Missing (n) | 7 | 6 |
Respiratory disease | 46 (10.1) | 43 (11.1) |
Missing (n) | 6 | 5 |
Renal disease | 28 (6.6) | 23 (6.4) |
Missing (n) | 40 | 36 |
Neurological disease | 36 (7.8) | 30 (7.71) |
Missing (n) | 4 | 4 |
Rai staging system | ||
Stage 0 | 250 (54.0) | 209 (53.2) |
Stage I | 152 (32.8) | 131 (33.3) |
Stage II | 37 (8.0) | 31 (7.9) |
Stage III | 11 (2.4) | 10 (2.5) |
Stage IV | 13 (2.8) | 12 (3.1) |
Missing (n) | 0 | 0 |
Mutational status (del(17p)/TP53) | ||
del(17p) | 2 (0.4) | 2 (2.3) |
Missing (n) | 365 | 305 |
TP53 mutations | 3 (0.7) | 2 (13.3) |
Missing (n) | 445 | 378 |
β2-microglobulin (mg/L) | ||
Median (Q1–Q3) | 2.4 (2.0–3.4) | 2.4 (2.0–3.4) |
Missing (n) | 199 | 162 |
Demographic Characteristics | Overall (n = 436) n (%) | Mutated IGHV (n = 265) n (%) | Unmutated IGHV (n = 171) n (%) | p-Value (Mutated vs. Unmutated IGHV) |
---|---|---|---|---|
Age at diagnosis | 0.381 (a) | |||
Median (Q1–Q3) | 71.0 (62.0–79.0) | 71.0 (61.0–80.0) | 72.0 (64.0–78.0) | |
Male sex | 259 (59.4) | 155 (58.5) | 104 (60.8) | 0.629 (b) |
Missing (n) | 0 | 0 | 0 | |
BMI | 0.152 (a) | |||
Median (Q1–Q3) | 26.5 (24.2–29.6) | 26.8 (24.2–29.7) | 26.1 (24.1–29.6) | |
Missing (n) | 90 | 61 | 29 | |
Birthplace | <0.001 (c) | |||
Aveiro | 78 (17.9) | 54 (20.4) | 24 (14.0) | |
Beja | 22 (5.1) | 13 (4.9) | 9 (5.3) | |
Braga | 23 (5.3) | 14 (5.3) | 9 (5.3) | |
Bragança | 6 (1.4) | 3 (1.1) | 3 (1.8) | |
Castelo Branco | 10 (2.3) | 6 (2.3) | 4 (2.3) | |
Coimbra | 20 (4.6) | 15 (5.7) | 5 (2.9) | |
Évora | 7 (1.6) | 1 (0.4) | 6 (3.5) | |
Faro | 10 (2.3) | 5 (1.9) | 5 (2.9) | |
Guarda | 9 (2.1) | 6 (2.3) | 3 (1.8) | |
Leiria | 17 (3.9) | 11 (4.2) | 6 (3.5) | |
Lisbon | 90 (20.6) | 52 (19.6) | 38 (22.2) | |
Portalegre | 8 (1.8) | 6 (2.3) | 2 (1.2) | |
Oporto | 39 (8.9) | 25 (9.4) | 14 (8.2) | |
Santarém | 33 (7.6) | 14 (5.3) | 19 (11.1) | |
Setúbal | 15 (3.4) | 10 (3.8) | 5 (2.9) | |
Viana do Castelo | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Vila Real | 11 (2.5) | 7 (2.6) | 4 (2.3) | |
Viseu | 36 (8.3) | 21 (7.9) | 15 (8.8) | |
Azores | 1 (0.2) | 1 (0.4) | 0 (0.0) | |
Madeira | 1 (0.2) | 1 (0.4) | 0 (0.0) | |
Missing (n) | 0 | 0 | 0 |
Clinical Characteristics | Overall (n = 436) n (%) | Mutated IGHV (n = 265) n (%) | Unmutated IGHV (n = 171) n (%) | p-Value (Mutated vs. Unmutated IGHV) |
---|---|---|---|---|
Comorbidities * | ||||
Hypertension | 272 (63.1) | 166 (63.6) | 106 (62.4) | 0.793 (a) |
Missing (n) | 5 | 4 | 1 | |
Atrial Fibrillation | 48 (11.2) | 26 (10.0) | 22 (13.0) | 0.333 (a) |
Missing (n) | 7 | 5 | 2 | |
Other CVD | 90 (20.9) | 55 (21.1) | 35 (20.7) | <0.001 (b) |
Missing (n) | 6 | 4 | 2 | |
Dyslipidemia | 21 (23.3) | 12 (21.8) | 9 (25.7) | |
Diabetes | 99 (23.4) | 60 (23.4) | 39 (23.2) | 0.958 (a) |
Missing (n) | 12 | 9 | 3 | |
Psychiatric disease | 29 (6.7) | 13 (5.0) | 16 (9.5) | 0.070 (a) |
Missing (n) | 6 | 4 | 2 | |
Respiratory disease | 46 (10.7) | 27 (10.3) | 19 (11.2) | 0.785 (a) |
Missing (n) | 5 | 4 | 1 | |
Renal disease | 27 (6.8) | 13 (5.4) | 14 (9.0) | 0.163 (a) |
Missing (n) | 38 | 23 | 15 | |
Neurological disease | 33 (7.6) | 22 (8.4) | 11 (6.4) | 0.445 (a) |
Missing (n) | 4 | 4 | 0 | |
Rai staging system | 0.009 (a) | |||
Stage 0 | 231 (53.0) | 155 (58.5) | 76 (44.4) | |
Stage I | 145 (33.3) | 85 (32.1) | 60 (35.1) | |
Stage II | 36 (8.3) | 15 (5.7) | 21 (12.3) | |
Stage III | 11 (2.5) | 4 (1.5) | 7 (4.1) | |
Stage IV | 11 (2.5) | 6 (2.3) | 7 (4.1) | |
Missing (n) | 0 | 0 | 0 | |
Mutational status (del(17p)/TP53) | ||||
del(17p) | 2 (2.2) | 0 (0.0) | 2 (5.0) | 0.186 (b) |
Missing (n) | 344 | 213 | 131 | |
TP53 mutations | 3 (18.7) | 1 (20.0) | 2 (18.2) | 1.000 (b) |
Missing (n) | 420 | 260 | 160 | |
β2-microglobulin (mg/L) | <0.001 (c) | |||
Median (Q1–Q3) | 2.4 (2.0–3.4) | 2.3 (1.9–2.9) | 2.7 (2.1–4.3) | |
Missing (n) | 186 | 111 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, D.; Ferreira, G.; Caldas, J.; Fernandes, M.; Gaspar, C.; Alpoim, M.; Carvalhais, I.; Duarte, S.; Silva, H.; Montalvão, A.; et al. Analysis of Stereotyped B-Cell Receptor Frequencies Among Portuguese De Novo-Diagnosed Chronic Lymphocytic Leukemia Patients (PAIS Study). Cancers 2025, 17, 1316. https://doi.org/10.3390/cancers17081316
Alves D, Ferreira G, Caldas J, Fernandes M, Gaspar C, Alpoim M, Carvalhais I, Duarte S, Silva H, Montalvão A, et al. Analysis of Stereotyped B-Cell Receptor Frequencies Among Portuguese De Novo-Diagnosed Chronic Lymphocytic Leukemia Patients (PAIS Study). Cancers. 2025; 17(8):1316. https://doi.org/10.3390/cancers17081316
Chicago/Turabian StyleAlves, Daniela, Gisela Ferreira, Joana Caldas, Mariana Fernandes, Cátia Gaspar, Mafalda Alpoim, Inês Carvalhais, Sara Duarte, Helena Silva, Ana Montalvão, and et al. 2025. "Analysis of Stereotyped B-Cell Receptor Frequencies Among Portuguese De Novo-Diagnosed Chronic Lymphocytic Leukemia Patients (PAIS Study)" Cancers 17, no. 8: 1316. https://doi.org/10.3390/cancers17081316
APA StyleAlves, D., Ferreira, G., Caldas, J., Fernandes, M., Gaspar, C., Alpoim, M., Carvalhais, I., Duarte, S., Silva, H., Montalvão, A., Vargas, F., Ribeiro, T., António, A., Coutinho, R., Miranda, F., Maia, T., Gomes, M., Carda, J., Matos, S., ... Raposo, J. (2025). Analysis of Stereotyped B-Cell Receptor Frequencies Among Portuguese De Novo-Diagnosed Chronic Lymphocytic Leukemia Patients (PAIS Study). Cancers, 17(8), 1316. https://doi.org/10.3390/cancers17081316